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Abstract: Mathematical homogenization theory, which serves as a foundation for bridging
multiple spatial and temporal scales for continuum systems, is generalized to provide a
unified mathematical framework for bridging not only multiple continuum scales in space
and time, but also multiple continuum and discrete scales. We commence our study to one-
dimensional chain of atoms as well to the BCC crystals. The solution of the one-dimen-
sional model problem has been found to be in good agreement with the molecular dynam-
ics simulation of the chain of atoms, whereas the classical approach based on the Cauchy-
Born hypothesis is shown to produce significant errors.

1.0  Introduction

Significant progress has been made over the past two decades in applying high perfor-
mance computing to the numerical simulation of complex initial/boundary value problems
describing single- or multi- physics phenomena, such as mechanical, thermal, diffusion-
reaction, and electro-magnetic processes.  The initial-boundary value problem is governed
by balance equations, kinematics, and constitutive equations with appropriate initial and
boundary conditions for each physical process of interest.  The balance and the kinematics
equations are well known for many physical processes.  On the other hand constitutive
models are not completely understood since they represent a gross response of the small-
scale phenomena.  The goal of this paper is to present a systematic approach for construct-
ing mathematically rigorous atomistically based constitutive models and related numerical
simulation tools.

There are several reasons for our approach. First, there is a growing desire to capitalize
on insight gained at the atomistic scale in the design of new materials. Second, the minia-
turization of electronic and mechanical devices in nanotechnology applications, such as
micro-electromechanical systems, results in instances where internal structure of the mate-
rial is of the same length scale as the dimension of the device. The third, is the over sim-
plicity of some of the existing semi-atomistic models.

In recent years, a great deal of emphasis has been placed on the development of meth-
ods capable of embedding atomistic features into continuum analysis. The task of describ-
ing failure phenomena on the continuum scale is a daunting one at best. Even with today’s
powerful computers, the brute force approach of direct atomistic simulation [1], i.e.,
where the material is simply modeled as a collection of atoms, is neither possible due to
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the vast number of atoms involved, nor desirable. 

At the other extreme are methods based on the so-called Quasi-Continuum (QC)
approach [3], [4], which states that atomic environment at a continuum point is completely
characterized by the deformation gradient. There are two versions of the QC method
depending on the interpretation of the deformation gradient. The Global QC variant [4] is
based on the Cauchy-Born hypothesis [2] in conjunction with periodic boundary condi-
tions of the atomistic cell. Its main shortcoming, is that in the limit when the continuum
FE mesh size approaches interatomic distance the continuum formulation does not con-
verge to the ordinary atomistic description due to the underlying assumptions of periodic-
ity and the fact that atomic vibrations are not accounted for. The Local Quasi-Continuum
variant [3], on the other hand, selects a small subset of representative atoms to represent
the kinematics of  the system.  The position of the remaining atoms is then obtained by
interpolation. This approaches suffers from the fact that the continuum is incorrectly
described in the case of complex latices. The combination of the two QC approaches
seems to be a natural choice, but then the inconsistency is pushed to the interface between
the two descriptions.

A significant shortcoming of the approaches based on the Cauchy-Born hypothesis is
that they do not possess an internal length scale, which have been shown to have a
dominant affect on local (and indirectly affect gross) material behavior. To overcome the
limitations of the local approach a mathematical homogenization theory with multiple
temporal and spatial scales recently developed in [5]-[7] is generalized to deal with
mixed continuum-discrete systems. The theory represents a mathematically rigorous
framework designated to account for diverse spatial and temporal scales.  Fast spatial
scale is introduced to account for rapid spatial fluctuations of the atomistic scale whereas
slow temporal scale is designated to capture the long-term behavior of the continuum
solution. The size of the atomistic cell is assumed to be much smaller than the
characteristic size of the macro domain. The macroscopic position vector x is assumed to
be a continuous function, whereas the discreteness of the atomic positions implies the
discreteness of the atomic position vector y. Hamilton energy principal serves as a
starting point of the formulation as opposed to the partial differential equations which
form the basis for continuum formulations. 

To this end we note that there is an important class of coupled discrete-continuum
simulation techniques, which is not considered in this work, where small atomistic
regions are tied to a continuum description through appropriate boundary conditions [4].
Typically, the idea is to describe “interesting” parts of the simulation atomistically, while
other parts of the system are described by a model based on continuum theory.  The
atomistic description is typically required in dislocation core and other parts of the
system with strong nonlinearities.

 The contents of this paper are as follows. We start by considering a one-dimensional
model with nearest neighbor interactions. Although such a simplification may appear
excessive, many essential features can be illustrated, while retaining the advantage of
minimal algebraic complexity. The analytical solution of this model is found to be in
good agreement with the molecular dynamic simulation of the wave propagating in a
chain of atoms, whereas the classical approach based on the Cauchy-Born hypothesis is
2



shown to produce significant errors. We conclude by considering a three dimensional
structure of the BCC crystal.

2.0  One-Dimensional Chain of Atoms
2.1  Problem Statement

Consider wave propagation in a one-dimensional chain of atoms as shown in Figure 1.
For simplicity, we assume that each atom acts as though it was connected to its nearest
neighbor by a spring. The total energy stored in the crystal is comprised of the kinetic and
potential energies.  The one-dimensional crystal model with masses m1 and m2 is spaced at

intervals  and  in equilibrium position. The force applied to every atom
depends on the relative displacement of the nearby atoms as well as spring stiffnesses k1

and k2.

                                  Figure 1: One-dimensional chain of atoms

The length of the atomistic unit cell in the physical domain is . We denote by L the

total length of the chain, and by  the ratio . In the particular case of a diatomic

chain, we have:   and .

Let   be the displacement of atom i and  be the internal energy of atoms in the

unit cell denoted as: . Therefore the total energy

W  is given by:
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From the Hamilton principle, , we obtain:

     

which yields the set of discrete equations:

                               

   (1)

where ,  are masses per unit length and

 is the size of the unit cell in the stretched coordinate system. 

Remark 1: In order to perform asymptotic expansion of equation (1) it is important to
identify the scale of the coefficients.  For a homogeneous cylinder of Young’s modulus E,
length l and cross-sectional area S, the relation between the spring stiffness and Young
modulus is given by

 (2)

If  is the density, we have . Therefore , and consequently it is appro-

priate to introduce an asymptotic expansion for solving equations (1).
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 In addition to the fast spatial variable, we introduce two temporal scale  and ,

where t is the usual time coordinate and  is a slow time scale defined by: . 

Thus, the corresponding multiple scale asymptotic expansion is given as:

 (3)

The asymptotic analysis consists of inserting the asymptotic expansion (3) into the
equations of motion, identifying the terms with the equal power of , and then solving the
resulting problems. Following the aforementioned procedure and expressing the temporal

derivative in term of the slow time coordinates, , we obtain a series of

equations in ascending power of  starting with .
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a given function  we define two functions  and  as:
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2.2.1  O(1) Homogenization

•At  we have:   and , which yields: 

    and     , and therefore:

(4)

• At  we have:  and . 

The above equations together with the normalization condition  allow us to

determine :

(5)

where H(y) is defined by:

 

 

• At  we have the following two equations:

 , 

 

Adding the above two equations, and taking into account the properties of  and 

we get the leading order continuum equation of motion:

(6)
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 (7)

where P(y) is defined by: 

,      

.

The  perturbations equations are:

,

 

We can determine  from the above two equations together with the normalization

condition for , which gives:

    (8)

where M(y) is given  by:

 

 

2.2.3   Homogenization

The  perturbations equations are:

u
2

x y t τ, , ,( ) P y( )u xx,
0

x t τ, ,( )=

P 0( ) 1 α–( ) l̂
2

k1 k2+
----------------------

α2
k2 1 α–( )2

k1+

2
-------------------------------------------

 
 
 

αk0

ρ1

ρ0
-----–

α
k1 k2+
---------------- αk2 1 α–( )k1–( )

2
–=

P α l̂( ) α l̂
2

k1 k2+
----------------–

α2
k2 1 α–( )2

k1+

2
-------------------------------------------

 
 
 

αk0

ρ1

ρ0
-----–

α
k1 k2+
---------------- αk2 1 α–( )k1–( )

2
–=

O ε( )

αρ1u t, t
1

xn 0,( ) 1

l̂
2

----+ f1
0

u
3( ) f1

1
u

2( ) f1
2

u
1( ) f1

3
u

0( )+ + +[ ] 0=

1 α–( )ρ2u t, t
1

xm α l̂,( ) 1

l̂
2

----+ f2
0

u
3( ) f2

1
u

2( ) f2
2

u
1( ) f2

3
u

0( )+ + +[ ] 0=

u
3

u
3

u
3

x y t τ, , ,( ) M y( )u x, xx
0

x t τ, ,( )=

M 0( ) l̂
3 1 α–

k1 k2+
----------------

α3
k2 1 α–( )3

k1–

6
------------------------------------------- α2 αk2 1 α–( )k1–( )3

k1 k2+( )2
---------------------------------------------

α
αk2 1 α–( )k1–

k1 k2+
-------------------------------------- k0

ρ1

ρ0
----- 2α 1–( ) α2

k2 1 α–( )2
k1+( )–

+

+













⋅=

M α l̂( ) l̂
3 α
k1 k2+
----------------–

α3
k2 1 α–( )3

k1–

6
------------------------------------------- α2 αk2 1 α–( )k1–( )3

k1 k2+( )2
---------------------------------------------

α
αk2 1 α–( )k1–

k1 k2+
-------------------------------------- k0

ρ1

ρ0
----- 2α 1–( ) α2

k2 1 α–( )2
k1+( )–

+

+













=

O ε2( )

O ε2( )

αρ1 u t, t
2

2u t, τ
0

+( ) xn 0,( ) 1

l̂
2

---- f1
4

u
0( ) f1

3
u

1( ) f+ 1
2

u
2( ) f1

1
u

3( ) f+ 1
0

u
4( )+ +[ ]+ 0=
7



 

Adding the above two equations and making use of the leading order continuum equa-
tion of motion (6), yields the higher order continuum equation of motion:

 (9)

where:  

where  is defined by: .

2.2.4  Nonlocal continuum model

The dependence on slow time can be eliminated  by combining the two continuum
equations of motion with multiple temporal scales:

 , 

 

which yields the nonlocal continuum model 

       (10)

where  denotes the total temporal derivative.

In the case of a diatomic chain (  and ) we have:
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The difference between the two is:

Assuming , we can denote , where . Therefore 

 

One finds easily that , which implies  with equality hold-

ing if and only if .

 Most importantly it can be seen that for the homogeneous atomic chain  vanishes

whereas  does not,  revealing a well known fact that discrete medium is always disper-

sive as opposed to the homogeneous continuum medium.

2.3  Numerical results
To assess the accuracy of the proposed formulation, we compare the analytical solu-

tion of the continuum model with multiple temporal scales (6), (9) to the reference solu-
tion obtained numerically by solving equations (1). We consider the following initial (ICs)
and boundary (BCs) conditions:
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(BCs):                
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is given by  (see [5]-[7]):
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Numerical experiments are conducted for the following two problems:

Problem 1: The atomistic properties considered are:  and

. The dimension of the unit cell is set to  . We

consider a chain of 100 atoms. The continuum properties are calculated as ,

 and .

Problem 2: The atomistic properties considered are ,

. The dimension of the unit cell is set to  , and

we consider a chain of 100 atoms. The continuum properties are calculated as

,  and .

Figure 2: Problem 1, 
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based on the Cauchy-Born hypothesis and the reference solution obtained by numerical
simulation. Figures 4 and 5 give the corresponding solution for Problem 2.

Figure 3: Problem 1, 

Figure 4: Problem 2, 

δ l⁄ 4=

δ l⁄ 10=
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Figure 5: Problem 2, 

3.0  The BCC Crystal
3.1  Problem Statement

We consider  a Body Centered Cubic (BCC) crystal of two atoms: one of type 1 (mass
m1) and one of type two (mass m2). We assume that the atom of type two acts as if it was
connected to its nearest eight neighbors by a spring of stiffness k2, whereas the atom of
type one is connected to its nearest eight neighbors by a spring of stiffness k2 and to its six
second neighbors by a spring of stiffness k1 (see Figure 6). The total energy consists of the
kinetic and potential energies of all atoms in the system. Due to periodicity the energetics
of the atomistic unit cell can be expressed in terms of the two representative atoms posi-
tioned at points A and B as shown in Figure 6. To specify the location of an atom in a cell,
we place a local stretched coordinate system with an origin at point A. The positions of the
two representative atoms  in the stretched local coordinate system is specified by two vec-
tors :
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The cartesian components of  are denoted as .  The displace-

ment of the representative atom (mnp,j) is denoted by the vector . 

Figure 6: The unit cell of BCC crystal

For any two atoms  and , we denote by  and

 the distance and the stiffness of the spring between the two atoms,

respectively. The potential energy of the crystal can be then expressed as:

3.1.1  Equations of motion

The equations of motion for any atom  can be written as:
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and exploiting identities  and 

    yields the following equations of motion for :

where  and .

Remark 2: In three-dimensional case the corresponding relation to equation (2) is:

where the cross-sectional area in 1D has been substituted by a square of the distance

between the two nearest atoms. Moreover, exploiting the definition of  we get

and therefore it is appropriate to introduce an asymptotic expansion for solving the above
equations of motion.

xa
α

xb
β∂

2

∂
∂ Φ

 
 
 

kab
xa

α∂
∂ δrab( )

xb
β∂

∂ δrab( )=

xa
α∂

∂ δrab( )
xa

α
xb

α
–

rab

-----------------= m n p, ,( )∀

ρ2

2
-----u··mnp2 Φ5 umnp1 u m 1+( ) n 1+( ) p 1+( )1+[ ] Φ6 u m 1+( )np1 um n 1+( ) p 1+( )1+[ ]

Φ7 u m 1+( ) n 1+( )p1 umn p 1+( )1+[ ] Φ+
8 um n 1+( )p1 u m 1+( )n p 1+( )1+[ ]

+ +

+

2

ε2
l̂
2

--------- Φs

5 s 8≤ ≤
∑

 
 
 

umnp2=

ρ1

2
-----u··mnp1

1

ε2
l̂
2

--------- Φ2 umn p 1+( )1 umn p 1–( )1+[ ] Φ 3 u m 1–( )np1 u m 1+( )np1+[ ]

Φ4 um n 1–( )p1 um n 1+( )p1+[ ] Φ+
5 umnp2 u m 1–( ) n 1–( ) p 1–( )2+[ ]

Φ6 u m 1–( )np2 um n 1–( ) p 1–( )2+[ ] Φ 7 u m 1–( ) n 1–( )p2 umn p 1–( )2+[ ]

Φ8 um n 1–( )p2 u m 1–( )n p 1–( )2+[ ]

+

+

+ +

+

{

}

+

2

ε2
l̂
2

--------- Φs

2 s 8≤ ≤
∑

 
 
 

umnp1=

ρ1 2m1 l
3⁄= ρ2 2m2 l

3⁄=

ki

lρi

------ O 1( )=

Φi

Φj

ρi

---------- O 1( )=
14



y2)]

y2, )]
3.2  Nonlocal Continuum 
As in 1D case we substitute the following multiscale asymptotic expansion:

 

into the equations of motion, which yields series of equations in ascending power of 

starting with . We again assume that x is a continuous variable, whereas y is discrete,

and therefore, for a given value of y  is continuous and differentiable with respect
to x. Thus the displacements of atoms can be expressed as:

 

We further assume that  is Y-periodic in the y-variable where .
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)1 y1, )]
If v is Y-periodic, then using the Taylor expansions it can be easily shown that  the fol-
lowing identities hold (for simplicity we denote  and ):

i) 

ii) 

 

iii) 

 

3.2.1  O(1) Homogenization
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    and     ,

or:

(11)

• At  we have:   and ,   which yields:  

    and     ,

which together with the normalization condition for  gives:

(12)

• At  we have the two equations:

, 

 (13)

Adding the above two equations, and taking into account the properties of  and 

yields the leading order continuum equation of motion:

 

which can be rewritten as:

 (14)

where summation convention over repeated subscripts is adopted, except for underscored
subscripts, and . In tensorial notation the above formulae can be

expressed as:
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Equation (14)  is validated in the Appendix.

3.2.2  O( ) Homogenization

We can determine  from equations (13) together with the normalization condition

for , which  yields:

 (16)

where  is a Y-periodic fourth-rank tensor defined by: 

 

The resulting   perturbations equations are given as:

 ,

 

We can determine  from the above two equations and the normalization condition

for . Since  we get  .

3.2.3  O( ) Homogenization - simple trigonal Bravais crystal

The simple Bravais crystal is characterized by:  and . In this

case, we have , and therefore the  perturbations equations reduce to:

  

 

Adding the above two equations yields: 

Dijmn
0 δijδmn

2k2

3l
-------- δim

k1

l
-----

4k2

3l
--------– 

 + 
  δimδjn

4k2

3l
--------+=

ε

u2

u2

ui
2 x y t τ, , ,( ) Pijmn y( )εmn j,

0
x t τ, ,( )=

P y( )

Pijmn y2( ) l̂
2

16
------ δijδmn 1

ρ2

ρ0

-----– 
  δim– 3

ρ2

ρ0

-----
k1

k2

----- 2 1
ρ2

ρ0

-----– 
 + 

  2δimδjn 1
ρ2

ρ0

-----– 
 +

 
 
 

=

Pijmn y1( ) Pijmn y2( )–=

O ε( )

1
2
---ρ1u t, t

1 x1 y1,( ) 1

l̂
2

----+ f1
0 u3( ) f1

2 u1( )+[ ] 0=

1
2
---ρ2u t, t

1 x2 y2,( ) 1

l̂
2

----+ f2
0 u3( ) f2

2 u1( )+[ ] 0=

u3

u3 u1
0= u3 x y t τ, , ,( ) 0=

ε2

ρ1 ρ2 ρ0= = k1 0=

u2 x y,( ) 0= O ε2( )

ρ1u t, τ
0 x1( ) 1

l̂
2

---- f1
4 u0( ) f1

0 u4( )+[ ]+ 0=

ρ2u t, τ
0 x2( ) 1

l̂
2

---- f2
4 u0( ) f2

0 u4( )+[ ]+ 0=
18



which may be rewritten as:

 

where  is a sixth-rank tensor defined by:

 

3.2.4  O( ) Homogenization - The general case

In the general case, the  perturbations equations are:

  

 .

Adding the above two equation, we get: 
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 . 

Then, using the result of the previous section for the Bravais crystal, and making use
of the leading order continuum equation of motion, we find:

 (17)

where  is a sixth-rank tensor defined by:

The two continuum equations of motion are given by:

 , 

 

The dependence on the slow time scale can be eliminated by combining the two contin-
uum equations, which yields 

  

4.0  Conclusions

The proposed framework for constitutive modeling based directly on atomistics is ge-
neric, but  currently, is at the embryonic stage of implementation, limited to idealized sce-
narios, such as perfect latices, quadratic potentials and nearest neighbor interaction
conditions. Further research is essential to promote the proposed methodology from the sta-
tus of “interesting and having potential” to a practical analysis and design tool. The meth-
odology’s   essential features, that need to be generalized to realistic situations, are
summarized below: (i) consideration of real solids with defects, (ii) accounting for temper-
ature effects, and (iii) using realistic potentials (provided that they can be derived from the
"first principles" based on the Density Functional Theory).
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6.0  Appendix
In this section, we derive elastic material properties for the BCC crystal. We denote by

 and  the stress and strain vectors, respectively:

  and 

Assuming small displacements of the atoms in the crystal the constitutive relation can
be approximated  by a linear relation:  where  is a  matrix.

The symmetry of the cubic crystal implies that the number of elastic constants can be
reduced to 3, denoted as . The structure of the constitutive matrix  is given by:

 

In order to determine the three constants, we consider the following three independent
loading cases: 

i) Hydrostatic pressure:  and others .

The resultant strain can be from the constitutive equation, which gives:

 , others .
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For a given overall strain field, we can calculate the deformation of the springs. The

resulting forces in the springs should be equilibrated, i.e.,   where

, which produces the first relation between the constants: 

ii) Shear stress:  others .

The resulting strains are: , others . We also have:   

where , which the second relation between the constants: .

iii) Shear stress: , others 

The strains are given by: , and other strain components vanish .

Equilibrium yields:  and the last relation between the constants: . 

Finally, we have: ,  , and .

The resulting local equation of motion,  ,  are given as:

 

which is identical to equation (14).
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