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Abstract: Solution procedures for large-scale transient analysis of piezocomposites are developed. Compu-
tational efficiency of unconditionally stable and conditionally stable implicit partitioned schemes as well as
explicit partitioned schemes is investigated in the context of multilevel solution methods applied to separate
field equations.

1.0 Introduction

   Multiphysics modeling and simulation has recently gained significant attention in com-
putational science and engineering community. Example problems falling into this cate-
gory are coupled mechanical, thermal, electrical, diffusion-reaction, fluid-structure
interaction problems. In multiphysics problems, typically a wide range of interacting spa-
tial and temporal scales are involved resulting in large coupled time-dependent system of
equations.

   Generally, there are three approaches for simulation of coupled systems [1]: field elimi-
nation, monolithic and partitioned schemes. Field elimination is restricted to linear (or lin-
earized) problems that permit efficient decoupling. The monolithic scheme is in general
computationally challenging, economically suboptimal and software-wise unmanageable
[2]. On the other hand, the partitioned treatment, which is the focus of the present manu-
script, is computational efficient, flexible and software reusable. 

   In partitioned schemes, computational efficiency is counteracted by the fact that satisfac-
tory numerical stability is hard to achieve. In fact the practical feasibility of the partitioned
approach hinges entirely on the stability analysis [1]. Stability analysis by standard Fou-
rier techniques using a scalar test equation is not generally possible because modes of
individual subsystems are not modes of the coupled problem. Moreover, partitioned pro-
cedures are in general less accurate than their underlying subsystem time integrators. In
principle, higher order accuracy can be recovered by iterating the solution between the
fields at each time step [3]. However, the computational cost of interfield iterations may
overshadow the gains from reduced timesteping [1].

   In this manuscript we focus on the problem of piezoelectricity in periodic heterogeneous
media. We start by formulating the monolithic equations and study stability of  implicit
time integrators (the Newmark method) applied to the monolithic equations. It is demon-
strated that taking the integration parameters which render the Newmark method uncondi-
tionally stable for conventional structural dynamics problems do not guarantee
unconditional stability of the monolithic system. This is due to the fact that in structural
dynamics problems, the global mass matrix is positive definite and the stiffness matrix is
at least positive semi-definite, whereas for piezocomposites the global stiffness matrix of
the monolithic scheme is indefinite, and thus conventional implicit integrators directly
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applied to the monolithic system may not be stable. From the monolithic equations, we
construct the implicit partitioned schemes based on the block Gauss-Seidel method. It is
shown that the partitioned scheme constructed directly from the monolithic equations does
not guarantee unconditional stability. Unconditionally stable partitioned scheme can be
obtained by augmenting the original equations of motion and subsequently splitting the
field equations along the lines of block Gauss-Seidel method. 

   Computational  efficiency of solving the problem of piezoelectricity is the main focus of
the present manuscript. While partitioned approach reduces the solution of coupled phys-
ics problem into a sequence of single field problems,  the computational cost could be still
insurmountable due to the existence of multiple spatial scales within each physical pro-
cess. For this type of problems the direct method may not computationally optimal, while
various multigrid methods though very efficient for differential equations with constant
coefficients, exhibit poor rates of convergence when applied to differential equations with
rapidly oscillating coefficients [4][5]. The Representative Volume Element or RVE-based
multilevel method developed by the authors has been shown to possess high rates of con-
vergence for single-field structural dynamics problems in periodic heterogeneous media
[6]. In the present manuscript, we extend the framework of the RVE-based multilevel
method to transient analysis of piezocomposites. 

   Convergence properties of the RVE-based multilevel method are studied in the context
of unconditionally stable and a conditionally stable implicit and explicit partitioned
schemes. We show that the rate of convergence of the RVE-based multilevel method for
conditionally stable implicit and explicit partitioned schemes is higher than for uncondi-
tionally stable scheme. This is in part due to the fact that the eigenspace of the stabilized
matrix cannot be reproduced by a linear combination of the Representative Volume Ele-
ments. For high frequency applications, the conditionally stable implicit and explicit parti-
tioned schemes are advantageous, since the choice of time step is governed by accuracy
considerations,  whereas the unconditionally stable schemes might be better suited for low
frequency applications.

2.0 Finite Element Formulation of Piezoelectricity

2.1 Governing equations of piezoelectricity

   Let  denote the domain of interest, and  the boundary of . Consider the governing
equations of linear piezoelectricity, which include:

i. Mechanical equilibrium

(1)

ii. Maxwell’s equation of equilibrium (assumed to be quasi-static and decoupled from
mechanical fields)

(2)

Ω Γ Ω

σij j, fi+ ρu··i=

Di i, 0=
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iii. Constitutive equations

,             (3)

iv. Strain-displacement relation and the curl-free electric field

,             (4)

where , S, E and D are the stress, strain, electric field and electric displacement vectors,
respectively; C, , and e are the elastic tensor at constant electric field, dielectric tensor at
constant strain field and the piezoelectric tensor, respectively; u and  denote the dis-
placement vector and electric potential (voltage), respectively;   is the mass density and
f the body force. The superposed dot and comma denote temporal and spatial differentia-
tion, respectively. Since the piezoelectric field e is a third-rank tensor, piezoelectric cou-
pling exists in intrinsically anisotropic materials only [7].

   To complete the description of the problem, the boundary conditions are prescribed as

 on    and    on (5)

 on    and    on (6)

,    ;         ,    (7)

where  and  are the prescribed mechanical displacement and surface traction, respec-
tively;  and  are the prescribed electric potential and surface charge, respectively; 
denotes the outward unit normal vector.

2.2 The weak formulation and semi-discrete equations of motion

   From the governing equations (1) - (4) and boundary conditions (5) - (7), we establish
the weak formulation of the problem

   For , find  and , such that

        (8)

        (9)

where

σij CijklSkl ekijEk–= Di eiklSkl εikEk+=

Sij
1
2
--- ui j, uj i,+( )= Ei φ i,–=

σ
ε

φ
ρ

ui ui= Γu φ φ= Γφ

σijnj Ti= Γσ Dini q= Γq

Γu Γσ∪ Γ= Γu Γσ∩ 0= Γφ Γq∪ Γ= Γφ Γq∩ 0=

u T
φ q n

t 0 T ],(∈ ui x t,( ) Vm
u∈ φ x( ) Ve

φ∈

ρu··i σij j, fi+( )–[ ]wi Ωd
Ω
∫ 0= wi Vm

0∈∀

Di i, Ψ Ωd
Ω
∫ 0= Ψ Ve

0∈∀
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(10)

(11)

,         (12)

(13)

with  denoting the set of square-integrable functions over .

   Integrating Eqns (8) and (9) by parts and substituting the constitutive relations (3), the
kinematics relation  (4) and the natural boundary conditions (6) into the resulting equa-
tions,  and exploiting the symmetry of the elastic tensor, we have 

(14)

(15)

where  is the symmetric gradient of w. 

   Subsequently the matrix notation is adopted. We employ finite element discretization
with element shape functions denoted as   and  

,          (16)

where  and  are element nodal values. Differentiating Eqn (16) yields the element
strain and electric field vectors

,          (17)

   Inserting Eqns (16) and (17) into (14) and (15) we obtain the semi-discrete equations of
motion of piezoelectricity

,         (18)

where the assembly operators are defined in a usual manner:

Vm
u w x( ) H1 Ω( ) w,∈ u on Γu={ }=

Ve
φ φ x( ) H1 Ω( ) φ,∈ φ on Γφ}={=

Vm
0 Vm

u

u 0=
= Ve

0 Ve
φ

φ 0=
=

H1 Ω( ) w w x( ) x Ω w wi∇ L2 Ω( )∈,∈,={ }=

L2 Ω( ) Ω

ρwiu··i Ω Sij w( ) CijklSkl u( ) ekijφ k,+[ ] Ωd
Ω
∫+d

Ω
∫ fiwi Ω Tiwi sd

Γσ

∫+d
Ω
∫=

Ψ i, eiklSkl u( ) εikφ k,–[ ] Ωd
Ω
∫ qΨ sd

Γq

∫=

S w( ) ∇sw=

Nu Nφ

u NuUe= φ NφΦ
e=

Ue Φe

S BuUe= E φ∇– BφΦ
e–= =

MuuU·· KuuU KuφΦ+ + F= KφuU KφφΦ– Q=
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 .... consistent mass matrix

 ...  mechanical stiffness matrix

 , ...piezoelectric stiffness matrices

 ... dielectric stiffness matrix

 ,       ... forcing vectors

with  and ,  denoting the total number of elements and the number of elements
with prescribed boundary conditions, respectively.

3.0 Field Elimination and Monolithic Solution Schemes 

3.1 Static condensation

   Suitably grounding the structure by specifying one or more nodal values of the potential
renders  non-singular. From the second equation in (18), we have

(19)

   Substituting the above equation into the first equation in (18) yields

(20)

where

,          (21)

Muu ρNu
TNu Ωed

Ωe

∫
e 1=

Ne

A=

Kuu Bu
TCBu Ωed

Ωe

∫
e 1=

Ne

A=

Kuφ Bu
TeTBφ Ωed

Ωe

∫
e 1=

Ne

A= Kφu Bφ
TeBu Ωed

Ωe

∫
e 1=

Ne

A=

Kφφ Bφ
TεBφ Ωed

Ωe

∫
e 1=

Ne

A=

F Nu
Tf Ωe Nu

TT sd
Γσ

e
∫

e 1=

Se
σ

A+d
Ωe

∫
e 1=

Ne

A= Q Nφ
Tq sd

Γq
e
∫

e 1=

Se
q

A=

Ne Se
σ Se

q

Kφφ

Φ Kφφ
1– Kuφ

T U Q–( )=

MuuU·· K̃U+ F̃=

K̃ Kuu KuφKφφ
1– Kuφ

T+= F̃ F KuφKφφ
1– Q+=
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   Equation (20) is obtained by field elimination or static condensation of the electric field.
It can be observed that  and  are positive definite, and Eqn (20) can be easily solved
by using either implicit or explicit time integrator. This approach has been adopted in
[8][9]. While relatively easy to implement for small problems, static condensation suffers
a number of drawbacks. First, the condensed stiffness matrix  is denser than , and

second, it destroys spectral properties of , which could be taken advantage of in
designing efficient multilevel iterative solvers.

3.2 Monolithic scheme

   Exploiting symmetry, , we can rearrange Eqn (18) in the monolithic form:

(22)

where

,      ,      ,      (23)

   It can be seen that  is positive semi-definite and  indefinite. The monolithic scheme
for piezoelectricity has been adopted by a number of authors [10][11][12]. However, prior
to applying time integration scheme with proven stability behavior to the monolithic equa-
tion (22) it is necessary to examine its suitability for problems of piezoelectricity. We
focus on Newmark integrator

(24)

(25)

where ,  and  are the displacement, velocity and acceleration vectors at time ,

respectively;  is the time step size;  and  are parameters which determine the stabil-
ity and accuracy of the Newmark method. For structural dynamics the Newmark scheme
is unconditionally stable for .

   The stability of the Newmark method can be investigated by using the energy method
(cf. Hughes[13][14]). Equations (22) (with ), (24) and (25) can be combined to
form the following identity:

(26)

where

K̃ Muu

K̃ Kuu

Kuu

Kφu Kuφ
T=

Md·· Kd+ F=

M Muu 0
0 0

= K
Kuu Kuφ

Kuφ
T Kφφ–

= d U
Φ

= F F
Q

=

M K

dn 1+ dn ∆tvn ∆t2 1
2
--- β– 
  an βan 1+++ +=

vn 1+ vn ∆t 1 γ–( )an γan 1++[ ]+=

dn vn an tn

∆t β γ

2β γ 1 2⁄≥ ≥

F 0=

an 1+
T Ban 1+ vn 1+

T Kvn 1++ an
TBan vn

TKvn 2γ 1–( ) an[ ]TB an[ ]–+=
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,          (27)

   From the above two equations, it can be observed that if  and  is positive def-
inite, we have 

(28)

which implies

,       (29)

   Therefore,  and  are bounded. If  is non-singular, from Eqn (22) (with ),

we have , and then  is bounded. For  and  to be positive def-
inite and at least positive semi-definite respectively, as is the case of elasto-dynamics, the
matrix  is positive definite for , which is the well-known condition for the New-
mark scheme to be unconditionally stable. In the case of piezoelectricity   and  are
positive semi-definite and indefinite, respectively, and thus the condition of  does
not guarantee positive-definiteness of . Nevertheless, in case of the average acceleration
method (or trapezoidal rule) with  and , the monolithic scheme applied
to linear piezoelectricity is unconditionally stable, in which case Eqns (26) and (29)
reduce to

(30)

,        (31)

4.0 Partitioned Schemes

   Applying the trapezoidal rule to the monolithic equation (22) yields the implicit uncon-
ditionally stable integration scheme, as described in the previous section:

,         (32)

where

,         (33)

are the effective stiffness matrix and load vectors, respectively. First, we consider implicit
partitioned schemes directly constructed from the above monolithic scheme and show that
the resulting partitioned scheme is not unconditionally stable. Unconditionally stable

B M ∆t2 β 1
2
---γ– 

 K+= an[ ] an 1+ an–=

γ 1 2⁄≥ B

an 1+
T Ban 1+ vn 1+

T Kvn 1+ an
TBan vn

TKvn+≤+

an
TBan vn

TKvn a0
TBa0 v0

TKv0+≤+ n 1 2 3 …, , ,=

an vn K F 0=

dn K 1– M an≤ dn M K

B 2β γ≥
M K

2β γ≥
B

β 1 4⁄= γ 1 2⁄=

an 1+
T Man 1+ vn 1+

T Kvn 1++ an
TBan vn

TKvn+=

an
TMan vn

TKvn+ a0
TMa0 v0

TKv0+= n 1 2 3 …, , ,=

K̂dn 1+ F̂n 1+= vn 1+
2
∆t
----- dn 1+ dn–( ) vn–=

K̂ K 4
∆t2
--------M+= F̂n 1+

4
∆t2
--------M K– 
  dn

4
∆t
-----Mvn Fn Fn 1++ + +=
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implicit partitioned scheme is then obtained via augmentation. An explicit partitioned
scheme is also constructed from the explicit integration of mechanical equation.

4.1 Partitioning directly from the monolithic scheme

   Partitioned schemes can be constructed directly from the monolithic scheme by splitting
the effective stiffness matrix. The first equation of the monolithic scheme (32) can be writ-
ten as

(34)

where

,          (35)

   We start by considering a partitioned scheme where the electric field is predicted first.
Splitting the coefficient matrix of (34) based on the block Gauss-Seidel method yields

(36)

   Utilizing the last-step-value predictor on the right hand side of (36), we have

(37)

   Expanding the above equation yields the electric field predicted partitioned scheme:

,         (38)

   Alternatively, we can predict the mechanical field. The monolithic equation (34) can be
written as

(39)

   Splitting the coefficient matrix of the above equation based on the block Gauss-Seidel
method yields

K̂uu Kuφ

Kuφ
T Kφφ–

Un 1+

Φn 1+

F̂n 1+
u

Qn 1+

=

K̂uu Kuu
4
∆t2
--------Muu+= F̂n 1+

u
Muu

4
∆t2
--------Un

4
∆t
-----U· n U·· n+ + 

  Fn 1++=

K̂uu 0

Kuφ
T Kφφ–

Un 1+

Φn 1+

0 Kuφ

0 0

Un 1+

Φn 1+

F̂n 1+
u

Qn 1+

+–=

K̂uu 0

Kuφ
T Kφφ–

Un 1+

Φn 1+

0 Kuφ

0 0

Un

Φn

F̂n 1+
u

Qn 1+

+–=

K̂uuUn 1+ F̂n 1+
u

KuφΦn–= KφφΦn 1+ Qn 1+– Kuφ
T Un 1++=

Kφφ– Kuφ
T

Kuφ K̂uu

Φn 1+

Un 1+

Qn 1+

F̂n 1+
u

=
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(40)

   Utilizing the last-step-value predictor and expanding the resulting equation lead to the
mechanical field predicted partitioned scheme

,         (41)

   Both partitioned schemes solve the two field equations independently at each time step.

4.1.1 Stability analysis of the implicit partitioned schemes

   Consider the partitioned procedures (38) and (41), which predict the electric field and
mechanical field, respectively. Both partitioned procedures compute the velocity and
acceleration fields based on the following equations:

(42)

(43)

   For the purpose of stability analysis, it suffices to consider the force-free case, i.e.,
. Stability analysis is carried using standard procedures[15][16].

Nontrivial solutions of the partitioned procedures are sought in the form

,     ,     ,     (44)

   Stability requires . When the modulus is unity, the root must be a simple one [17].
Replacing   by ,  stability condition reduces to

(45)

   First, we consider the mechanical field predicted partitioned procedure. Substituting Eqn
(44) into (41)-(43) yields

(46)

   The characteristic polynomial associated with (46) is

Kφφ– 0

Kuφ K̂uu

Φn 1+

Un 1+

0 Kuφ
T

0 0

Φn 1+

Un 1+

–
Qn 1+

F̂n 1+
u

+=

KφφΦn 1+ Qn 1+– Kuφ
T Un+= K̂uuUn 1+ F̂n 1+

u KuφΦn 1+–=

U· n 1+ U· n
∆t
2
----- U·· n Muu

1– Fn 1+ KuuUn 1+– KuφΦn 1+–( )+[ ]+=

U·· n 1+ Muu
1– Fn 1+ KuuUn 1+– KuφΦn 1+–( )=

Fn 1+ Qn 1+ 0= =

Un 1+ λUn= U· n 1+ λU· n= U·· n 1+ λU·· n= Φn 1+ λΦn=

λ 1≤
λ 1 z+( ) 1 z–( )⁄

Re z( ) 0≤

1 z+
1 z–
-----------– Kφφ Kuφ

T

Kuφ Kuu
4z2

∆t2
--------Muu+

Φn

Un

0=
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(47)

where  denotes the matrix determinant. The necessary condition for stability is that all
coefficient matrices of the polynomial in  should be positive definite (the first part of

Routh-Hurwitz conditions [17][18]). Since  and  are positive def-

inite, but  is indefinite, the necessary condition for stability cannot be
satisfied.

   Next, we investigate the electric field predicted partitioned scheme. Substituting Eqn
(44) into (38), (42) and (43) yields

(48)

   The characteristic polynomial of (48) is

(49)

To investigate the stability properties of the above equation it is convenient to utilize
the theorem of Bellman [18], which states: If ,  and  are non-negative definite, and
either  or  positive definite, then

(50)

has no roots with positive real parts. The proof is given in [18].

   In view of the above theorem, it is obvious that the necessary and sufficient condition for
stability of the electric field predicted partitioned scheme is that the matrix

 is non-negative definite, which can be achieved with sufficiently

small . Therefore, the scheme is conditionally stable. 

   We proceed to investigate the critical time step of the above scheme. Consider the eigen-
value problem

(51)

   The necessary and sufficient condition for stability becomes

z3 4
∆t2
--------Muu z2 4

∆t2
--------Muu z Kuu KuφKφφ

1– Kuφ
T–( ) Kuu KuφKφφ

1– Kuφ
T+ + + + 0=

z

Muu Kuu KuφKφφ
1– Kuφ

T+

Kuu KuφKφφ
1– Kuφ

T–

Kφφ K– uφ
T

1 z2–( )Kuφ Kuu
4z2

∆t2
--------Muu+

Φn

Un

0=

Muu
∆t2

4
--------KuφKφφ

1– Kuφ
T– 

  z2 ∆t2

4
-------- Kuu KuφKφφ

1– Kuφ
T+( )+ 0=

A B C
A C

z2A 2zB C+ + 0=

Muu
∆t2

4
--------KuφKφφ

1– Kuφ
T–

∆t

Muu
∆t2

4
--------KuφKφφ

1– Kuφ
T– 

  x γx=
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(52)

   From the generalized eigenvalue problem

(53)

we have

(54)

   Premultiplying (51) by  yields

(55)

   Substituting (54) into the above equation yields

(56)

   If , we have from the above equation

(57)

   If , we have from (56)

(58)

   The positive definiteness of  and Eqn (52) lead to 

(59)

   From Eqns (57) and (59), it follows that

(60)

   The above stability condition must be satisfied for each system mode. Consequently, the

highest frequency  is critical and must satisfy (60). Therefore, the stability condition
becomes

(61)

4.1.2 Consistency and accuracy of the electric field predicted implicit scheme

γ 0≥

KuφKφφ
1– Kuφ

T ωim( )
2
Muu–[ ]x 0=

Muu
1– KuφKφφ

1– Kuφ
T x ωim( )

2
x=

Muu
1–

x ∆t2

4
--------Muu

1– KuφKφφ
1– Kuφ

T x– γMuu
1– x=

γMuu
1– x 1 ωim∆t( )

2
4⁄–[ ]x=

γ 0=

∆t 2 ωim⁄=

γ 0≠

Muu
1– x

1 ωim∆t( )
2

4⁄–[ ]
γ

-------------------------------------------x=

Muu
1–

1 ωim∆t( )
2

4⁄ 0>–

∆t 2 ω⁄ im≤

ωn
im

∆t ∆tcr
im≤ 2 ω⁄ n

im=
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   By employing the equilibrium equation at  to eliminate , we can express the elec-
tric field predicted partitioned scheme (38), (42) and (43) in the following form

(62)

where 

    ,     

,          (63)

   Inserting the exact solution  into (62), we have

(64)

where  is the local truncation error. Inserting the fol-

lowing Taylor expansions

(65)

(66)

(67)

into Eqn (64) and expanding the resulting equation, it can be shown that

 and  as (68)

   Therefore, the electric field predicted partitioned scheme is consistent and second-order
accurate.

tn U·· n

δn 1+ Bδn Pn+=

B B1
1– B2=

B1

K̂uu 0 0

Kuφ
T 0 Kφφ–

∆t
2
-----Muu

1– Kuu I ∆t
2
-----Muu

1– Kuφ

= B2

4
∆t2
--------Muu Kuu– 4

∆t
-----Muu 2Kuφ–

0 0 0
∆t
2
-----– Muu

1– Kuu I ∆t
2
-----– Muu

1– Kuφ

=

δn

Un

U· n

Φn

= Pn B1
1–

Fn Fn 1++

Qn 1+

∆t
2
-----Muu

1– Fn Fn 1++( )

=

δ tn( )

δ tn 1+( ) Bδ tn( ) Pn ℜ tn( )+ +=

ℜ tn( ) ℜu
T tn( ) ℜ

·
u
T

tn( ) ℜφ
T tn( )

T
=

δ tn 1+( ) δ tn( ) ∆tδ· tn( ) ∆t2

2
--------δ·· tn( ) ∆t3

6
--------δ··· tn( ) O ∆t4( )+ + + +=

Fn 1+ Fn ∆tF
·

n
∆t2

2
--------F

··
n

∆t3

6
--------F

···
n O ∆t4( )+ + + +=

Qn 1+ Qn ∆tQ
·

n
∆t2

2
--------Q

··
n

∆t3

6
--------Q

···
n O ∆t4( )+ + + +=

ℜ tn( ) O ∆t3( )∼ ℜ tn( ) 0→ ∆t 0→
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4.2 Unconditionally stable implicit partitioned scheme

4.2.1 Stabilization by semi-algebraic augmentation

   The stabilization is carried out by a semi-algebraic augmentation technique proposed by
Farhat, Park and Pelerin[15] for thermoelastic problems.

   First, the structural equation in (18) is integrated using the trapezoidal rule:

               

(69)

       

(70)

   Consider the electric equation

(71)

   Substituting Eqn (70) into the above equation yields

(72)

where

                         ,         

(73)

    Rearranging (70) yields

(74)

where  and  are given in (35). Equations (72) and (74) can be written as

U· n 1+ U· n
∆t
2
----- U·· n U·· n 1++( )+=

U· n
∆t
2
----- U·· n Muu

1– Fn 1+ KuuUn 1+– KuφΦn 1+–( )+[ ]+=

Un 1+ Un ∆tU· n
∆t2

4
-------- U·· n U·· n 1++( )+ +=

Un ∆tU· n
∆t2

4
-------- U·· n Muu

1– Fn 1+ KuuUn 1+– KuφΦn 1+–( )+[ ]+ +=

Kuφ
T Un 1+ KφφΦn 1+– Qn 1+=

K̂φuUn 1+ K̂φφΦn 1++ F̂n 1+
φ

=

K̂φu
∆t2

4
--------Kuφ

T Muu
1– Kuu= K̂φφ Kφφ

∆t2

4
--------Kuφ

T Muu
1– Kuφ+=

F̂n 1+
φ ∆t2

4
--------Kuφ

T Muu
1– Fn 1+ Kuφ

T Un ∆tU· n
∆t2

4
--------U·· n+ + 

  Qn 1+–+=

K̂uuUn 1+ KuφΦn 1++ F̂n 1+
u=

K̂uu F̂n 1+
u
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(75)

   Splitting the coefficient matrix in (75) using the block Gauss-Seidel method and last-
step-value predictor, we have 

(76)

   Expanding the above equation and using (69) yield the following partitioned algorithm:

1. Predict the mechanical filed

(77)

2. Solve for the electric field

(78)

3. Correct the mechanical field

(79)

4. Compute velocity and acceleration fields

(80)

(81)

4.2.2 Stability and accuracy of the stabilized implicit scheme

Stability. We consider the force-free case, i.e. . The stability of the
proposed partitioned scheme can be examined by seeking a non-trivial solution in the
form of (44). Substituting (77) into (78), and (44) into (78)-(81), we have after some alge-
braic manipulations

K̂φφ K̂φu

Kuφ K̂uu
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Un 1+
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φ

F̂n 1+
u
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K̂φφ 0
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0 K̂φu

0 0
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p Un=
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U·· n 1+ Muu
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Fn 1+ Qn 1+ 0= =
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(82)

where

(83)

   The characteristic polynomial associated with (82) is

               

(84)

   Recall that ,  and  are positive definite;  is positive definite

provided that  has full column rank and positive semi-definite if  is column rank
deficient. In any case, all coefficient matrices of the characteristic polynomial (84) are
positive definite. Therefore, the first part of the Routh-Hurwitz criterion for unconditional
stability is satisfied. In order to check the second part of this criterion, we consider a 2-dof
model problem. The corresponding scalar form of (84) is

(85)

where

,      ,      (86)

   Since , , ,  and , all coefficients of the polynomial (85) are positive.
Moreover

(87)

which verifies that the second part of the Routh-Hurwitz criterion is satisfied and therefore
the partitioned procedure is unconditionally stable.
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
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
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2
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4
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Consistency and Accuracy. Using the equilibrium equation at  to eliminate  in

expressions (35), (73) and (80) for ,  and , respectively, and substituting
the resulting effective load vectors into (78) and (79), then writing the resulting equations
in a matrix form yield

(88)

where  is given in (63) and

,          (89)

                                

                       

(90)

   Inserting the solution  into (88), we have

(91)

where  is the local truncation error. Inserting the Taylor

expansions (65) - (67) into (91) and expanding the resulting equation yield

,       .       (92)

 and  as (93)

tn U·· n

F̂n 1+
u F̂n 1+

φ U· n 1+

δn 1+ Rδn Ln+=

δn

R R1
1– R2= Ln R1
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0 0 Kφφ ∆t2Kuφ
T Muu
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=
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1–

Kuu 4⁄– ∆tI ∆– t2Muu
1–

Kuφ 4⁄

∆– tMuu
1– Kuu 2⁄ I ∆– tMuu
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Kuφ
T ∆t2Kuφ

T Muu
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T ∆– t2Kuφ
T Muu

1– Kuφ 4⁄

=

L'
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1–
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1– Fn Fn 1++( ) 4⁄ Qn 1+–

=

δ tn( )

δ tn 1+( ) Rδ tn( ) Ln τ tn( )+ +=

τ tn( ) τu
T tn( ) τ· u

T
tn( ) τφ tn( )

T
=

τu tn( ) O ∆t3( )∼ τ· u tn( ) O ∆t3( )∼ τφ tn( ) O ∆t3( )∼

τ tn( ) O ∆t3( )∼ τ tn( ) 0→ ∆t 0→



17

   Therefore, the partitioned scheme is consistent and second-order accurate.

4.3 Explicit partitioned scheme

   The explicit partitioned scheme can be also constructed by integrating the mechanical
equation directly using an explicit integrator, e.g. the central difference scheme for the
velocity and acceleration fields

,             (94)

   The mechanical equation of motion at  is

(95)

   Substituting the second equation in (94) into (95) yields

(96)

where

(97)

   The resulting algorithm for the explicit partitioned scheme is:

1. Evaluate the mechanical field by Eqn (96). Note that if lumped mass matrix is 
employed, there is no solution of equations for the mechanical field.

2. Evaluate the electric field by

(98)

3. If required, compute the velocity and acceleration fields at  using Eqn (94).

   Based on Eqn (94), the starting value of displacements is taken as

 (99)

4.3.1 Stability of the explicit partitioned scheme

   As before, we seek for a non-trivial solution in the form of (44). Substituting Eqn (97)
into (96) and (44) into (96) and (98) yields

U· n
1

2∆t
--------- Un 1+ Un 1––( )= U·· n

1
∆t2
-------- Un 1+ 2Un– Un 1–+( )=

tn
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T Un 1+ Qn 1+–=
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U 1– U0 ∆tU· 0– ∆t2

2
--------U·· 0+=



18

(100)

   The characteristic polynomial of (100) is

(101)

   Since  is positive definite, by the theorem of Bellman, the stability
condition of the explicit partitioned scheme becomes

(102)

   By similar arguments described in Section 4.1.1, it follows that the explicit partitioned
scheme is conditionally stable and the condition for stability is governed by

(103)

where  is the largest value of the following generalized eigenvalue problem

(104)

   Since  is positive definite, by comparing Eqns (53) and (104), we have

,   and thus (105)

4.3.2 Consistency and accuracy

   Substituting Eqn (97) into (96) and (98), we have 

(106)

where

,         (107)
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,           (108)

   Inserting the exact solution  into (106) yields

(109)

where  is the local truncation error. Inserting the Taylor expan-

sions

(110)

(111)

and (67) into (109), yield

,           (112)

   Substituting the exact solutions into (94), we have

(113)

(114)

where  and  are local truncation errors in velocity and acceleration, respec-
tively. Substituting the expansions (110) and (111) into (113) and (114), yield

,        (115)

   The truncation errors vanish as . Therefore, the explicit partitioned scheme is
consistent.

5.0 The RVE-based Multilevel Method for Partitioned Scheme

   The explicit and implicit conditionally stable as well as implicit unconditionally stable
partitioned schemes proposed in the previous section entail solving linear systems of
equations at each time station. Attention is restricted to piezocomposites where the size of
the microstructure is comparable to that of the wavelength of a traveling signal necessitat-
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ing discretization on the scale of heterogeneity. The classical multigrid approach with
standard linear interpolation operators applied to the resulting discrete system has been
show to exhibit poor rate of convergence, mainly because the lower frequency subspace is
not geometrically smooth for problems in heterogeneous media [6].

   We focus on the RVE-based multilevel method developed by the authors for structural
dynamics problems [6], in which the special intergrid transfer operators are constructed
from the solution of the Representative Volume Element (RVE). The so called RVE-based
multilevel approach has been shown to possess an increasing rate of convergence with
increase in mismatch of properties between microconstituents and decrease in time step
size. In the case of homogeneous media and static analysis, the method has been shown to
recover the rate of convergence of the classic multigrid method, i.e., . 

   We note that in the mechanical field equations (38) and (79), the coefficient matrix is
identical to that obtained from the conventional structural dynamics problems. Conver-
gence characteristics of the RVE-based multilevel method for mechanical equations has
been studied in [6]. In the remaining of this section attention is restricted on convergence
studies of the RVE-based multilevel method applied to the electric field equations (38) or
(98),  and (78).

5.1 Two-level iteration matrices

   We consider the two-level iteration process consisting of  SSOR pre- and post-smooth-
ing iterations. The coarse-model dielectric and effective dielectric stiffness matrices are
obtained by restricting the corresponding source grid matrices: 

 ,            (116)

where  and  are the prolongation operators for the corresponding electric equations.
The resulting two-level iteration matrices are given by

,         (117)

where

,            (118)

,       (119)

 and  are smoothing preconditioners.

5.2 Prolongation operators

5.2.1 One-dimensional case

1 3⁄

υ
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Tφφ I QK0φφ
1– QTKφφ–= T̂φφ I Q̃K̂0φφ

1– Q̃
T
K̂φφ–=
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   The RVE is composed of three elements as shown in Fig. 1. Between adjacent RVEs  a
“soft” (with smaller stiffness) interface element is placed. For simplicity, we focus on the
case of constant mass density , and the volume fraction .

The effective dielectric and dielectric stiffness matrices of the RVE are evaluated as

(120)

,     ,     (121)

,       ,      (122)

(123)

where ,  and  are the effective dielectric, dielectric and piezoelectric stiffness

matrices of the RVE, respectively;  is the lumped mass matrix of the RVE; ,  and

 are the mass density, cross-sectional area and element length, respectively; , , 

and  are dielectric and piezoelectric constants of the two material constituents, respec-
tively. The prolongation operators for the RVE are constructed based on the corresponding
constrained minimization problems:

Minimize:  ,     subjected to (124)
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Figure 1: The 1D model with RVE
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Minimize:  ,     subjected to (125)

which yields the following eigenvalue problems

,      (126)

,     (127)

   The global prolongation operators  and  are block diagonal matrices:

,          (128)

,           (129)

where  and  are eigenvectors corresponding to the first two smallest eigenvalues of

the eigenvalue problem (126), whereas  and  are eigenvectors corresponding to the
first two smallest eigenvalues of the eigenvalue problem (127).

5.2.2 Two-dimensional case

   We consider a 2D structured mesh in   and  plane as shown in Fig.2. Plane stress
assumption is made. The RVE consists 9 elements as illustrated in Fig.2. The total electric
field degrees of freedom for the RVE problem is 16.

   As in the 1D case, the global prolongation operators  and  are assembled from the

prolongation matrices,  and , of RVEs. The RVE prolongation matrix consists of
eigenvectors of the eigenvalue problems (126) and (127), respectively. In the numerical
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Figure 2: Global and RVE (local) finite element meshes
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examples considered, we take the first 8 eigenvectors corresponding to the lowest eigen-
values.

   The two constituent phases are assumed to be made of PZT ceramic with transversely
isotropic properties. The constitutive equation (3)  in matrix form can be written as 

,            (130)

where

,           (131)

,          (132)

            ,             

,       ;      (133)

   Tensor and matrix indices are related by

                              

or alternatively

                                            

where  is the Kronecker delta. Components of stress and strain tensors and matrices are
related as 

Stress: 

Strain:  for ;      for 
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   For plane stress in  and  plane  and .

   The constitutive equation (130) in the matrix form can be simplified as 

(134)

(135)

where

       ,      ,       

,       ,      (136)

   The spectral radii of the two-level iteration matrices  and  with 
are evaluated numerically and the results are presented in Table 1 through Table 4, in

which n is the size of the source mesh and  is the critical time step for the

implicit conditionally stable partitioned scheme;  ,  and .

   For the explicit and implicit conditionally stable partitioned schemes, the coefficient
matrix of the electric field equation is simply the dielectric stiffness matrix. It only
depends on the dielectric constants of the media. From Table 1 and Table 2, it can be
observed that the rate of convergence improves with increasing heterogeneity in dielectric
constants and is independent of the problem size.

TABLE 1. Spectral radius of the 1D two-level iteration matrix 
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TABLE 2. Spectral radius of the 2D two-level iteration matrix 

   The coefficient matrix of the unconditionally stable partitioned scheme is the effective
dielectric matrix, which depends on the time step, the dielectric and piezoelectric con-
stants. From Table 3 and Table 4, we can observe that the rate of convergence improves
with increasing heterogeneity in dielectric constants, but increasing heterogeneity in
piezoelectric constants tends to affect the rate of convergence adversely. In all cases, the
rate of convergence improves with decreasing time step and is independent of the problem
size.

TABLE 3. Spectral radius of the 1D two-level iteration matrix 

TABLE 4. Spectral radius of the 2D two-level iteration matrix 

0.0216 0.0356 0.0420
0.0204 0.0212 0.0214
0.0136 0.0138 0.0139
0.0020 0.0021 0.0021

0.0767 0.8558 0.0767 0.8569
0.0301 0.2846 0.0302 0.2846
0.0039 0.1170 0.0039 0.1170
0.0783 0.6484 0.0784 0.6485
0.0638 0.8378 0.0639 0.8380
0.0102 0.4262 0.0102 0.4262
0.9976 0.9999 0.9994 1.0000
0.0871 0.9185 0.0871 0.9187

0.0726 0.4414 0.0808 0.4901
0.0360 0.2121 0.0366 0.2254
0.0055 0.1322 0.0056 0.1386
0.0659 0.5116 0.0749 0.5621
0.0963 0.7231 0.0983 0.7872
0.0249 0.6088 0.0252 0.6598
0.1073 0.0386 0.1290 0.0416
0.0187 0.9997 0.0195 0.9999
0.0386 0.9999 0.0402 1.0000
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   To this end we compare the critical time steps of the implicit conditionally stable and the
explicit partitioned schemes in 2D case. Numerical results reveal that the ratio of critical
time steps in implicit and explicit schemes is only slightly affected by the heterogeneity in
dielectric and piezoelectric constants, but is extremely sensitive to the heterogeneity in
elastic constants. In Fig. 3, we plot the ratio of critical time steps between the implicit and
explicit schemes as well as the spectral radius of the two-level iteration matrix for the

mechanical equation versus the ratio of elastic constants . 

   It can be observed from Fig. 3 that with increasing ratio of elastic constants of the two
constituent phases, the spectral radius of the two-level iteration matrix for the mechanical
equation decreases and the ratio of critical time steps increases. Thus the implicit condi-
tionally stable partitioned scheme can use a larger time step than that used for the explicit
scheme at the expense of solving a linear system of mechanical equations at each time sta-
tion. When the mismatch of mechanical properties is considerable, the spectral radius of
the two-level iteration matrix for the mechanical equation could be sufficiently small for
the two-level iteration process to converge in a couple of cycles.

5.3 Convergence of the two-level method

   Consider the problem illustrated in Fig.1. The bar is fixed at ( ) and free at
( ) with no external load and electric charge acting on the bar. The following initial
disturbance in the displacement field is considered:

   

where  and  is the Heaviside step function; ,  and  are the magni-
tude, the location of the maximum value and the half width of the initial pulse. This pulse
is similar in shape to the Gaussian distribution function. In the computations, we take
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Figure 3. Ratio of critical time steps and spectral radius of mechanical equation 
                versus the ratio of elastic constants.

x 0=
x 1=

f x( ) f0a0 x x0 δ–( )–[ ]4 x x0 δ+( )–[ ]4 1 H x x0 δ+( )–[ ]–{ } 1 H x0 δ– x–( )–[ ]=

a0 1 δ8⁄= H x( ) f0 x0 δ

x0 1 2⁄= f0 0.05=
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   For both electric and mechanical equations, we employ three SSOR pre- and post-
smoothing iterations. The stopping criterion is taken as

(137)

where  and  are the 2-norms of the residual and the right-hand-side vectors,
respectively. 

   For parametric study of convergence characteristics of the RVE-based multilevel solver,
we carry out computations with different ratios of material constants. The results are sum-
marized in Table 5 and Table 6 for the implicit conditionally and unconditionally stable
partitioned schemes, respectively. In both tables, the numbers in the parentheses corre-
spond to the cycle count of the mechanical equation, while the numbers without parenthe-
ses denote the cycle numbers for the electric field equation. For the conditionally stable

scheme, we take .

TABLE 5. Numbers of cycles for the conditionally stable scheme ( )

TABLE 6. Numbers of cycles for the unconditionally stable scheme ( )

Iteration Numbers
4(2) 4(2) 4(2)
4(2) 4(2) 4(2)
3(2) 3(2) 3(2)
2(2) 2(2) 2(2)
3(2) 3(2) 3(2)
4(4) 3(3) 3(3)
4(3) 3(3) 3(3)
4(2) 3(2) 3(2)

Iteration Numbers

6(2) 64(4) 5(2) 87(4)
5(2) 26(4) 5(2) 29(4)
4(2) 9(4) 4(2) 9(4)
3(2) 6(4) 3(2) 6(4)
5(2) 55(4) 5(2) 65(4)
4(4) 37(4) 4(3) 37(4)
4(4) 37(3) 4(3) 36(3)
4(3) 35(2) 4(2) 35(2)

r 2
f 2

--------- Tol≤ 10 6–=

r 2 f 2

∆t ∆tcr
im=

Tol 10 6–=

n 400= n 1000= n 2000=

c1 c2⁄ 1 e1 e2⁄, 1 ε1 ε2⁄, 1= = =

c1 c2⁄ 1 e1 e2⁄, 1 ε1 ε2⁄, 10= = =

c1 c2⁄ 1 e1 e2⁄, 1 ε1 ε2⁄, 100= = =

c1 c2⁄ 1 e1 e2⁄, 1 ε1 ε2⁄, 1000= = =

c1 c2⁄ 1 e1 e2⁄, 4 ε1 ε2⁄, 100= = =

c1 c2⁄ 10 e1 e2⁄, 2 ε1 ε2⁄, 2= = =

c1 c2⁄ 100 e1 e2⁄, 2 ε1 ε2⁄, 2= = =

c1 c2⁄ 1000 e1 e2⁄, 2 ε1 ε2⁄, 2= = =

Tol 10 6–=

n 400= n 1000=

∆t ∆tcr⁄ 1= ∆t ∆tcr⁄ 10= ∆t ∆tcr⁄ 1= ∆t ∆tcr⁄ 10=

c1 c2⁄ 1 e1 e2⁄, 1 ε1 ε2⁄, 1= = =

c1 c2⁄ 1 e1 e2⁄, 1 ε1 ε2⁄, 10= = =

c1 c2⁄ 1 e1 e2⁄, 1 ε1 ε2⁄, 100= = =

c1 c2⁄ 1 e1 e2⁄, 1 ε1 ε2⁄, 1000= = =

c1 c2⁄ 1 e1 e2⁄, 4 ε1 ε2⁄, 100= = =

c1 c2⁄ 10 e1 e2⁄, 2 ε1 ε2⁄, 2= = =

c1 c2⁄ 100 e1 e2⁄, 2 ε1 ε2⁄, 2= = =

c1 c2⁄ 1000 e1 e2⁄, 2 ε1 ε2⁄, 2= = =
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   From Table 5 and Table 6, it can be seen that the RVE-based multilevel method con-
verges faster for the mechanical equation than for the electric equation. Moreover, increas-
ing the ratios of elastic and dielectric constants, and cutting the time step size tend to
reduce the number of cycles. 
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