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Abstract: Three nondispersive models in multi-dimensions have been developed. The first model consists
of aleading-order homogenized equation of motion subjected to the secularity constraintsimposing uniform
validity of asymptotic expansions. The second, nonlocal model, contains a fourth-order spatial derivative

and thus requires C' continuous finite element formulation. The third model, which is limited to the con-

stant mass density and a macroscopically orthototropic heterogeneous medium, requires c® conti nuity only
and itsfinite element formulation is almost identical to the classical local approach with the exception of the
mass matrix. The modified mass matrix consists of the classical mass matrix (lumped or consistent) per-
turbed with a stiffness matrix whose constitutive matrix depends on the unit cell solution. Numerical results
are presented to validate the present formulations.

1. Introduction

The primary objective of the second part of this manuscript is to extend the one-dimen-
sional nonlocal model developed in the first part [7] to multi-dimensions. We start by
developing a mathematical homogenization theory up to the second order with multiple
gpatial and temporal scales. A variant of the dispersive model consisting of the leading-
order homogenized equations of motion subjected to the secularity conditions imposing
uniformly valid asymptotic expansion is formulated first. A nonlocal dispersive model is
developed by adding together three sets of homogenized equations of motion. The result-
ing equation is independent of slow time scales, but contains fourth-order spatial deriva-

tive and thus requires C* continuous finite element formulation. For the case of constant
mass density and macroscopically orthotropic heterogeneous medium the fourth-order
gpatial derivative term can be approximated by a mixed second-order derivative in space
and time. The coefficients of the mixed derivative term can be constructed from the solu-
tion of the unit cell boundary value problem. Finite element formulation of this model is
amost identical to the classical zero-order homogenization theory with an exception of
the mass matrix. The modified mass matrix consists of the classical mass matrix (lumped
or consistent) perturbed by a stiffness matrix term whose constitutive matrix coefficients
depend on the unit cell solution.

2. Nonlocal M odéel

We consider waves propagating in elastic heterogeneous solid with a periodic microstruc-
ture. The problem of elastodynamics on the scale of material heterogeneity can be stated
asfollows:
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where Q denotes the macroscopic domain of interest with boundary "; ', and I ; are
boundary portions where displacements g4 and tractions #; are prescribed, respectively,
suchthat ', n Ty =0 and " = I, 0Tl ;; n, denotesthe normal vector on I"; u; isthe
displacement vector, &; the small strain tensor, o;; the stress tensor, C;;,; the elasticity

tensor and p the mass density. The elasticity tensor and the mass density are locally peri-
odic. We assume that micro-constituents possess homogeneous properties. The super-
posed dot denotes differentiation with respect to time, such that u;, u; are velocity and

acceleration vectors, respectively. The comma followed by a subscript variable denotes
the partia derivative. Summation convention over repeated subscripts is adopted, except
for subscripts x and y. Bold face |etters denote either vector or tensor quantities.

2.1 Asymptotic Analysiswith Multiple Spatial-Temporal Scales

As usua in homogenization methods we assume the characteristic size of the macro-
scopic problem L to be much larger than the dimension of the heterogeneities |, i.e.
€ = I/L « 1. The existence of two distinct scales introduces two spatial variables x and
y with y = x/€. In addition to two spatial scales and the usual time scale denoted as
to = t, weintroduce two slow time scales

t, = &t, t,= ¢t @

to capture the long-term behavior of the homogenized solution and to resolve the problem
of secularity [5][6]. Using the chain rule, the spatial and temporal derivatives can be
expressed as

()= O+ )y ()= ()g+e( )+, )
The strain and stress tensors then take the following form
g;(u) = exij(u)"'s_leyij(u)a 0jj = Cijk|[exk|(u)+€_leyk|(u)] (4

where e, and e, are symmetric gradients with respect to the variables x and y, respec-
tively:




1 1
€ij(U) = U x) = S(Uix i) &(u) = Ugyy = S(Ujy +u;y) ©)

The eguation of motion becomes

00 , .0, zaDDBu % >0ul] 4
pDTO &5 31, atZU Edtl sﬁg [O'IJX £ o”,yj] 0 (6)

Since the displacement field u; dependson x, y, t;, t; and t,, amultiple-scale asymp-
totic expansion is employed to approximate the solution

u(x,y,t) = uio(x, Y, to, 1y, 0) + suil(x, Y.t ty, 1) + szuiz(x, Vit )+... ()

Substituting the second equation in (4) into (6) yields
2 3 4 _
PLU; 1o, T 28U ¢ T E (205 FUjg ) F 287U FE U] =

e2L72(u) + £ LN (uy) + LOu) ®)

where
L_Z(Ui) = [Ciju ey (W] Y,
L) = [Cijeya(u)] x Gk (W],

LO(Ui) = [Ciju€ua (W)] X 9
The stress expansion can be obtained by substituting (7) into (4)

_ 1.1, 0 1, 22

where

-1

0 1
0 = Ciuey(U), 0 = Cileyq(u®) + ey (U’

)], s=0,1,2,... (12)

Inserting the asymptotic expansion (7) into (8) yields the following equations of motion
for various orders:

O(e?): L(u) = 0 (12)

o™ Lwh)+L 7)) = 0 (13)




0(1): puiO,toto = L_z(uiz) + L_l(uil) + Lo(uio) (14)
O(e): p(Ujyy, +2upyy) = LU + L7 (u) + L) (15)
O(e%): p(“iz,toto + 2uil,totl + 2ui0,tot2 + uio,tltl) = L) + L) + L) (16)

where based on (9) and (11), the following holds

0 -1
L (u)—cr”y, L (u)+L (u)-cyIJyJ Tij x
L2 )+ LT+ L) = oy + oy, s =0,1,2 (17)

2.2 Resolution of Problems at Different Orders

Consider the O(e_z) equilibrium equation (12) first. Premultiplying it by uio, integrating
over the unit cell domain Y and subsequently integrating by partsyields

0 -1 0 0
Iui 0jj njds—J'u(i,yj)Cijklu(k, ydY =0 (18)
dy Y

The boundary integral term in (18) vanishes dueto Y -periodicity on the unit cell boundary
dy . Furthermore, since C;;, is a positive definite fourth-order tensor, we have

= uio(x, to t1,t,) and al=0 (19)

0 _ 0
U(i,yj) - 0 |:| U: ij

We proceed to the O(s_l) equilibrium equation (13). From (11), (17) and (19) follows

Oy * Oiix = [Cijua(8ya(uh) + egq(u] = (20

As a consequence of linearity, the genera solution to u ! takes the followi ng form

WX, Y, Tt t) = UN(X, o by, t) + Hig (Y) €4 (U°) 1)

where H;,, isa Y -periodic third-rank tensor, which is symmetric with respect to indices k
and | . Substituting (21) into (20) yields

[CljkI(GkImn + 6mk6nl)] Y, xmn(uo) =0 (22)

where




1
Guimn(Y) = E(Hkmn,y,"'HImn,yk) = |_I(k,y,)mn (23)

O,y Is the Kronecker delta. Since (22) is valid for an arbitrary combination of macro-

scopic strain field exmn(uo) , We get the governing equation over the unit cell domain
[Cijki (Ciimn * OkmOin)] v 0 (24)
The solution H, ., is sought in the space W defined by:

W = {w|w Y-periodic, W+ O} (25)

where

000= |Y|_1I Yy (26)
Y

isthe averaging operator. Thus the unit cell boundary value problem can be stated as:

0
ijmn.y,

0
C =0, Cijm¥) = Cju(Gym + Omdin) . Hymp()H =0 (27)

For complex microstructures the finite element method is employed for discretization of
H.(y), which yields a set of linear algebraic equations with six right-hand sides in 3D

[8].
2.2.1 O(1) Homogenization

Based on (14) and (17) the O(1) perturbation equation can be written as

0o _ 1 0
PUitt, = Tijy, T Tijx (28)

Applying the averaging operator defined in (26)-(28) and taking into account Y -period-
icity of 0% gives

0 0

CPLL ¢ 1, — LO; j,ij =0 (29)

From (11) and (21), we have
05 = Cln(¥)&mn(u®) (30

Inserting (30) into (29) yields the O(1) macroscopic equation of motion:




0 0 0
pOui,toto_Dijmn(exmn(u )),Xj =0 (31)

where

pO = q)Dv Di(;mn = |:‘:ﬂmn(y)m (32)

The O(1) macroscopic equation of motion is non-dispersive. In order to capture disper-
sion effects, higher-order terms will be considered in the subsequent sections.

2.2.2 O(€) Homogenization

Combining (11), (21) and (31), yields
{Cjuley(U?) + 4 (U) + Hinn(&m(U2) xJ} y, =

[(8(Y)Dijrmn = Ciln(¥)) Exmn(U™)] (33)
where

6(y) = p(¥)/Po (34
Linearity suggests that ui2 may be sought in the form

UFO Y ot 1) = UT(X, to, b, 1) + Hig ()€ (UT) + Py () (8mn(U) g (39)

where P, j mn(Y) isaY-periodic fourth-rank tensor. Substituting (35) into (33) yields

[Cija Braprn * Hiamn1p)] y, (Smn(U )., = [8(Y) D = Ciprm¥)] (8mn(U )., (30)

where
_1 _
Bklpmn(y) - E(Pkpmn,y,"' I:)Ipmn,yk) - I:)(k, y,)pmn 37

Equation (36) is valid for any combination of macroscopic strain gradients (exmn(UO)),xp-
Thisyields the following unit cell boundary value problem:

1 0 0 1
Cijpmn,yj = e(y)Dipmn_Cipmn(Y) ’ Cijpmn(y) = CijkI(BkIpmn+ Hkmnalp)

(Pijmn(Y)d = 0 (38)




from which P;; ., (y) can be determined. The third equation in (38) is the normalization
condition similar to (27) for H,,,. Based on (17) the O(g) perturbation equation (15) can

be written as

2 1

1 0o\ _
Py tolo * 2ui1tot1) B Oijiyj * o-ijij (39)

Substituting (21) into (39) and applying the averaging operator as well as taking into

account Y -periodicity of oﬁ , yields

pOUil,toto + DY) i (e (U)) g1, + Zpouio,totl = BJ%,XJ.D (40)
From (11), (21) and (35), we can derive
05 = Colmn€mn(U") * Cijpmn ) (€mn(U)) x, (41

Inserting (41) into (40) yields the macroscopic equations of motion at O(g):

1 0 1 1 0
pOUi,tOto_Dijmn(exmn(U )),Xj = Dijkmn(exmn(u ))‘Xka_

D(Y) Hijg (D€ (U™)) s, — 200U 11, 42

where
1 _ ol
Dijkmn = ECijkmn(Y) (43)
223 O(ez) Homogenization

ui3 can be determined from O(e) perturbation equation (39). Combining (11), (21),
(35), (31) and (42), yields

{Cijkl[eykl(ug) +e(U%) + Hkmn(exmn(ul)),x| + Pkrmn(exmn(uo)),xrxl]} y =
[8(Y) D} = C ()] (Bmn(U ™)) +
{18(Y)Djj1mn = i1 +8 W) [Hig = Po PHid Dt (B (U s (44)

Due to the linearity of (44) ui3 can be sought in the form

Uig(X, Vit ty,tp) = UiS(X, oty ) + Hik|(Y)exk|(U2) + Piju (3/)(('3‘xk|(ul)),xj +




Qijtermn(¥) (Bmn(U) (45)

Substituting (45) into (44) yields
[CijkI(AkIprmn + I:)krmnalp)] ‘yj(exmn(uo)),xrxp = { [e(y)Dilrpmn - Cilrpmn(y)] +

8(Y)[Hirp=Po PHikdd Dirmn} (€xn(U™)) o (46)

where

1
Aklprmn(y) = E(Qkprmn,yI +lermn,yk) = Q(k, y,)prmn (47)

Equation (46) is valid for any combination of macroscopic strain gradients

(exmn(uo)),xrxp. Thus Qijkmn(y) can be determined from the solution of the boundary
value problem on the unit cell domain

2 1 1 -1 0
Cijprmn,yj = [e(y)Dirpmn_Cirpmn(y)] +e(y)[Hikp_pO H)Hikpq Dkrmn

2
Cijprmn(y) = CijkI(AkIprmn + I:)krmnélp) ' EQijkmn(y)D =0 (48)

Where the last equation in (48) is the normalization condition. The O(ez) perturbation
equation (16) can be rewritten as

o . _ 3 2
p(ultt +2u|tt +2U| tot T Uitt) = Oijy, * Oijx (49)

Substituting (21) and (35) into (49) and applying the averaging operator yields
0 1
PoY; toto + [pH; ey (U M) toto T PPijmi8mn(U7)) xtoto + 2P0V 1, *

0 0 0
20pH; ey (U7)) ot + 2P0U; 1, + Poli 11, = Eb” xU (50)

From (11), (35) and (45), we have
= C”mn(y) mn(U )+C|ern(y)( mn(U ))X |Jprmn(y)( mn(u ))XX (51)

Substituting (51) into (50) givesthe O(sz) macroscopic equations of motion:

2

D° 1 1
pOUi,tOt0 |jmn( xmn(U ))X - |Jprmn(exmn(u )) X XpX Dijrmn(exmn(U )),xrxj_




1 0 1
COH 41 (U) toto = PP jmn €xmn(U 7)) xtot — 2P0 1, —

0 0 0
2 [pH;ey (U7)) tot, — 2PoUi 1, — PoUi ¢ (52)

1tl
where

2 2
Dij prmn = [Cij prmn(Y)D (53)

Remark 1: The expressions (38), (43), (48), (53) and (35) for D", D and u’ show that
p'=o(cl), D?=o0(Cl®), [pHO=O(pl). HPO=O(pl") (4

where | = I/¢ isthe unit cell sizein the stretched coordinate system y. Thisimplies that

2
eD™ = O(Cl), £°D” = O(Cl%), e[pHO= O(pl) and £2pPO = O(pl?) can be
directly calculated from known geometric and material properties of micro-constituents,
independent of the value of €. Furthermore, when the mass density is constant within the

unit cell, the tensors [pHC and [p PC] vanish and the unit cell boundary value problems
can be greatly simplified.

3. Dispersive Models

The macroscopic equations of motion are given in (31), (42) and (52). The initial and
boundary conditions for the above equations are given as

Ics. u)(x,0,0,0) = f(x), uX(x,0,0,0) = g(x)
U(x,0,0,0) = 0, Uj(x,0,0,0) =0 (s=1,2) (55)

0 0 0
BCs Ui = 4 onl, [Dijklexkl(u )] n = B onTl

U =0 only, [Die(Udn =0 only (s =12) (56)
It has been shown in [5][6] that the right-hand-side termsin (42) and (52) give rise to sec-
ular asymptotic expansions, i.e. higher order terms grow unbounded in time. In order to
resolve the problem of secularity, we set the right-hand-side terms to zero. The secularity
free solution can be obtained by solving the |eading-order macroscopic equations (31):

pouiftoto_Dijmn(ean(u )),xj =0 (57)

subjected to the secularity constraints:




D{ ke (€ (U)) x, = DY) Hig (V8 (U%)) got, = 200U 1, = O (58)

2 0 1 1 1 1
Dijprmn(exmn(u ))X xx t Dijrmn(exmn(U )),X,Xj - q)HikI[(exkl(U )),toto - 2pOUi,tot1 -

rpT

0 0 0 0

COPjmr(€mn(U7)) xtot, = 2EPH (€44 (U7)) t5t, = 2PoUi 1 ¢, — Poli e, = O (59)
Analytical solution of (57)-(59) for one-dimensional problems has been given in [5][6].
3.1 Nonlocal Equations of Motion

In this section we develop an alternative approach by which the three sets of macroscopic
eguations are combined into a single equation and the dependence on dow timeis elimi-
nated. We start by defining the mean displacement as

U,(x,t) = O(x,y, t)0= U?+£Ui1+£2Ui2+ (60)
Multiplying (42) and (52) by € and g2 , respectively, and then adding the resulting equa-
tions to the leading-order macroscopic equations (31) gives

0

0 1, 2,2 0 1, 2,2
Po(u; +eU; +¢ Ui),toto_Dijmn(exmn(u +eU +¢e"U ))‘Xj =

22 0 1 0 1
€ Dijprmn(exmn(u )):XrXpXj+8Dijkmn(ean(u +eU )),kaj—

€ @Him[(exm(uo + EUl)),toto - 252 H)Him[(exm(uo)),totl -

2 0 0 1 2 0 0
€ u)Pijmn[(exmn(l"I )),thoto - 2'?'po(ui + £':Ui )ytotl —¢€ pO(ui ity + 2ui,tot2) (61)

Exploiting the relations
ui0+ sUi1+ sZUi2 = U+ o(e%), szu? = £”Ui + O(e), s(ui0+ sUil) = el + o(%)

2 . 3
U tto+28Ui,t0t1+€ (Ui,t1t1+2Ui,tot2) = U| +O(€ )

i 0
_ " 3 2 2. 3

e(Ui’totO+2£Ui’totl) =eU;+0(e"), ¢ Ui,toto =g Ui+ 0(g) (62)

and neglecting terms of order 0(83) and higher in (61), we get one set of macroscopic

eguations of motion with respect to the mean displacement:

212

- 0 1
pOUi - Dijmn(exmn(u)),xj - sDijkmn(exmn(U)),Xka —¢€ Dijprmn(exmn(u)),xrxpxj +

10



S@Hikltbxkl(lj)+82mpijmn[(exmn(lj)),xj =0 (63)

For the case of constant mass density within the unit cell, [pH;00 = [pP;;,[J= 0 and
consequently equation (63) can be ssimplified as:

2 2

- 0 1
pUi_Dijmn(exmn(U)),xj |kan( mn(U))xx IJIOfmn((:“Xfm(U))xxx =0 (69

Moreover, for the case of macroscopically orthotropic materials DI ikmn = 0 and equa-
tion (64) can be further simplified as:
- o 2 2 —
pUi - |jmn( xmn(U)) |Jprmn( xmn(U)),xrprj =0 (69)

In the remainder of this paper, attention is restricted to the approximation and numerical
implementation of (65). This equation contains the sixth-rank tensor, which can be evalu-
ated by solving the unit cell boundary value problems up to the second order. The highest

spatia derivatives appearing in (65) isfourth order and therefore ct continuity isrequired
for the finite element implementation. Moreover, the two sets of physically meaningful
boundary conditions are insufficient to define a well-posed initial-boundary value prob-
lem. The one-dimensional counterpart of (65) is known as a “bad”’ Boussinesq equation,
which yields meaningless solution for the case of oscillatory loading [7]. To resolve these
difficulties we will attempt to approximate the fourth-order spatial derivative in terms of
the mixed second-order spatial-temporal derivative. The resulting approximation will be
termed as a“ Good” Boussinesq problem.

3.2 The“Good” Boussinesq problem

We start by establishing the relation between D? and D°. From the leading-order unit
cell boundary value problem (27), we have the following integral equation over the unit
cell domain

Ilerklcljmnde Ilerklcljmn ]ds IlerkIy |]mndY =0 (66)
Oy

The boundary integral vanishes due to periodicity, and equation (66) becomes

IQiprkl,ijijst(Gstmn +0,s0p)dY = 0 (67)
Y

from which we have

IAi iprki CijmndY = _IAi iprk CijstCstmndY (68)
Y Y

11



where A isthe symmetric gradient of Q. From (48) and (68) we get
2
ICijprkI dy = _IAmnprkI Cmnsthtide+J.Ciqu|:)qul dy (69)
Y Y Y

Similarly, from the second-order unit cell boundary value problem (48), we have the fol-
lowing integral equation

2 1 1
IHistCijprmn,yde = IHist{[e(y)Dirpmn_Cirpmn(y)] +
Y Y

0(Y)[Hixp—Po. CPHigd Dicrmn} AY (70)

Integrating the left-hand side of (70) by parts with consideration of periodicity and insert-
ing the expression for c? gives

2
_IAmnprkI CmnstG'stide = I[Hsijcstprkl A + Gstisttqu)quI] dy (71)
Y Y
Substituting (71) into (69) and (70), we have
C2 Y = [Py CodY + [Hy { [8(Y)Di oy — Co +
I ijprkl —I arki Cpdij I sij{ [8(Y)Dgrpii = Corpia (Y)]
Y Y Y

e(y) [ Hqu - pal q)Hquq Dgr ki } dy (72)

From the first-order unit cell boundary value problem (38), we have the following inte-
gral equation

1 0 0
Ipirkl Cijpmn,yjdY = Ipirkl [G(Y)Dipmn - Cipmn(y)] dy (73)
Y Y
Similarly
0 0 1
IPirkI Cipmn(y)dY = Ie(y)PirklDipmndY+IBijrkICijpmndY (74)
Y Y Y
Substituting (74) into (72) and using the notation for the averaging operator [ [ gives
2 -1 0 -1 1 1
Dijorki = Po PP Ppgij + Po HPH i Dgrpi ¥ Brnrki Cranpif—

1 -1 0 -2 0
D_|sistrkaD+p0 q)Hsinququkl —Po q)Hsiij) HquEqukI (75)

In the case of constant mass density, equation (75) reduces to

12



2 _ 1 1 0
I:)ijprkl - [anrkl Cmnpij - |_IsistrkaD"' |:HsinquEqukI (76)
Using least square approximation of the first term in (76), (B, C#npij - HsijCirkaD

can be approximated by V, qung and thus the relation between D and D° can be
expressed as.

2
ijprki

0

D grki

= [Vijpq *+ (HgijHgpg 1D

ijpg (77)

Utilizing the approximation (77) yields
2.2 _ 2 0
€ D|jprmn(exmn(U))‘erpXj =€ [Viqu+ D—lsinquE] qumn(exmn(u)),xrxpxj

«x +O(%) (78

rp™

— 2 0 0
=& [Viqu+ EHsinquE-I(qumnexmn(u ))X

From the leading-order macroscopic equations of motion (31) and the relations in (62),
we have

20 0 2.0 2 3 2 3
€ Dgrmn(&mn(U7)) x, = € PoUgr, = € PoUqyt, T O(7) = € pgUg+O(e7)  (79)

Inserting (79) into (78) gives
22 _ 2 " 3
€ D|jprmn(exmn(U))‘XrXpXj = €7pg[Vjjpg t tHgijHspdd Ugxx + O(€7) (80)

Substituting (80) into (65) and neglecting terms of 0(53) and higher yields the so called
“Good” Boussinesq problem in multi-dimensions:

poUi — Diojkl(exkl(u)),xj - pOE:(j (€ (U)) = 0 (81)
where

k

2
Eiipg = € [Vijpg* HejHepdd 82)

11pq

Remark 2: For macroscopically isotropic materials the first term in (82) is much smaller

than the second and thus E* can be approximated in terms of the leading-order unit cell
boundary value solution and thus eliminating the need for solving higher-order unit cell

boundary value problems. It can be seen that EX introduces the length-scale into the mac-
roscopic equations of motion.

3. Finite Element Formulation

13



In this section we focus on the finite element semi-discretization of equation (81). Since

the highest spatial derivatives appearing in (81) is second-order, the usual ® finite dle-
ment approximation is sufficient. The weak statement of the problem isformulated as fol-

lows. For each t I (O, Ty] , find U;(x, t) O Hl(Q) , suchthat U;(x,t) = g, onl, and

IpoWiUidQ—IWiDSkl(exm(U)),xde—IpoWiE:(jkl(exkl(U)),xde =0 (83)
Q Q Q

Ui(x,0) = fi(x).  Ui(x,0) = gi(x) (84)

for all admissible test functions w;(x) 0 Hg(Q) , where H'(Q) is the Sobolev space
defined as

0 0
HY(Q) = H/(x) 0L%(Q),v, O LZ(Q)E (85)

with LZ(Q) denoting the set of square-integrable functions over Q, and
Ha(Q) = {w(x) OH(Q)|w(x) =0 on T} (86)

Integrating (83) by parts and accounting for major symmetry of D%nd Ek, we have the
weak form:

[Pow;UidQ + Iexij(W)Di(}klexkl(U)dQ + Ipoexij(W)E:(jklexkl(U)dQ =
Q Q Q

K -
Iwi fds+ I PoW; N;Eijjy € (U) ds (87)
r r

a g

Following Remark 3 in Part | [7] of this two-part manuscript the second boundary termin
(87) can be neglected provided that the wavelengths are significantly larger than the unit
cell size. Otherwise it contributes a nonsymmetric term to the mass matrix.

Finite element approximation of the above weak form leads to the semi-discrete equa-
tions of motion:

Md+Kd = F (88)

where d(t) is the vector of nodal displacements; M, K and F are the system mass and
stiffness matrices as well as the load vector, respectively:

14



K:Zke, F:Zfe (89)

m® = [pN'NdQ + [pB'E'BdR, k= [B'D’BdQ, f°= [N'hds (90
Qe Qe Qe rUe

where N and B are the shape function and the symmetric gradient of N; m®, k®, ° the

element mass matrix, stiffness matrix, and force vector, respectively; D° the homogenized

elasticity matrix and E¥ the matrix constructed from the elements of E!‘j W -

Equation (88) isintegrated in the time domain using standard time integration schemes.
4. Numerical Results

To validate the proposed nonlocal model, two-dimensional and three-dimensional prob-
lems are considered. Numerical examples are restricted to macroscopically isotropic
medium with constant mass density. Problems involving randomly or periodically distrib-
uted particles, such as concrete, dense polycrystals and short fiber composites, fal into
this category.

Problem 1: To compare the solution of the nonlocal model to the solutions of the classical
homogenization model and the source heterogeneous problem, a two-dimensional plain
strain problem as shown in Figure 1 is considered. The left edge is fixed while the right

edge is subjected to impact load q(t) = ao(t—-T/2)t"(t=T) [1-h(t=T)] . a, is
scaled sothat —1<q(t) <1; T isthe duration of the impact pulse, and h(t) denotesthe
Heaviside step function. The function q(t) generates a Gaussian-like shape pulse.

: / '

<_

13 '/ <<— q(t) 26/15
* o5 ol (104FEs)

X, \ Y
fo =

y, 1 (60FES)

7

Figure 1: Two-dimensional plain strain multi-scale problem
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The microstructure consists of hexagonally arranged circular fibers embedded in matrix
material. This configuration is macroscopically isotropic. The volume fraction ratio of

fibersis 0.60 . The Young’'s modulus of fibers and matrix are E;, = 50, and E, = 1,

respectively; the Poisson's ratios are v, =v_ =02, and mass densties are

Pa=P,,

= 1 . Homogenized properties are evaluated by solving the leading-order

microscopic boundary value problem, which yields:

3.64 0.89 0.00 3.11 -0.10 0.00
0 _ k _ _2
D" = (089368000 E = |-010 3.09 0.00[%10 ".
0.00 0.00 1.36 0.00 0.00 1.60
15 | 1 | 1 1 I 1 1 I
— Reference
-+ ++ Classical
— - Nonlocal

Displacement u, at center A

100

0 10 20 30 40 50 60 70 80 90
Time
15 T T T T T T T T T
—— Reference
«+++ Classical
1 — = Nonlocal

Displacement u, at center A

-1 1

1 1
120 130

110

140

150
Time

L 1 L
160 170 180 190 200

Figure 2: Comparison of responses at the center point A
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In this example loading period duration is taken as T = 7. The source heterogeneous
problem is discretized with 1560 x 676 bilinear square-shape finite elements. For the
classical homogenization and nonlocal methods, the microstructure is discretized with
60 x 104 bilinear square-shape finite elements, whereas the macro-problem is discretized
with 104 x 52 bilinear square-shape finite elements.

Figure 2 shows the time-varying displacement u, at point A (in Figure 1) corresponding

to the center of macro-domain. Good agreement between the solution of the nonlocal
model and the reference solution of the source problem can be seen. On the other hand, the
solution of the classical homogenization model shows significant deviation from the refer-
ence solution.

Problem 2: As an example of various three-dimensional problems, an isotropically dam-
aged concrete beam of 450 x 150 x 150 mm® shown in Figure 3 is considered. The left
face is fixed and the right face is subjected to the impact load q(t) perpendicular to it. A

quarter region is discretized with 90 x 15 x 15 trilinear cubic-shape finite e ements due to
the symmetry. The unit cell model is reconstructed from athree-dimensional digital imag-
ing process [19]. The unit cell consistsof 75 mm-cubic region, which isthree times larger

than the maximum size of an aggregate. The unit cell is discretized with 1503 trilinear
cubic-shape finite elements. The volume fraction of aggregates is 0.49 ; The Young's

modulus of aggregates and damaged mortar are E, = 55 GPa, Eﬂ] = 2.6 GPa, respec-
tively; The Poisson's ratios v, = 0.15, v, = 0.19; and the mass densities
Pa =P, = 2.2x 1070 Kg/mm®. Load period duration timeis T = 100ys.

75mm
(150FES)

k,le k»yl

Figure 3: Three-dimensional multi-scale problem of concrete
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Figure 4 plots the time-varying displacement u; and the normal stress o, as obtained

with the nonlocal and the classical homogenization model at the center A in the Figure 3.
Figure 5 shows the maximum principa stresses in the unit cell at the center A

(t = 915us). The stressesin the unit cell are approximated upto O(1) . No comparison
to the reference solution has been made as that would involve over 100 million degrees-

of-freedom.
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Figure 4: Comparison of responses at the center point A (Concrete sample)
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Figure 5: Comparison of maximum stresses in the unit cell at t = 915us

5. Summary and Future Research Directions

Three dispersive models for wave propagation in heterogeneous media have been devel-
oped for one- and multi-dimensional problems. Thiswork is motivated by our recent stud-
ies for one-dimensional problems [4][5] which suggested that in absence of multiple time
scaling, higher-order homogenization method gives rise to secular terms which grow
unbounded with time and the problem of secularity can be successively resolved with the
introduction of slow time scales. The first model consists of aleading-order homogenized
equation of motion subjected to secularity constraints imposing uniform validity of
asymptotic expansions. The second, nonlocal model, contains fourth-order spatial deriva-

tive and thus requires c' continuous finite element formulation. The third model, which
has been implemented for constant mass density and macroscopically isotropic heteroge-

neous medium, requires c® continuity only and its finite element formulation is almost
identical to the classical local approach with the exception of the mass matrix. The modi-
fied mass matrix consists of the classical mass matrix (lumped or consistent) perturbed
with a stiffness matrix whose constitutive matrix depends on the unit cell solution.

Severdl issues, however, have not been addressed:

1. Only the specia case with constant mass density and macroscopically isotropic hetero-
geneous medium have been implemented and validated. For general macroscopicaly
anisotropic materials D'#0 and thustheissue of C* continuity has to be resolved.

2. For macroscopically orthotropic materials higher order unit cell problems have to be
solved.
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3. The present model requiresimplicit time integration. Lumping of the additional term in

the mass matrix, IpOBTEdeQ , isidentically zero. Therefore various mass matrix split-

Q
ting procedures have to be investigated in the context of explicit methods.

4. For the finite element formulation of the dispersive model involving secularity con-
straints (57)-(59) time integration procedures with multiple time scales have to be devel-
oped.

These issues will be investigated in our future work.
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