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Abstract 

A new method for propagating arbitrary failure modes is presented. Arbitrary failure 

modes are resolved on a refined local patch of elements and then embedded into the 

coarse grid using partition of unity method. Strong discontinuities are propagated by 

means of element erosion in the superimposed patch of elements only. The method, 

coined as the rs-version of the finite element method (or reduced order s-method), has 

been integrated in ABAQUS and verified on several test problems.  
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1. Introduction 

Studies of causes and mitigation of material failure have been and still are one of 

the most important subjects in scientific and engineering community.  The number of 

papers, workshops and conferences focusing on this subject are still on the rise; a 

recent Google search of the key-word “material failure” provided over 59 million hits. 

Indeed, material failure comes in different shapes and forms: defect nucleation and 

growth, coalescence, micro-cracking, macro-crack growth, shear banding, just to 

mention a few. The challenges are in both understanding the mechanisms of material 

failure and its computational modeling. In this article, we focus on the latter. 

From computational point of view, the main difficulty stems from the multiscale 

nature of failure. Even if failure mechanisms of bond breaking at a discrete scale, 

defect nucleation and growth, shear banding and macro-fracture leading to 

catastrophic structural failure were well understood, the so-called formidable “tyranny 

of scales” coined by the NSF Simulation Based Engineering Science (SBES) report 

[1], poses tremendous challenges. Limiting the discussion to continuum scales only, 
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our plan is to first briefly review existing practices and then outline our vision for new 

opportunities culminating in the proposed method. 

Finite element modeling of fracture propagation has traditionally been performed 

by remeshing and by inserting crack surfaces along a crack path allowing the adjacent 

elements to separate [2]. While complete remeshing of large models may overshadow 

the entire computational cost, mesh modification, which is local remeshing [3], 

provides an attractive alternative. In case of dynamic fracture, external time-varying 

tractions are often applied along crack surfaces to reduce the effect of waves 

generated by creation of new surfaces [4]. 

The extended finite element method (X-FEM) pioneered by Belytschko and his 

associates [5][6] alleviates the need for remeshing of crack surfaces. X-FEM allows 

the crack to pass arbitrarily through elements by incorporating enrichment functions 

through the notion of local partition of unity. X-FEM is in particular attractive when 

used in conjunction with the level set method pioneered by Osher and Sethian [7]. The 

level set representation of the crack simplifies the selection of the enriched nodes, as 

well as the definition of the enrichment functions.  

Strouboulis et al. [8] have used the partition of unity framework (PUM [9]) to 

model holes and cracks in two-dimensions, whereas Duarte et al. [10] have studied the 

simulation of three-dimensional dynamic crack propagation. Alternatively, local 

enrichment schemes where various failure mechanisms including discontinuity in 

strains [11,12,13], curvatures [14] and displacements [15,16] can be embedded at the 

element level. Cohesive elements that allow for separation along element boundaries 

[17,18] provide an attractive alternative since they do not require enrichment. The 

nonsmooth crack growth in this case can be attributed to nonsmooth fracture surfaces 

provided that the mesh is sufficiently fine. 

Another category of methods that alleviates the need for remeshing is often 

known as mesh-free formulation. Methods belonging to this category include: Smooth 

Particle Hydrodynamics (SPH) originally developed by Gingold [19] and Lucy [20], 

Element Free Galerkin Method (EFGM) [21], Reproducing Kernel Particle Method 

(RKPM) [22] and various variants of these methods.  
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Despite significant progress in understanding and developing various methods for 

propagating strong and weak discontinuities, commercialization of these technologies 

has been rather slow. Notable exceptions are fracture codes based on local mesh 

modification (FRANC3D [23,24]) and Smooth Particle Hydrodynamics (EPIC [25]).  

Most of the commercial explicit Lagrangian codes, such as LS-DYNA and ABAQUS 

employ the erosion element algorithm, where element deletion is controlled by certain 

local failure criterion. The attractiveness of this technology stems from its simplicity. 

In fact, this technology results in CPU time decrease since fracture often appears in 

highly deformed elements. The method is accurate provided that sufficiently small 

elements and adequate erosion criterion are used. One of its drawbacks stems from the 

mass loss - the effect of which is very severe for large elements, but could be partially 

circumvented by associating masses with nodes. The element erosion based on local 

critical stress or strain criterion is known to suffer from mesh size dependency, but 

energy based failure criterion [26], have shown to yield mesh size independent results 

[27].  The energy based failure criterion necessitates calculation of path dependent 

integrals (in dynamics), which have limited the implementation to two-dimensional 

settings.  

We now outline our vision for the next-generation failure simulation code. First, 

we believe it should have a hierarchical multilevel structure so that failure modes 

associated with various scales can be hierarchically introduced. By hierarchy, we 

mean that fine scale features could be introduced without modifying the coarse scale 

model. Hierarchical structure allows reuse of coarse model meshes and computations 

and is consistent with a multigrid philosophy. Secondly, failure characteristic are often 

very complex consisting of interacting weak and strong discontinuities. Therefore, 

failure modes should not be a priori defined, but rather computationally resolved 

possibly in a auxiliary local patch and then hierarchically introduced into coarse scale. 

Finally, the technology should be simple, preferably compatible with commercial 

software architectures. 

We now describe one such candidate that possesses aforementioned 

characteristics. As a multilevel scheme we choose the multilevel s-version of the finite 
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element method [28], which was originally introduced for two levels in [29, 30]. The 

s-method consists of overlaying a basic coarse mesh with a hierarchy of local patches 

[31] engineered of resolving local features. For instance, the base coarse mesh can be 

crack free, whereas the discontinuity can be embedded in the superimposed mesh(es) 

only [32]. Interesting variants of this approach have been recently reported in [33] and 

[34]. The s-version, however, suffers from two shortcomings: (i) the computational 

complexity and (ii) the need for remeshing the superimposed mesh. While sufficiently 

fine superimposed meshes are capable of resolving any failure characteristics, they 

may involve many more degrees-of-freedom than, for instance, XFEM. The 

computational complexity of the superimposed mesh can be reduced in several ways. 

One possibility is to carry out modal analysis in the superimposed patch(es) and then 

to enrich the coarse scale approximation by critical modes capturing failure 

characteristics. This obviously has to be repeated with failure evolution. If failure 

modes extend over many coarse scale elements, it might be advantageous to project 

these modes onto local supports of the coarse mesh (PUM), to preserve sparsity at the 

expense of additional degrees of freedom.  To remedy the need for remeshing the 

superimposed patches and to take advantage of commercial software architectures we 

will employ element erosion technology with a simplified energy based element 

erosion criterion in the superimposed patches only. The resulting method will be 

termed as the rs-version of the finite element method, or reduced order s-version with 

element erosion. 

The outline of this paper is as follows: The basic idea of the rs-method is outlined 

in Section 2. Section 3 details the formulation, algorithmic details and implementation 

in ABAQUS. A simplified variant of the energy release-based failure criterion is given 

in Section 4. Numerical examples are given in Section 5. Conclusion and future 

research directions conclude the manuscript. 

 

2. The Basic Idea 

As a prelude, we start with a brief overview of a two-level structured s-version. In the 

structured s-version, which has found its commercial implementation in COMET-AR 
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[35], element boundaries of the base (underlying) mesh coincide with those of the 

superimposed elements as shown in Figure 1. This provides considerable 

simplification in integration of finite element matrices at the expense of optimal 

placement of the superimposed patch typically placed in the critical regions identified 

by some error indicators [29]. 

 
Figure 1: A two-level mesh superposition 

 

The displacements in the superimposed region are approximated as: 
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where the superscripts denote the mesh level; lower case subscripts denote spatial 

dimensions and capital subscripts denote node numbers; summation convention is 

employed over repeated subscripts (both spatial dimensions and nodes).  In Eq. (1), 
0Ω ≡ Ω  is the entire problem domain and 1Ω  the domain of the superimposed patch. 

At the interface intΓ  between the two meshes the displacement in the superimposed 

mesh 1( )iu x  are imposed to vanish to ensure 0C  continuity of the solution. 

Consequently, at the discrete level, the nodes on intΓ , termed as dangling nodes, are 

constrained, i.e. 1 0Jid = ; 0n and 1n  represent the number of mesh nodes in the two 

meshes, respectively. Displacements in the underlying and superimposed meshes are 
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discretized in terms of shape functions denoted as 0
IN  and 1

IN , respectively. Linear 

dependency is eliminated by constraining the so-called “overlapping” nodes in the 

superimposed mesh, i.e. the superimposed mesh nodes, which coincide with the 

underlying coarse mesh nodes as shown in Figure 1. 

For the rs-method, the displacements in the superimposed region are 

approximated as: 

0 1
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0 0 0 1 1 1

1
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( ) ( ) ( ) ( ) on

0 on
i i

I Ii

i I Ii J Ni JN

u u

JN int
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⎪⎩
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 (2) 

where 1 ( )Ni xΦ  is Nth-mode displacement component in the spatial direction i . The 

modes 1 ( )Ni xΦ  are selected to be the lowest eigenmodes (excluding rigid body)  

computed in the superimposed mesh. An alternative weak compatibility condition, 

detailed in Section 4, has been found to provide superior accuracy. 

To illustrate the basic idea of the reduced order method (rs-method) we consider a 

one-dimensional model problem as shown in Figure 2 where discontinuity is modeled 

by double nodes in the superimposed mesh. For comparison with the s-method, we 

use the same underlying and superimposed meshes. The shape functions and the 

displacement fields are shown in Figure 3. We select a single non rigid-body mode, 

which obviously captures the discontinuity as shown in Fig. 4a. It can be seen that for 

this model problem this mode is identical to the discontinuous piecewise constant 

function a priori constructed in XFEM. The resulting enrichment 

functions, 0 1
1( ) ( )IN x xΦ , are shown in Figure 4b.  

 

Figure 2: The model problem 

Level 0: Coarse mesh 

Level 1: Superimposed mesh 
x 

x 
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Figure 3: (a) displacement field in the 0 and 1 level meshes, (b) corresponding shape 

functions in the two meshes 

 

Figure 4: (a) Lowest frequency eigenmode 1
1Φ , (b) corresponding enrichment functions 

0 1
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3. The Formulation 

Consider a problem domain Ω  with boundary Γ , consisting of the prescribed 
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displacement boundary uΓ  and the prescribed traction boundary tΓ . The strong 

form is given by 

 

0 onji
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In local regions where failure takes place at a certain time instant t,  patch(es) 1( )tΩ  

designated to resolve failure characteristics (weak and strong discontinuities) are 

superimposed as shown in Figure 5. For simplicity, we focus on a two-level scheme.  

 The weak form is obtained in a usual manner. It seeks for iu U∈  such that 
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Figure 5: Definition of a local patch 1( )tΩ at time t  

The weight functions are decomposed and discretized similarly to the trial functions 

given in Eq. (2) 
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The resulting discrete equations are summarized below 
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For nonlinear problems, the tangent stiffness matrix is obtained by consistent 

linearization of (6). 

 An alternative to the strong compatibility condition (2)b is a weak compatibility 

given by  
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Γ

Γ =∫  (7) 

The function 0( )i x Hλ ∈  is approximated as piecewise constant over element edges 
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Substituting (8) and (2) into (7) yields the so-called multi-point constraints (MPC) 

equations for 1
intINd ∈Γ  
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The MPC condition (10) can be enforced either by using penalty method 

Lagrange multipliers method or by requiring the weight functions iw  in Eq. (4) to 

satisfy  

mod

int

0 1 1
int

1
0 ,

e

N
e

I Ni IN
NI

N a i
=∈Γ

Φ = ∀ ∀Γ∑ ∑  (11) 

To complete the formulation, it remains to address the following two issues: (i) 

linear dependency between 0
iu and 1

iu  and (ii) selection of 1
NjΦ . To clarify these 

issues consider two cases depicted in Figure 6: case A without a crack and case B with 
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a crack. In both cases, the underlying mesh is crack free. The crack is represented in 

the superimposed mesh (case B) only. For the crack-free case, it is possible that a 

non-rigid body mode extracted from the superimposed mesh would be linear 

dependent with a deformation represented by the underlying mesh. In this cases the 

overlapping nodes I in the superimposed mesh have to be constrained to eliminate 

linear dependence. On the other hand, if 1
NjΦ captures discontinuity (case B), the 

underlying crack-free mesh will not represent the same deformation mode.  In this 

case, the overlapping node J is left free. Thus, the strategy for 1
NjΦ  extraction is as 

follows: (i) loop over all the underlying mesh nodes and constrained those, which fall 

into the category of nodes described in case A (see Fig.6); (ii) extract the lowest 

energy (excluding rigid body) modes from the superimposed mesh and project them 

onto local supports, i.e. compute 0 1
I NjN Φ . In theory, it is possible that 0 1

I NjN Φ  would 

show no discontinuity on one or more patches in which the overlapping node has to 

be constrained.  

 

Figure 6: Suppressing linear dependency between underlying and superimposed 

meshes. Node I in the superimposed mesh overlaps node J in the underlying mesh 

   

Underlying mesh without crack 

Case A: Superimposed 
mesh without crack 

Case B: Superimposed 
mesh with crack 

 

I I 

J 

crack 
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To this end, we describe the implementation of the rs-method in ABAQUS [36]. 

Our implementation strategy is guided by the limitations of working with commercial 

software architecture. In ABAQUS, we use a user-defined element subroutine UEL to 

control the coarse mesh and the superimposed mesh analyses. The basic steps are 

summarized below: 

1. In the first iteration of each load increment, perform modal analysis in the 

superimposed mesh  

1 1 1
IiJj Jj IiK λΦ = Φ  

1 1

1
1 1 1

1 d d d
t

I
IiJj ij I i I i

Jj j

NK N t N b
d x

σ
Ω Γ Ω

⎛ ⎞∂∂
= Ω− Γ − Ω⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

∫ ∫ ∫  

and store the extracted modes 1
IiΦ  in the external file. 

2. Read 1
NiΦ  from the external file, interpolate for the velocities in the 

superimposed mesh nodes  

( ) ( ) ( )1 0 1 0 0 1 1 1 1( )I I I Ii I I Ni I IN
I

iu x x d x xN N d+ Φ=∑  

and save them to the external file. 

3. Update the stresses in the Gauss points of the superimposed mesh and those in 

the coarse mesh elements not overlapped by the superimposed mesh. 

4. Calculate the residuals based on Eq. (6), compute the tangent stiffness matrix 

as 

0 0

0 1

1 1

0 1

Ii Ii

Jj JM

IN IN

Jj JM

r r
d d

r r
d d

⎡ ⎤∂ ∂
⎢ ⎥∂ ∂⎢ ⎥
⎢ ⎥∂ ∂⎢ ⎥
⎢ ⎥∂ ∂⎣ ⎦

 

and iterate (Newton or related method) until convergence.  

Note that once the enrichment shape functions are defined based on Eq. (2) the 

last step is carried out automatically by a commercial software of choice. 
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4. A simple energy-based element erosion criterion 

We start from a classical definition of the fracture toughness (or critical energy release 

rate) cG  as the work required to close a crack by a small increment as shown in 

Figure 7a.  

 

Figure 7: Crack closure tractions and displacements (a) in the analytical model, and (b) 

in a mesh simulated by element erosion 

 

In the classical fracture mechanics the fracture toughness is defined as 

 
0

0

1 1lim
2

a

c y ya
G u dx

a
σ

→
= ∫  (12) 

where yσ is stress normal to the crack surface and yu is a closure displacements. 

We now consider an approximation to the fracture toughness cG obtained by element 

erosion. For simplicity, we assume the state of constant element stresses evaluated at 
the element centroid (one-point integration with stabilization [37]). The eroded 

element elongation perpendicular to the crack surface is given by y yu hε=  where 

yε  is the strain component normal to the crack surface as shown in Figure 7b. If we 

further assume that the crack propagates normal to the direction of the maximum 

principal stress in tension 1σ  then Eq. (12) reduces to 

 1 1
1
2cG hσ ε≈  (13) 

where 1ε  is the normal strain computed in the principal directions of stress. Eq. (13) 

can be further simplifying for linear isotropic material and by neglecting the 

profile before closure 

profile after 
closure yσ  

a  

yu  x 

y 

yσ  h (1 )yh ε+  

eroded element 
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remaining principal stress components, which gives  

 2 c
c

c

G E
h

σ =  (14) 

where ch is a characteristic material lengthscale (aggregate size, grain size, etc.) and 

cσ is a critical stress computed from Eq. (14). The maximum principal stress at which 

an element of length ch h=  is eroded is then 1er cσ σ= . On the other hand, for 

elements of size ch h≠  the critical stress for element erosion is 

 1
c

er c
h
h

σ σ=  (15) 

For instance, if / 2ch h = , i.e., we refine the mesh a by a factor of two, the erosion 

stress increases by 40% compared to the base mesh ( ch h= ). The criterion for element 

erosion (15) is in the spirit of cohesive crack models [38]. 
Remark: For elements neighboring the crack tip, Eq. (15) has an alternative 

interpretation. Let cr  be the distance from the crack tip (assumed to be material 

property) at which the critical stress cσ  is measured. For different meshes, the 

distance of the element centroid to the crack tip is denoted by r  and is of order of 

element size, i.e, r h≈ . Since stresses at the crack tip are varying as 1/ r , the 

element erosion stress 1erσ  is then 

 1
c

er c
r
r

σ σ=  (16) 

Note that Eq. (15) is applicable to all the elements in the mesh, whereas Eq. (16) is 

limited to elements neighboring the crack tip and would require tracking the crack 

fronts. 

 

5. Numerical Examples 

Our numerical experimentation agenda includes three test problems. First, we 

investigate the accuracy of the method to predict the stress intensity factor.  In the 

second example, we study quasi-static crack propagation in a concrete beam with 
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energy release-based and stress-based element erosion criteria. Finally, we consider a 

time dependent impact problem without element erosion. 

 

5.1. Plate with a centered crack 

The geometry of the plate with a centered crack is shown in Figures 8a and 8b. The 

width w of the plate is 10cm and the length L is 10.25cm. A crack of length 2a=1.0cm 

is placed at the center. Plane stress condition is assumed with the following material 

properties: Young’s modulus 2.0 GPa and Poisson ratio 0.2. The plate is subjected to 

mode one tension load of 10.0 MPa. The width of the superimposed patch is 1.25cm 

and the length is 2.0cm. The global domain is discretized with 40×41 four-node 

quadrilateral elements; the superimposed patch is placed over 5 × 8 underlying 

elements. Each underlying element in the superimposed patch is overlaid by 8×8 

four-node quadrilateral elements. 

 
Figure 8a: Plate with center crack 

Superimposed patch 
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Figure 8b: A superimposed mesh for a plate with a centered crack 

 

Figure 9 gives the error in the stress intensity factor (computed using virtual crack 

extension method [39]) versus number of modes; both strong and weak compatibility 

conditions at the interface have been considered. It can be seen that the weak 

compatibility condition provides superior accuracy at low number of modes, but as 

the number of modes increases the two methods of enforcing compatibility yield 

similar performance. 
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Figure 9: Error in the stress intensity factor versus number of enrichment modes 

 

5.2. Crack propagation in a concrete beam [40]  

 
Figure 10: Geometry of notched concrete beam (dimensions in mm) 

 

Consider a beam made of concrete with the following material properties: Young’s 

modulus 24800MPa, Poisson’s ration 0.18, and a critical fracture stress 6.0MPa. The 

geometry and dimensions of the beam are shown in Figure 10. Plane stress is assumed 

with a beam thickness of 156mm. A linearly increasing velocity is applied at point C 
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starting from 0 to 0.75mm/s with ramping time of 0.38 seconds. The rigid beam AB is 

used to transmit the load to the concrete beam. We first study the sensitivity of the 

solution (reaction force at point B versus time and crack height versus time) to the 

mesh size. Figure 11 depicts the reference mesh, which has 28x24 elements in the 

refined region at the center.  We consider three additional meshes denoted as mesh 1, 

obtained by splitting each element in the reference mesh into 4 elements, mesh 2 

obtained by splitting each element in mesh 1 into 4, and mesh 3 obtained by splitting 

each element in mesh 2 into 4. 

 
Figure 11: The reference finite element mesh (28x24 elements in the refined region at 

the center of the beam) 
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Figure 12: Height of the crack versus time 
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Figure 13: Reaction at support B versus time 

 

We study two failure criteria: (i) local stress-based erosion (LSE) criterion by which 

an element is removed when the maximum principal stress in tension reaches the 

fracture stress, and (ii) energy-based erosion (EE) criterion described in Section 4. 

Figures 12 and 13 depict the height of the crack and the reaction at point B versus 

time as obtained with the two failure criteria. It can be seen that the local stress-based 

criterion suffers from significant mesh dependence, whereas energy based criterion is 

almost insensitive to the mesh size. The finite element meshes of the fully cracked 

beam as obtained with the energy-based erosion criterion are shown in Figure 14. 
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Figure 14: A completely cracked beam as obtained with the energy based erosion 

criterion in the four meshes 

 

To this end, we study the performance of the rs-method for the notched concrete beam. 

The underlying and the superimposed meshes are shown in Figure 15. 4x4 elements 

were superimposed on each underlying element crossing the path of the crack as 

shown in Figure 15b. We considered nine and six modes extracted from the 

superimposed patch with strong compatibility condition (fewer modes could have 

been used with weak compatibility). Figures 16 and 17 depict the height of the crack 

and the reaction at point B versus time as obtained with the rs-method (nine and six 

modes) and utilizing the energy based failure criteria. 
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         (a) 

     
  (b) 

Figure 15: rs-method: (a) Underlying mesh, (b) snapshots of the propagating crack in 

the superimposed mesh  
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Figure 16: Reaction at support B versus time as obtained with the rs-method (six and 

nine modes) and the reference solution  
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 Figure 17: Height of the crack versus time as obtained with the rs-method (six and 

nine modes) and the reference solution  

 

5.3 Impact simulation 
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In the last example, we study the rs-method for impact simulation without element 

deletion. The length of the beam is 132mm, and the height is 4.83mm. Figure 18 gives 

the problem setup.  

 

Figure 18: Model problem for impact simulation 

 

The beam is made of DH-36 structural steel with a material model developed by 

Nemat-Nasser and Guo [41]. The rigid body has a round nose of radius 9mm. The 

mass of the rigid body is 3% of the mass of the shaded area. The initial velocity of 

rigid body is 275m/s. Free boundary conditions at the two ends of the beam and plain 

strain were assumed. Only half of the beam was modeled due to symmetry. The 

shaded domain under the impactor in Figure 18 shows the placement of the 

superimposed patch. Three modes were extracted for enrichment. 

     Figure 19 shows the impactor velocity versus time. An excellent agreement 

between the reference (no modal reduction) and the rs-version is observed. 
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Figure 19: Comparison of the velocity of impactor versus time 
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5. Conclusions and future research directions 

A new method for propagating arbitrary failure modes was developed and verified. The 
method builds on excellent closely related methods including: XFEM [5], PUM [9],  
GFEM [8], and s-method [30]. We have demonstrated that it is compatible with 
commecial software architectures by integrating it with ABAQUS. 

In the present manuscript, it has been implicitly assumed that a physical dimension of 
a superimposed patch is much smaller than that of the global problem and that a 
computational complexity of solving a problem on a single patch is much smaller than 
solving the global problem. If this were not the case, then it would be instrumental to 
device an alternative method to eigenmode extraction on a patch. This, for instance, 
can be accomplished by subjecting a local patch to overall constant and progressively 
higher order strain fields, similarly to what is done in the homogenization theory, and 
then to approximate the eigenmodes by a linear combination of solutions obtained on 
a patch. This issue will be explored in our future work. 
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