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SUMMARY 

A methodology has been developed to accurately resolve the stress field in the vicinity of free edges as well as 
the overall response of laminated plates without significantly affecting the computational cost. This is 
accomplished by enriching a set of classical smooth interpolants throughout the thickness direction with Co 
continuous displacement interpolants (piecewise continuous strain field) in the regions where the most 
critical behaviour is anticipated. C o  continuity of the displacement field is maintained by imposing 
homogeneous boundary conditions on the superimposed field in the portion of the boundary which is not 
contained within the boundary of the problem. Numerical experiments for both cylindrical bending and 
uniform extension of cross-ply laminates are presented to validate the present formulation. 

1. INTRODUCTION 

One of the major challenges in computational mechanics of composite materials is the develop- 
ment of advanced numerical techniques for resolving the structure of high gradients. Accurate 
resolution of the stress field in the vicinity of free edges is of great scientific interest and is 
necessary to predict various modes of failure in composite laminates. Theoretically, it is possible 
to capture the structure of the stress field by considering each layer as a three-dimensional 
monoclinic solid. Achenbach et al.' followed this approach by assuming linear distribution of 
displacements within each layer, while Spilker2 used a mixed variational principle to enforce 
interlaminar traction continuity and free edge boundary conditions. However, if the stress field 
near free edges is to be accurately resolved in a composite plate made of more than 100 layers (not 
unusual in aircraft structures) with a uniform mesh of linear solid elements, a million-degrees- 
of-freedom mesh might be required. This number can be substantially reduced by the use of 
adaptive techniques (or by a priori employing fine mesh grading near free edges), but even so, such 
mesh refinement might be beyond the capacity of even the latest supercomputers. 

A resolution of the computational complexity arising from three-dimensional modelling of 
individual layers has been attempted by various plate the~ries .~ - The classical laminated 
theory3 and shear deformation plate theory4 usually lead to reasonable predictions of the overall 
response (displacements, natural frequencies and buckling loads) but err badly in predicting 
interlaminar stresses. In general, the in-plane displacement field for various higher order plate 
theories can be expressed by 
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and the transverse displacements 

m 
w = c Z k W &  y )  Z € ( -  t/2, t/2) 

k = O  

where t is the thickness of the plate. For example, n = 1 and m = 2 have been used by Whitney 
and Sun,' n = m = 2 by Nelson and Lorch,6 and n = 3 and m = 2 by Lo et ~ 1 . ~  More recently 
Levinson' and Reddyg used n = 3 and m = 0 and reduced the number of unknown parameters by, 
explicitly enforcing zero tractions on the bounding planes of the plate. Spilker and Jacobs" used 
n = 1 and rn = 0 in the context of a mixed variational principle assuming linear variation of an 
assumed stress field. 

Although these theories were extremely successful in predicting the overall response of 
structures, they were insufficient in estimating the stress fields in the vicinity of free edges. An 
attempt to improve the stress predictions by increasing the polynomial order of global interpo- 
lants (equations (la) and (1 b)) appears to be fruitless, since it leads to discontinuous tractions 
across the interfaces between the layers of different materials. By evaluating the coefficients of 
spectral series, it can be shown that the accuracy of spectral approximation depends mainly on 
the differentiability of the function being approximated, i.e., in the case of a Co continuous 
displacement function (discontinuous strain field) spectral approximation provides only second 
order accuracy, irrespective of the number of terms used in the spectral expansion. Furthermore, 
the use of higher order spectral interpolants significantly increases the condition number since the 
spectral interpolants are not orthogonal with respect to an inhomogeneous constitutive tensor, 
and thus the interlaminar stress predictions start to degrade as m and n become high. 

An alternative approach to account for local effects by means of the boundary layer method 
that uncouples local calculations from overall analysis has been employed by several inves- 
tigators.l'.13 By this technique it is possible to carry out classical laminated analysis, and to add, 
by linear superposition, a correcting stress field obtained separately by a boundary layer analysis. 
The correcting field is constructed so that free edge and interface conditions are satisfied exactly, 
and the asymptotic term decays rapidly with increasing distance from the free edge. However, the 
uncoupling into the two separate problems is effective only when the thickness is small compared 
to other dimensions (length and width). 

The idea of locally enriching finite element solutions has been pioneered by Mote,14 who 
introduced a 'global-local' formulation where 'global' shape functions were added to enrich the 
'local' finite element field. By this technique, one can use special finite elements at the free edge 
with the nature of the fields prescribed a priori, while the unknown constants in the assumed field 
can be determined from the variational principle of the boundary value problem. This approach 
might be very useful if the nature of high gradients or the singularity is known a priori. However, 
as pointed out by Zwiers et a1.,l5 the nature of the fields in multilayered laminates depends on the 
stacking sequence of the composite and the complete boundary conditions, and thus is problem 
dependent and needs to be determined for each case. An extensive review on various global-local 
methodologies can be found in Reference 16. 

The objective of this work is to develop a general purpose robust computational tool to 
accurately resolve the stress field in the vicinity of free edges as well as the overall structural 
behaviour without significantly affecting the computational cost. This is achieved by combining 
a set of smooth global interpolants in ZE( - t/2, t/2) (such as those given in equations (la) and 
(lb)) with the CO displacement field defined locally within the layer. The additional field is 
superimposed only where high resolution of the stress field is required, usually where maximum 
interlaminar stress discontinuities occur, or as estimated by a posteriori error diagnosis. By this 
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technique accurate stress resolution will be obtained in critical regions, while elsewhere the 
resolution is sufficient only to predict the overall response with desired accuracy. 

This work is an extension of the method recently reported by Fish,17 to account for anisotropic 
and inhomogeneous media. It is specifically designed for a wide range of local problems in 
composite plates including free edge flexural and axial problems, plates with holes, joints, 
environmental and hygrothermal effects. 

The idea of domain decomposition in laminated plates was originated by Pagano and Sonits 
who proposed to split the problem domain into two regions: the global domain where the 
smeared (effective) laminate properties are used and the local domain where each layer is 
interpolated separately. The stress continuity between the two regions and within the local region 
is enforced by means of the two-field variational principle. However, there are several important 
differences between this formulation and the present approach: 

(i) In Reference 18, the boundary between the global and local domains is placed along the 
entire interface of connecting layers, while in the present work the location of the boundary 
can be arbitrary so that the local domain can be defined exactly where it is needed. 

(ii) Probably the most significant difference between the two techniques is in computational 
efficiency and implementation. The major strength of the proposed method is in its 
hierarchical structure (linear problems), i.e., the stiffness matrix associated with the global 
interpolants is contained within the stiffness matrix of the refined model. This allows 
incorporation of the proposed computational model in the existing finite element codes 
with relative ease. Furthermore, the use of C o  continuous higher order interpolants 
guarantees satisfaction of interface and free edge boundary conditions with desired accu- 
racy which can be adjusted by controlling the local and global polynomial orders (ob- 
viously the singularity point is an exception). This eliminates the necessity for the mixed 
variational principle and an accompanying cumbersome interface matching procedure. 

The outline of this paper is as follows. Section 2 reviews the fundamental ideas of the finite 
element mesh superposition method and applies it to the laminated plates. Attention is restricted 
to two-dimensional problems. At this point no a posteriori error estimates at the global and local 
level have been incorporated into the computational model and the region of high gradients is 
assumed to be known a priori. Once the behaviour of the two-dimensional computational model 
is assessed, the method can be extended to three-dimensional plate-type problems with adaptive 
control of the optimal location of the local region and its discretization. Numerical results for 
both cylindrical bending and uniform extension of cross-ply laminates are given in Section 3. 

2. FORMULATION 

The basic idea of the s-version of the finite element method” is that a portion of the finite element 
mesh in which steep gradients are indicated by the solution is overlaid by a patch(s) of local 
meshes as shown in Figure 1. For the present application the problem domain Q is assumed to be 
made up of a series of perfectly bonded layers stacked in the through-thickness (2) direction. The 
local regions where high gradients are anticipated can be encompassed by the domains QL of 
arbitrary geometry, which are then subdivided into the element subdomains at. For the present 
application it is convenient to align the boundaries of the superimposed local domain along the 
co-ordinate axis, as shown in Figure 1. In the local regions, the displacement field u is approxim- 
ated by superimposing the displacements resulting from the global finite element mesh u defined 
over the entire problem domain with the local field uL: 

u = u c + u L  onQL 
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Figure 1. Typical example of the local and global meshes 

where 

and 
uL = 0 on ~ G L  

UG + uL = up on r, 
where I' is the boundary of the problem domain R, which consists of the prescribed displacement 
boundary r, and the prescribed traction boundary G. r G L  is the boundary between the two 
meshes. 

Condition (2b) is required in order to satisfy Co continuity between the global and local finite 
element meshes. The inhomogeneous displacement boundary conditions up can usually be taken 
care of by the global field uG, although the accuracy of the prescribed displacement field can be 
significantly increased by subjecting the global field to up, and the remainder of the field, 
(up - uG), can be accurately resolved by the superimposed mesh. 

The global element displacement field can be constructed using the classical expressions given 
in equation (l), with m and n depending on the type of plate theory. However, it is computation- 
ally advantageous to define the displacement field in hierarchical fashion, so that, when element 
refinement is made, the element shape functions remain unchanged, and the polynomial order is 
increased by adding new terms. The two-dimensional hierarchical shape functions can be 
obtained by multiplication of one-dimensional hierarchical polynomials 

up = &A(% t)dA (3a) 

(3b) X A  (S, t )  = H.&)Hr(t) 
where d A  are the global degrees-of-freedom; . Y E [ -  1,1]  and t c [ -  1,1] are parametric co- 
ordinates in the y and z direction, respectively. The lower case subscripts indicate spatial 
components, while the upper case subscripts indicate degree-of-freedom. Standard tensorial 
notation is used with summation over the repeated indices. The set of one-dimensional hierarchi- 
cal shape functions H,(r) is given by 

HI = 1/2(1 - r) 
Hz = 1/2(1 + r) 

(44 

(4b) 
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where r is a parametric co-ordinate r E [ - 1,1] and PK(<)  is a Legendre polynomial of degree 
K defined by 

C(t2 - 1)"l 
1 1 dK 

(K - l)! 2"-l d tK  
P&) = 

The resulting two-dimensional shape functions (3b) and corresponding degrees-of-freedom are 
termed as nodal (I, J < 2), side (I < 2, J > 2 and J < 2, I > 2) and internal ( I ,  J > 2). For 
a detailed discussion on hierarchical elements, see Peano 

The polynomial order of the global field will mainly depend on the desired accuracy of the 
global response (displacements, natural frequencies, buckling loads, etc.) However, the stress 
gradients in laminate composites cannot be efficiently resolved by increasing the polyomial order 
of smooth interpolants alone, and thus additional displacement interpolants with discontinuous 
first derivatives (Co continuity) are needed to capture the local behaviour efficiently. The local or 
superimposed field is composed of Co continuous elements with element boundaries aligned 
along the interfaces of the layers. Some general guidelines on designing local meshes are provided 
in Section 3, although the issue of finding the optimal location of the superimposed field and its 
discretization is not addressed here and will be presented elsewhere. 

The interpolants on local elements, similarly to the global ones, will be cast into the hierarchi- 
cal form 

and Zienkiewicz and Morgan.20 

u; = NtA(s,  t)uA (64 

NkAA(S, t, = H J ( s ) H I ( t )  (6b) 
where iV;A and uA are local shape functions and their respective degrees-of-freedom. 

constraining the nodal and side degrees-of-freedom on the boundary between the meshes 
Co continuity condition (2b), or a compatibility between the two meshes, is imposed by 

UAlroL = 0 (7) 
Discrete equilibrium equations can be obtained from the principle of virtual work, which states 

6~( i ,  j)Dijki~fk,i) dR - 6uiti dT - 6uibi dR = 0 V 6~ (8) b h 1. 
where Dijki is a piecewise continuous constitutive tensor of the laminate, bi and ti are the body 
forces and prescribed tractions, respectively, and the prefix 6 designates a variation. 

The displacement test function 6u, similarly to the trial function, is given by the superposition 
of the test function in the two fields: 

where the displacement test function is required to be Co and vanish on r,, so 

6u = 6 U G  + 6uL (9) 

6uG = 6uL = 0 on r, (10) 
Discrete equations are obtained by substituting interpolants (3)-(6) into (8) and requiring 

arbitrariness of local and global variations. The basic structure of the resulting equations is 
summarized below: 
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Remark I 

Immediately we observe the hierarchical structure of the stiffness matrix: the global stiffness 
matrix KG is contained (for linear problems) within the total stiffness of the refined grid. For 
example, if global interpolants were of the form given in equation (1) with n = 1 and rn = 0, KG 
would correspond to the stiffness matrix obtained from the shear deformation plate theory, and 
thus the implementation of the present technique will result in hierarchical augmentation of the 
global stiffness matrix by the local (KL) and the coupling (Kc) stiffness terms as shown in 
equation (1 1). 

Remark 2 

At first glance, the proposed method may appear to be quite similar to and of no advantage 
over the classical substructuring techniques. However, the uniqueness of the s-method (and also 
the recently published spectral overlay method21) is that a precise location of regions that require 
a more detailed interrogation does not need to be known a priori to performing global analysis. 
Such regions may be obvious, such as cutouts, sharp corners, joints, or not so obvious, such as 
a locally buckled panel loaded in compression, force dependent high gradient fields, or some 
failure propagation processes, such as crack propagation, shear banding and fibre microbuckling. 
Thus if a substructuring method is to be employed, additional global analysis is needed once the 
precise location of the critical regions is identified. 

Remark 3 

The constitutive tensor in composite laminates is a piecewise continuous function throughout 
the thickness, and therefore, the exact evaluation of the stiffness matrix (either numerical or 
analytical) requires that the integration throughout the thickness will be separately performed 
within each layer. 

Remark 4 

Special care must be exercised to avoid the singularity of the tangent stiffness matrix. The 
singularity or rank deficiency occurs if the superimposed and underlying meshes have identical 
deformation modes. The two meshes will have the same modes if there is a patch of elements in 
the local mesh having entire boundaries aligned along the element sides in the global mesh. The 
redundant degrees-of-freedom can be constrained by eliminating equations with zero pivots 
which are encountered in the course of the factorization process. 
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3. NUMERICAL EXAMPLES 

Two problems representing both singular and non-singular solutions have been numerically 
analysed to demonstrate and validate the present formulation. In the first example (non-singular 
solution), we consider a cylindrical bending of a symmetric cross-ply laminate with various 
numbers of layers and thickness-span ratios subjected to a transverse sinusoidal loading, while in 
the second example (singular solution), we analyse a four-layer symmetric cross-ply laminate 
subjected to a prescribed uniform in-plane normal strain. Geometry, boundary and symmetry 
conditions, layup configuration and material properties for both problems are shown in Figure 2. 

For the cylindrical bending problem three cases are considered: 

Case 1: 2L/b  = 4; Layup = (90/0/90) 

Case 2: 2L/b  = 8; Layup = (90/0/90) 

Case 3: 2L/b  = 8; Layup = (90/0), starting from the bottom layer 

where b and 2 L  are the thickness and the width of the laminate; fibre orientation is measured with 
respect to the x axis as shown in Figure 2. 

For the axial tension problem, a single case of the symmetric cross-ply laminate with (0/90), 
layup construction and 0 2 5  thickness-width ratio has been considered. Under uniform extension 
of a cross-ply laminate, the displacement field is assumed to be of the form 

u, = u(x)  = xc, u, = o(y, z )  u, = w(y, 2) (13) 

Figure 2. Geometry and material properties for the test cases 
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For the purpose of comparison we will test three formulations, which are called 

Global p-version: A higher order plate theory where a single element is used throughout the 
thickness. Identical polynomial order pg is used to interpolate both u and w. 

Layerwise p-version: Solid, or plane-strain in 2D, modelling of each layer. Identical polynomial 
order p is used to interpolate both v and w. 

s-version: Present superposition method. Uniform polynomial order p g  is used for the 
global mesh and polynomial order s is used for the local mesh. 

Numerical results for the cylindrical bending problem (Cases 1,2) are compared to the 
elasticity solution given by Pagano,22 while for the twelve-layer problem (Case 3), results are 
compared with those obtained using a fine mesh of higher order elements. Numerical results for 
the axial tension problem are compared with those obtained by Wang and CrossmanZ3 and 
S~ilker.’~ 

Figure 3. The finite element models for the test cases 
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The finite element meshes for all test problems are presented in Figure 3. The issue of finding 
the optimal location of the superimposed field, its subdivision, and the polynomial order of the 
superimposed elements is not addressed here. Instead, some experience gained with p2' and 
s-methods" is used here as a general guideline to construct the superimposed meshes. For the 
cylindrical bending problem (non-singular solution) a minimal number of elements aligned along 
the layer interfaces is used to construct the local mesh. For problems with singularities, such as in 
the case of axial tension, the local meshes are strongly graded towards the singularity, with the 
element size reduced in geometric progression by a factor of about 0.15. For all test problems 
considered here, the local mesh extended the distance equal to the thickness of the laminate from 
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Figure 4. Stress distribution across the midspan in the 90/0/90 laminate and 2L/b = 4 subjected to sinusoidal loading in 
cylindrical bending as obtained with the layerwise p-version of the finite element method 
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the free edge-the region where the most critical behaviour (high interlaminar stress gradients) is 
anticipated. 

Figure 4 shows the normalized stress distributions (by, a,)/qo at the midspan and zyz/qo at 
y = 0 throughout the thickness for the three-layer problem and 2L/b = 4 (Case 1) as obtained 
with the layerwise p-method for increasing polynomial orders. It is observed that the oy and 
o, distributions for polynomial orders ranging from 2 to 5 are in good agreement with the 
elasticity solution; however, the shear stress for p = 2 is discontinuous across the layer interfaces 
and exhibits 30 per cent difference in the maximum stress value, while for p = 3 the results 
converge to the elasticity solution with less than 1 per cent difference. 
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Figure 5. Stress distribution across the midspan in the 90/0/90 laminate and 2L/b = 4 subjected to sinusoidal loading in 

cylindrical bending as obtained with the global p-version of the finite element method 
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The global p-version (higher order multilayer plate) solution for the case study 1 is shown in 
Figure 5 for global polynomial orders 3 and 5. The results show that increasing global polynomial 
order from 3 to 5 only slightly improves the axial stress predictions but has no significant effect on 
the transverse shear distribution, rendering the discrepancies at the interfaces and at the stress- 
free boundaries. 

Numerical results for the s-version of the finite element method with global polynomial order 
p g  = 5 and the local polynomial orders = 5 are shown in Figure 6. It can be seen that the normal 
stress distribution is in excellent agreement with the elasticity solution, while differences in the 
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Figure 6. Stress distribution across the midspan in the 90/0/90 laminate and 2L/b = 4 subjected to sinusoidal loading in 
cylindrical bending as obtained with the s-version of the finite element method 
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/- 

shear stress at the layer interface are less than 6 per cent. These slight differences are attributed to 
the fact that the boundary between the local and global meshes rGL, acting as a source of 
disturbance on the stress field, is very close to the local domain of interest. The results can be 
further improved by pushing re, away from the local domain of interest. 

The results for the moderately thin laminate (2L/b = 8) with the same layup construction (Case 
2) show a similar trend (see Figures 7, 8 and 9): the layerwise p-method with p = 3 matches well 
the elasticity solution for all the stress components; the global p-version exhibits severe discon- 
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Figure 7. Stress distribution across the midspan in the 90/0/90 laminate and 2L/b = 8 subjected to sinusoidal loading in 
cylindrical bending as obtained with the layerwise p-version of the finite element method 
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Figure 8. Stress distribution across the midspan in the 90/0/90 laminate and 2L/b = 8 subjected to sinusoidal loading in 
cylindrical bending as obtained with the global p-method 

tinuities at interfaces and significantly violates the stress-free boundary conditions irrespective of 
the global polynomial order; the s-version provides an excellent result for the normal stress and 
exhibits differences which do not exceed 6 per cent for the shear stresses. Note that for the 
problem with only three layers there is no significant computational advantage gained by using 
the s-method as opposed to the layerwise p-version. The computational advantage becomes 
significant with increasing the number of layers, as will be shown in our next numerical example. 

Figure 10 shows the normalized stress distribution throughout the thickness at the midspan for 
the 1Zlayer problem and thickness/span ratio equal to 8 (Case 3) as obtained using the layerwise 
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Figure 9. Stress distribution across the midspan in the 90/0/90 laminate and 2L/b = 8 subjected to sinusoidal loading in 
cylindrical bending as obtained with the s-method 

p-method. The results indicate differences of less than 1 per cent between the solutions obtained 
with polynomial orders 3 and 5. Furthermore, unlike in the previous case, the stresses are 
reasonably good for p = 2, showing an error of less than 2 per cent in cry and crz, and 6 per cent in 
ryr.  The layerwise p-version finite element model shown in Figure 3 consists of 1192,504 and 304 
degrees-of-freedom (d.0.f.) for the polynomial orders of 5, 3 and 2 respectively. 

The number of degrees-of-freedom in the global p-version finite element model is significantly 
smaller: 136 d.0.f. for pg = 5 and 64 d.0.f. for pg = 3. Although axial stress predictions as shown in 
Figure 11 are in a good agreement with the elasticity solution in the case of the axial stress, the 
interlaminar stress components show severe oscillations. 
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Figure 10. Stress distribution across the midspan in the (90/0), laminate and 2L/b = 8 subjected to sinusoidal loading in 
cylindrical bending as obtained with the layerwise p-method 

The s-version finite element model examined here consists of either 12- or (i-local-element- 
meshes superimposed at the bottom half of the first global element, as shown in Figure 3. The 
objective of this example is to show the ability of the proposed technique to accurately resolve the 
stress distribution in local regions. Stress distributions for the 12-local-element case with global 
and local polynomial orders equal to 3 (total of 152 d.0.f.) are shown in Figure 12. These results 
reveal comparable quality of the solution in the local region to the one obtained with the 
layerwise p-version using p = 2, but at the expense of 50 per cent reduction in the number of 
degrees-of-freedom. Computational savings will become even more dramatic as the number of 
layers is increased. 
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Figure 11. Stress distribution across the midspan in the (90/0), laminate and 2L/b = 8 subjected to sinusoidal loading in 
cylindrical bending as obtained with the global p-method 

Somewhat surprising results are presented in Figure 13. Figure 13(a) shows that reducing the 
global polynomial order from 3 to 2 significantly degrades the shear stress predictions, and even 
increasing the local polynomial order from 3 to 5 does not improve the results. Figure 13(b) 
shows that reducing the number of elements and increasing both global and local polynomial 
orders does not increase the rate of convergence as one would expect in the case of smooth 
solutions. As an example, a 6-local-element mesh with pg  = s = 5, which has a comparable 
quality of the solution to the one obtained with 12-local-element mesh and pg = s = 3, has almost 
70 per cent more degrees-of-freedom. 
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Figure 12. Stress distribution across the midspan in the (90/0), laminate and 2L/b = 8 subjected to sinusoidal loading in 
cylindrical bending as obtained with the s-method 

Next we proceed with the axial tension problem (see Figure 2 for geometry and material 
properties, and Figure 3 for finite element meshes). Figure 14 shows the contour plots (14(a)) and 
the distribution of cr, along z = 0 (14(c)) and z = h E, E + 0 (14(b)) as obtained with the 
layerwise p-version using p = 5. Figure 15 presents the contour plots and a shear stress distribu- 
tion along the interface. It is observed that for y/b < 0.993 both cr, and zyz are continuous across 
the interface of the 90/0 layers (less than 0.5 per cent differences), and only at the singularity point 
there is a significant discontinuity of the peeling and shear stresses. Furthermore, it can be seen 
from the contour plots that the free edge boundary conditions are accurately satisfied except for 
the immediate vicinity of the singularity point. 
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Figure 13. Examples of the local mesh design 

Contour plots, peeling and shear stress distributions at the interface ( z  = h) computed with the 
global p-version using pg = 5 are shown in Figures 16 and 17. It can be seen that the free edge 
boundary conditions are generally violated and significant peeling stress discontinuities are 
encountered across the interface at z = h. Since the shear modulus is assumed to be homogeneous 
and isotropic, the resulting shear stress is absolutely continuous along z = h and vanishes at the 
free edge, showing a good agreement with Reference 24 along this line. 

Numerical results of the axial tension problem obtained with the s-version of the finite element 
method using pg = s = 5 are shown in Figures 18, 19. It is observed that ther stress distributions 
in the local region are almost identical to those obtained using the layerwise p-method (but at 
much lower expense) and are in good agreement with those from References 23 and 24, It can be 
seen that at the boundary between the two meshes ( y  = 18) there is a discontinuity in the shear 
stress. This is attributed to the fact that only Co continuity is imposed between the meshes and 
hence the stress field might be discontinuous there. 

4. SUMMARY AND FUTURE RESEARCH DIRECTIONS 

A methodology has been developed to enhance the finite element computations in multilayered 
laminates. The method consists of overlaying a global finite element mesh with a local mesh in the 
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regions where high gradients are indicated by the solution. Unlike the boundary layer method 
where the solution is split into separate global and local problems, the present method is able to 
take a full account of the coupling phenomenon between the global and local response, which 
appears to be of major influence on interlaminar stress distribution. The 12-layer-local-element 
mesh cylindrical bending example confirms this finding: reduction in a global polynomial order 
had a drastic effect on the shear stress distribution in the vicinity of the free edge which could not 
be significantly improved by increasing a local polynomial order. The issue of optimal balance 
between the two meshes, the optimal placement of the local regions and its discretization is not 
addressed here and is one of the topics of our future research. 

Much greater computational savings are expected if the present formulation is extended to 
accommodate general three-dimensional multilayer laminates. In such an extension a solid 
modelling of individual layers may not be feasible and the importance of isolating the region of 
critical behaviour by means of a posteriori error analysis would be of great importance. Within 
the framework of hierarchical shell modelling26, a layerwise solid model can be superimposed on 
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the shell model in the critical regions. Displacement continuity can be enforced by constraining 
nodal, edge andface modes on the boundary between the two domains. If desired, the hierarchical 
degrees-of-freedom can be correlated to the midplane displacements, rotations and higher order 
generalized degrees-of-freedom employing similar procedures reported by R e d d ~ , ~  and conse- 
quently, the stiffness matrix in terms of conventional degrees-of-freedom can be constructed. 

In real multilayered laminates, every layer is heterogeneous and thus high gradients can occur 
at the interfaces between fibres and matrix, and not only at a layer interface. The distance over 
which the interface singularities extend their influence is of the order of magnitude of several fibre 
diameters, rendering our basic assumption of piecewise continuous constitutive tensor question- 
able. The method presented here is, in fact, a multiscale computational technique which can be 
successfully applied to model phenomena at several different scales. This can be accomplished by 
superimposing an additional mesh, say micro-mesh, on top of the local mesh in the regions where 
micro behaviour is being investigated. Such studies could be again carried out in two dimensions 
prior to extension to the general three-dimensional case. 
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