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Abstract: Three nondispersive models in multi-dimensions have been developed. The first model consists
of a leading-order homogenized equation of motion subjected to the secularity constraints imposing uniform
validity of asymptotic expansions. The second, nonlocal model, contains a fourth-order spatial derivative

and thus requires  continuous finite element formulation. The third model, which is limited to the con-

stant mass density and a macroscopically orthototropic heterogeneous medium, requires  continuity only
and its finite element formulation is almost identical to the classical local approach with the exception of the
mass matrix. The modified mass matrix consists of the classical mass matrix (lumped or consistent) per-
turbed with a stiffness matrix whose constitutive matrix depends on the unit cell solution. Numerical results
are presented to validate the present formulations. 

1. Introduction

   The primary objective of the second part of this manuscript is to extend the one-dimen-
sional nonlocal model developed in the first part [7] to multi-dimensions. We start by
developing a mathematical homogenization theory up to the second order with multiple
spatial and temporal scales. A variant of the dispersive model consisting of the leading-
order homogenized equations of motion subjected to the secularity conditions imposing
uniformly valid asymptotic expansion is formulated first. A nonlocal dispersive model is
developed by adding together three sets of homogenized equations of motion. The result-
ing equation is independent of slow time scales, but contains fourth-order spatial deriva-

tive and thus requires  continuous finite element formulation. For the case of constant
mass density and macroscopically orthotropic heterogeneous medium the fourth-order
spatial derivative term can be approximated by a mixed second-order derivative in space
and time. The coefficients of the mixed derivative term can be constructed from the solu-
tion of the unit cell boundary value problem. Finite element formulation of this model is
almost identical to the classical zero-order homogenization theory with an exception of
the mass matrix. The modified mass matrix consists of the classical mass matrix (lumped
or consistent) perturbed by a stiffness matrix term whose constitutive matrix coefficients
depend on the  unit cell solution.

2. Nonlocal Model

 We consider waves propagating in elastic heterogeneous solid with a periodic microstruc-
ture. The problem of elastodynamics on the scale of material heterogeneity can be stated
as follows:
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,       ,        on 

BCs: ,      

 ICs:   ,           on                            (1)

where  denotes the macroscopic domain of interest with boundary ;  and  are

boundary portions where displacements  and tractions  are prescribed, respectively,

such that  and ;  denotes the normal vector on ;  is the

displacement vector,  the small strain tensor,  the stress tensor,  the elasticity

tensor and  the mass density. The elasticity tensor and the mass density are locally peri-

odic. We assume that micro-constituents possess homogeneous properties. The super-

posed dot denotes differentiation with respect to time, such that  are velocity and

acceleration vectors, respectively. The comma followed by a subscript variable denotes

the partial derivative. Summation convention over repeated subscripts is adopted, except

for subscripts  and . Bold face letters denote either vector or tensor quantities.

2.1 Asymptotic Analysis with Multiple Spatial-Temporal Scales

   As usual in homogenization methods we assume the characteristic size of the macro-
scopic problem  to be much larger than the dimension of the heterogeneities , i.e.

. The existence of two distinct scales introduces two spatial variables  and

 with . In addition to two spatial scales and the usual time scale denoted as

, we introduce two slow time scales

 ,      (2)

to capture the long-term behavior of the homogenized solution and to resolve the problem
of secularity [5][6]. Using the chain rule, the spatial and temporal derivatives can be
expressed as

,        (3)

   The strain and stress tensors then take the following form

,         (4)

where  and  are symmetric gradients with respect to the variables  and , respec-

tively:
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,         (5)

   The equation of motion becomes

(6)

   Since the displacement field  depends on , , ,  and , a multiple-scale asymp-

totic expansion is employed to approximate the solution

 (7)

   Substituting the second equation in (4) into (6) yields

                 

(8)

where

                                                     

                                  

(9)

   The stress expansion can be obtained by substituting (7) into (4)

(10)

where

,     ,    (11)

   Inserting the asymptotic expansion (7) into (8) yields the following equations of motion
for various orders:
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     :         (14)

     :      (15)

     :   (16)

where based on (9) and (11), the following holds

                                   ,      

,      (17)

2.2 Resolution of Problems at Different Orders

   Consider the  equilibrium equation (12) first. Premultiplying it by , integrating

over the unit cell domain  and subsequently integrating by parts yields

 (18)

The boundary integral term in (18) vanishes due to -periodicity on the unit cell boundary

. Furthermore, since  is a positive definite fourth-order tensor, we have

   and    (19)

   We proceed to the  equilibrium equation (13). From (11), (17) and (19) follows
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(23)

 is the Kronecker delta. Since (22) is valid for an arbitrary combination of macro-

scopic strain field , we get the governing equation over the unit cell domain

(24)

   The solution  is sought in the space W defined by:

(25)

where 

(26)

is the averaging operator. Thus the unit cell boundary value problem can be stated as:

,      ,      (27)

   For complex microstructures the finite element method is employed for discretization of
, which yields a set of linear algebraic equations with six right-hand sides in 3D

[8].

2.2.1  Homogenization

   Based on (14) and (17) the  perturbation equation can be written as

(28)

   Applying the averaging operator defined in (26)-(28) and taking into account -period-

icity of  gives
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(31)

where

,       (32)

   The  macroscopic equation of motion is non-dispersive. In order to capture disper-
sion effects, higher-order terms will be considered in the subsequent sections.

2.2.2  Homogenization

   Combining (11), (21) and (31), yields
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from which  can be determined. The third equation in (38) is the normalization

condition similar to (27) for . Based on (17) the  perturbation equation (15) can

be written as

(39)

   Substituting (21) into (39) and applying the averaging operator as well as taking into

account -periodicity of , yields 
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(45)

Substituting (45) into (44) yields

        

(46)

where

(47)

Equation (46) is valid for any combination of macroscopic strain gradients

. Thus  can be determined from the solution of the boundary

value problem on the unit cell domain
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Where the last equation in (48) is the normalization condition. The  perturbation
equation (16) can be rewritten as 
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   Substituting (21) and (35) into (49) and applying the averaging operator yields
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(52)

where

(53)

Remark 1: The expressions (38), (43), (48), (53) and (35) for ,  and  show that

,      ,      ,      (54)

where  is the unit cell size in the stretched coordinate system . This implies that

,   ,    and  can be
directly calculated from known geometric and material properties of micro-constituents,
independent of the value of . Furthermore, when the mass density is constant within the

unit cell, the tensors  and  vanish and the unit cell boundary value problems
can be greatly simplified.

3. Dispersive Models

   The macroscopic equations of motion are given in (31), (42) and (52). The initial and
boundary conditions for the above equations are given as
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ular asymptotic expansions, i.e. higher order terms grow unbounded in time. In order to
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free solution can be obtained by solving the leading-order macroscopic equations (31):
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   (58)

              (59)

Analytical solution of (57)-(59) for one-dimensional problems has been given in [5][6]. 

3.1 Nonlocal Equations of Motion

In this section we develop an alternative approach by which the three sets of macroscopic
equations are combined into a single equation and the dependence on slow time is elimi-
nated. We start by defining the mean displacement as

(60)

Multiplying (42) and (52) by  and , respectively, and then adding the resulting equa-
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(63)

   For the case of constant mass density within the unit cell,  and

consequently equation (63) can be simplified as:
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xj,– ε2

Dijprmn
2

exmn U( )( )
xrxpxj,– 0=

C
1

D2 D0

QiprklCijmn yj,
0

Yd

Y

∫ QiprklCijmn
0

nj s Qiprkl yj, Cijmn
0

Yd

Y

∫–d

∂Y

∫ 0= =

Qiprkl yj, Cijst Gstmn δmsδnt+( ) Yd

Y

∫ 0=

AijprklCijmn Yd

Y

∫ AijprklCijstGstmn Yd

Y

∫–=
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where  is the symmetric gradient of . From (48) and (68) we get

(69)

   Similarly, from the second-order unit cell boundary value problem (48), we have the fol-
lowing integral equation

                       

(70)

Integrating the left-hand side of (70) by parts with consideration of periodicity and insert-

ing the expression for  gives

(71)

Substituting (71) into (69) and (70), we have

                 

(72)

   From the first-order unit cell boundary value problem (38), we have the following inte-
gral equation

(73)

Similarly

(74)

Substituting (74) into (72) and using the notation for the averaging operator  gives

              

(75)

   In the case of constant mass density, equation (75) reduces to

A Q

Cijprkl
2

Yd

Y

∫ AmnprklCmnstGstij Yd

Y

∫– CijpqPqrkl Yd

Y

∫+=

HistCijprmn yj,
2

Yd

Y

∫ Hist θ y( )Dirpmn
1

Cirpmn
1 y( )–[ ] +{

Y

∫=

θ y( ) Hikp ρ0
1– ρHikp〈 〉–[ ]Dkrmn

0 } dY

C2

AmnprklCmnstGstij Yd

Y

∫– HsijCstprkl yt,
2

GstijCstpqPqrkl+[ ] Yd

Y

∫=

Cijprkl
2

Yd

Y

∫ PqrklCpqij
0

Y Hsij θ y( )Dsrpkl
1

Csrpkl
1 y( )–[ ] +{

Y

∫+d

Y

∫=

θ y( ) Hspq ρ0
1– ρHspq〈 〉–[ ]Dqrkl

0 } dY

PirklCijpmn yj,
1

Yd

Y

∫ Pirkl θ y( )Dipmn
0

Cipmn
0 y( )–[ ] Yd

Y

∫=

PirklCipmn
0 y( ) Yd

Y

∫ θ y( )PirklDipmn
0

Yd

Y

∫ BijrklCijpmn
1

Yd

Y

∫+=

〈 〉

Dijprkl
2 ρ0

1– ρPqrkl〈 〉 Dpqij
0 ρ0

1– ρHsij〈 〉 Dsrpkl
1

BmnrklCmnpij
1〈 〉 –+ +=

HsijCsrpkl
1〈 〉 ρ 0

1– ρHsijHspq〈 〉 Dqrkl
0 ρ0

2– ρHsij〈 〉 ρ Hspq〈 〉 Dqrkl
0–+
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(76)

Using least square approximation of the first term in (76), 

can be approximated by  and thus the relation between  and  can be

expressed as:

(77)

 Utilizing the approximation (77) yields

  

                                            (78)

   From the leading-order macroscopic equations of motion (31) and the relations in (62),
we have

(79)

   Inserting (79) into (78) gives

(80)

   Substituting (80) into (65) and neglecting terms of  and higher yields the so called
“Good” Boussinesq problem in multi-dimensions:

(81)

where

(82)

Remark 2: For macroscopically isotropic materials the first term in (82) is much smaller

than the second and thus  can be approximated in terms of the leading-order unit cell
boundary value solution and thus eliminating the need for solving higher-order unit cell

boundary value problems. It can be seen that  introduces the length-scale into the mac-
roscopic equations of motion.

3. Finite Element Formulation

Dijprkl
2

BmnrklCmnpij
1

HsijCsrpkl
1

–〈 〉 HsijHspq〈 〉 Dqrkl
0

+=

BmnrklCmnpij
1

HsijCsrpkl
1–〈 〉

VijpqDqrkl
0 D2 D0

Dijprkl
2

Vijpq HsijHspq〈 〉+[ ]Dqrkl
0=

ε2
Dijprmn

2
exmn U( )( )

xrxpxj, ε2
Vijpq HsijHspq〈 〉+[ ]Dqrmn

0
exmn U( )( )

xrxpxj,=

ε2
Vijpq HsijHspq〈 〉+[ ] Dqrmn

0
exmn u0( )( ) xrxpxj, O ε3( )+=

ε2
Dqrmn

0
exmn u0( )( ) xr, ε2ρ0uq t0t0,

0 ε2ρ0Uq t0t0, O ε3( )+ ε2ρ0U·· q O ε3( )+= = =

ε2
Dijprmn

2
exmn U( )( ) xrxpxj, ε2ρ0 Vijpq HsijHspq〈 〉+[ ]U·· q xpxj, O ε3( )+=

O ε3( )

ρ0U·· i Dijkl
0

exkl U( )( )
xj,– ρ0Eijkl

k
exkl U··( )( ) xj,– 0=

Eijpq
k ε2

Vijpq HsijHspq〈 〉+[ ]=

Ek

Ek
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   In this section we focus on the finite element semi-discretization of equation (81). Since

the highest spatial derivatives appearing in (81) is second-order, the usual  finite ele-
ment approximation is sufficient. The weak statement of the problem is formulated as fol-

lows. For each , find , such that  on  and

(83)

,        (84)

for all admissible test functions , where  is the Sobolev space

defined as

(85)

with  denoting the set of square-integrable functions over , and

(86)

Integrating (83) by parts and accounting for major symmetry of and , we have the
weak form: 

(87)

Following Remark 3 in Part I [7] of this two-part manuscript the second boundary term in
(87) can be neglected provided that the wavelengths are significantly larger than the unit
cell size. Otherwise it contributes a nonsymmetric term to the mass matrix.

   Finite element approximation of the above weak form leads to the semi-discrete equa-
tions of motion:

(88)

where  is the vector of nodal displacements; ,  and  are the system mass and
stiffness matrices as well as the load vector, respectively: 

C
0

t 0 T0 ],(∈ Ui x t,( ) H
1 Ω( )∈ Ui x t,( ) gi= Γu

ρ0wiU
··

i Ω wiDijkl
0

exkl U( )( )
xj, Ω ρ0wiEijkl

k
exkl U··( )( ) xj, Ωd

Ω
∫–d

Ω
∫–d

Ω
∫ 0=

Ui x 0,( ) fi x( )= U· i x 0,( ) gi x( )=

wi x( ) H0
1 Ω( )∈ H

1 Ω( )

H
1 Ω( ) v x( ) L

2 Ω( ) v xi, L
2 Ω( )∈,∈

 
 
 

=

L
2 Ω( ) Ω

H0
1 Ω( ) w x( ) H

1 Ω( ) w x( ) 0 on Γu=∈{ }=

D0 Ek

ρ0wiU
··

i Ω exij w( )Dijkl
0

exkl U( ) Ω ρ0exij w( )Eijkl
k

exkl U··( ) Ωd

Ω
∫+d

Ω
∫+d

Ω
∫ =

wihi s ρ0winjEijkl
k

exkl U··( ) sd

Γσ

∫+d

Γσ

∫

Md·· Kd+ F=

d t( ) M K F
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,         ,         (89)

,         ,      (90)

where  and  are the shape function and the symmetric gradient of ; , ,  the

element mass matrix, stiffness matrix, and force vector, respectively;  the homogenized

elasticity matrix and  the matrix constructed from the elements of .

   Equation (88) is integrated in the time domain using standard time integration schemes.

4. Numerical Results

   To validate the proposed nonlocal model, two-dimensional and three-dimensional prob-
lems are considered. Numerical examples are restricted to macroscopically isotropic
medium with constant mass density. Problems involving randomly or periodically distrib-
uted particles, such as concrete, dense polycrystals and short fiber composites, fall into
this category.

Problem 1: To compare the solution of the nonlocal model to the solutions of the classical
homogenization model and the source heterogeneous problem, a two-dimensional plain
strain problem as shown in Figure 1 is considered. The left edge is fixed while the right

edge is subjected to impact load .  is

scaled so that ;  is the duration of the impact pulse, and  denotes the

Heaviside step function. The function  generates a Gaussian-like shape pulse. 

Figure 1: Two-dimensional plain strain multi-scale problem
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The microstructure consists of hexagonally arranged circular fibers embedded in matrix
material. This configuration is macroscopically isotropic. The volume fraction ratio of
fibers is . The Young’s modulus of fibers and matrix are , and ,

respectively; the Poisson's ratios are , and mass densities are

. Homogenized properties are evaluated by solving the leading-order

microscopic boundary value problem, which yields:

,     .

Figure 2: Comparison of responses at the center point A
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   In this example loading period duration is taken as . The source heterogeneous

problem is discretized with  bilinear square-shape finite elements. For the
classical homogenization and nonlocal methods, the microstructure is discretized with

 bilinear square-shape finite elements, whereas the macro-problem is discretized

with  bilinear square-shape finite elements.

   Figure 2 shows the time-varying displacement  at point A (in Figure 1) corresponding

to the center of macro-domain. Good agreement between the solution of the nonlocal
model and the reference solution of the source problem can be seen. On the other hand, the
solution of the classical homogenization model shows significant deviation from the refer-
ence solution.

Problem 2: As an example of various three-dimensional problems, an isotropically dam-

aged concrete beam of  mm3 shown in Figure 3 is considered. The left

face is fixed and the right face is subjected to the impact load  perpendicular to it. A

quarter region is discretized with  trilinear cubic-shape finite elements due to
the symmetry. The unit cell model is reconstructed from a three-dimensional digital imag-
ing process [19]. The unit cell consists of  mm-cubic region, which is three times larger

than the maximum size of an aggregate. The unit cell is discretized with  trilinear

cubic-shape finite elements. The volume fraction of aggregates is ; The Young's

modulus of aggregates and damaged mortar are  GPa,  GPa, respec-

tively; The Poisson's ratios , ; and the mass densities

 Kg/mm3. Load period duration time is .

 Figure 3: Three-dimensional multi-scale problem of concrete
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Figure 4 plots the time-varying displacement  and the normal stress  as obtained

with the nonlocal and the classical homogenization model at the center A in the Figure 3.
Figure 5 shows the maximum principal stresses in the unit cell at the center A

( ). The stresses in the unit cell are approximated up to . No comparison
to the reference solution has been made as that would involve over 100 million degrees-
of-freedom.

Figure 4: Comparison of responses at the center point A (Concrete sample)

u1 σ1

t 915µs= O 1( )
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Figure 5: Comparison of maximum stresses in the unit cell at 

5. Summary and Future Research Directions

   Three dispersive models for wave propagation in heterogeneous media have been devel-
oped for one- and multi-dimensional problems. This work is motivated by our recent stud-
ies for one-dimensional problems [4][5] which suggested that in absence of multiple time
scaling, higher-order homogenization method gives rise to secular terms which grow
unbounded with time and the problem of secularity can be successively resolved with the
introduction of slow time scales. The first model consists of a leading-order homogenized
equation of motion subjected to secularity constraints imposing uniform validity of
asymptotic expansions. The second, nonlocal model, contains fourth-order spatial deriva-

tive and thus requires  continuous finite element formulation. The third model, which
has been implemented for constant mass density and macroscopically isotropic heteroge-

neous medium, requires  continuity only and its finite element formulation is almost
identical to the classical local approach with the exception of the mass matrix. The modi-
fied mass matrix consists of the classical mass matrix (lumped or consistent) perturbed
with a stiffness matrix whose constitutive matrix depends on the  unit cell solution.

   Several issues, however, have not been addressed:

1. Only the special case with constant mass density and macroscopically isotropic hetero-
geneous medium have been implemented and validated. For general macroscopically

anisotropic materials   and thus the issue of   continuity has to be resolved. 

2. For macroscopically orthotropic materials higher order unit cell problems have to be
solved. 

Classical Homogenization Nonlocal Model

t 915µs=

C
1

C
0

D1 0≠ C
1
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3. The present model requires implicit time integration. Lumping of the additional term in

the mass matrix, , is identically zero. Therefore various mass matrix split-

ting  procedures have to be investigated in the context of explicit methods.

4. For the finite element formulation of the dispersive model involving secularity con-
straints (57)-(59) time integration procedures with multiple time scales have to be devel-
oped.

These issues will be investigated in our future work.
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