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Abstract 
We describe a methodology aimed at determining the sensitivity of the global structural behavior, such deformation or 
vibration modes with respect to the local characteristics such as material constants of micro-constituents. An analytical 
gradient computation, which involves  the direct differentiation of the multiple scale strong forms with respect to the 
design parameters is developed.  Comparison of the Multiple Scale Sensitivity Analysis (MASA)  to the central finite 
difference (CFD)  approximation in terms of accuracy and computation efficiency is carried out. We demonstrate the 
robustness of the MASA approach compared to the CFD approximation, which has been found to be highly sensitive 
to the choice of the step size, whose optimal value is problem dependent. 

 
1. Introduction 
 
 Composite materials play an important role in many fields of modern engineering due to low 
weight/stiffness ratio that makes their application in high performance structures very desirable [1]. 
One of the greatest challenges facing the composites designers today is in selecting  nearly optimal 
material architectures including micro-geometry and properties of micro-phases [2]. The ability to 
perform micro-structural  optimization depends on the  accuracy and computational efficiency  of  
the design sensitivity analysis [3], [4]. 
 
 Design sensitivity analysis deals with a gradient computation of an objective function and 
constraints with respect to geometrical and/or material characteristics [5], [6]. Typically, this 
computation is  performed numerically by means of the central finite difference approximation [7], 
[8]. In this case the discrete  thermo-mechanical problem is solved for at least two different, but 
nearby, values of each design parameter. To ensure robustness a convergence study involving several 
discrete analyses for each design parameter is often performed to determine the required step size. 
When the total number of independent design parameters becomes large this approach may consume 
more than two thirds of the total computational cost of the optimization process [9]. Furthermore, 
the accuracy  of the approximations obtained by the finite difference method may not be adequate, in 
particular for nonlinear history dependent problems [10], [11], or when the actual sensitivities are of 
the order of numerical errors [12]. One of the alternatives, is the semi-analytical method [13], [14], 
which is based on the differentiation of the discrete equations with respect to the design parameters 
and subsequent  finite difference approximation. Finally, the analytical approach  is finite difference-
free, despite its high complexity [11], [15], [16], [17], [18]. 
 
 The present manuscript is largely motivated by a desire to develop a Multiscale Analytical 
Sensitivity Analysis (MASA), with the intent of calibrating microscale material properties to 
observable experimental data. Multiscale calibration consists of solving the inverse problem leading 
to a unique and reliable determination of constitutive laws at multiple scales. The goal of the multiple 
scale sensitivity analysis is to determine the sensitivity of the global behavior, such deformation or 
vibration modes with respect to  material constants of micro-phases and vise versa. 
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     The manuscript is organized as follows.  In section 2, the multiple scale inverse problem is 
formulated as a minimization of the difference between the measured and computed data of interest. 
The analytical gradient computation involves  a direct differentiation of the multiple scale strong 
forms with respect to the design parameters. In section 3, the mathematical homogenization theory is 
given for the metal matrix composites. The use of a double scale asymptotic expansion introduces 
two uncoupled (micro- and macro-) direct problems. The weak form and the corresponding finite 
element discretization of the two problems are then stated. In section 4, the Multiscale Analytical 
Sensitivity Analysis (MASA) is developed using the double scale asymptotic expansion for the 
sensitivities.  In section 5, the finite element discretization and the nonlinear solution of the discrete 
macro and micro sensitivity equations is presented. Finally, two examples are used to validate the 
present formulation: the first for a linear isotropic elastic composite, and the latter for the linear 
isotropic elastic reinforcement embedded in the elastoplastic matrix. Comparison of the MASA 
approach to the CFD  approximation in terms of accuracy and computation efficiency completes the 
manuscript.  We show that the CFD approximation is highly sensitive to the choice of the step size, 
whose optimal value is problem dependent. 
 
 
2. Indirect Calibration of Multiscale Constitutive Equations 
 

In this section, we focus on the mathematical formulation of the problem associated with the 
optimal design of material microstructure. The ultimate goal is to control the geometrical and 
material characteristics of the micro-constituents by means of solving the inverse problem which 
calibrates the computed data to the available experimental measurements at multiple scales. The 
experimental data on the microscale can be obtained, for example, using the Moire Interferometry 
technique [19], [20], which produces contour maps of the displacement and strain fields. For an 
alternative technique based on the topological micro-structural optimization we refer to [24]. 
 
 
 2.1. Multiscale Inverse Problem. 
 
 We consider a periodic composite structure defined by  two scales: the macroscale with a position 
vector x(x1,x2,x3) defined on the domain Ω and the microscale with a position vector y(y1,y2,y3) 
defined on the Representative Volume Element (RVE) domain Θ  as shown in Fig. 1. The position 
vectors on the  micro- and  macro- scales are related by the small parameter ∈  ( )y x= ∈ , which is 

the ratio of the two scale characteristic lengths. The micro-constituents are assumed to possess 
homogeneous properties and to satisfy equilibrium, constitutive, kinematics and compatibility 
equations, as well as jump conditions at the interface between the micro-constituents.  
 
 The two-scale inverse problem consists of minimizing the error between the measured and 
computed data. Assuming that the experimental data, such as displacements û  and strain field are 
available, the minimization problem can be stated as follows: 
 

 
( ) 2 2

1 2
  

    ( )  

1
ˆˆ    ( )

P

Find the control field P p such that

P u u d u d dMin

α

φ ϖ ϖ ε ε
∗ ∗ ∗

∗
∈ ∏ Ω Ω Θ


      = − Ω + − Θ Ω  Θ    
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where Π is the space of admissible design variables; ∗Θ  and ∗Ω  are the portions of the micro and 
macro domains, respectively, where the experimental data is available; ( )P pα  is the set of 

parameters defining constitutive laws on the microscale, such as Young modulus, Poisson ratio, 
hardening modulus and yield stress of micro-phases; 1ϖ  and 2ϖ  are weighting parameters; u is the 

computed displacement field  on ∗Ω ;  and ( )uε  is the computed  local strain field on ∗Θ . 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 1. (a) The macro domain Ω, and (b) the Representative Volume Element domain Θ. 
 
 
Various sensitivity analysis approaches required for solving the constrained minimization problem (1) 
are briefly summarized in the next section.  
 
 
 2.2. Design sensitivity analysis 
 
 One approach by which the gradient computation can be obtained is the central finite difference  
(CFD) approximation: 
 

 
( ) ( )

  
2

p p p pd

dp p p
α α α α

α α α

φ δ φ δφ φ
δ

+ − −∆
≅ ≡

∆
 (2) 

 
where pαδ  denotes a  small step size. 

 
 Typically, the gradient computation using the finite difference approximation requires several 
solutions of the problem for each finite difference increment. In order to ensure sufficiently accurate 
sensitivities a convergence study is often performed [21], which involves several analyses for each 
design parameter. For large scale problems, the computational cost might be prohibitive as it may 
entail more than two thirds of the optimization process [12]. Furthermore, the accuracy  of the 
approximations obtained by the finite difference approximation may not be adequate in particular for 
nonlinear  history dependent problems [10], [11] or when the actual sensitivities are of the order of  
numerical errors [16]. An alternative, which is adopted in the present manuscript, is based on the 
analytical differentiation [3], [18]. In the present context it involves a direct differentiation of  the 
multiple scale strong forms with respect to the design parameters.  

ΓΓu 

Ω(x,y) 

Γt 

x1 

x2 

x3 

   y1 

 y2 

 y3 

Θ Θ 
 



 

 4

 
 
3. Review of the mathematical homogenization theory 
 
 3.1. Macro-Scale Direct Problem 
 
 Due to the periodic nature of the microstructure any response function ( ) ( , ( ))g x g x y x∈ = , such 

as displacements iu∈ , stresses ijσ ∈ , and strains (  )ij u∈ε , defined on the composite domain Ω (x, y) , 

are also y-periodic. The  boundary value problem is governed by the following equations:  
 
 , ( ) 0             in         ( , )

jij x ib x x y∈σ + = Ω  (3) 

 
 in         ( , )ij ijkh khL u x y∈ ∈σ ε (  )       = Ω&&  (4) 

 
 ,(              in         ( , )

jij i xu u x y∈ ∈
( )ε  ) = Ω& &  (5) 

 
 ( )                  i i tu u x in∈ = Γ  (6) 

 
 ( )       in        ij j in t x∈

υσ = Γ  (7) 

 
where the superimposed dot represents the material time derivative; iu∈&  and ij

∈ε&  are the velocity 

vector and the rate of deformation tensor, respectively; the subscript pair with parentheses denotes 

the symmetric gradient defined as ( ) ( ), ,, j ij
i x j xi x

u u u∈ ∈ ∈& & &= + 2 ; ( )b xi , ( )iu x and ( )it x  are the body forces 

on Ω, the prescribed displacements on uΓ  and the prescribed boundary tractions on tΓ , respectively; 

ijkhL  is the instantaneous constitutive tensor  and jn  is the  normal to tΓ . Attention is restricted to 

small deformation theory. 
 
 
 The multiple scale analysis of the strong form (3)-(7) is obtained by approximating the velocity 
field as: 
 
 0 1( ) ( , ) ( , ) ( , ) ....i i iu x u x y u x y u x y∈ = = + ∈ +& & & &  (8) 

 
Using the chain rule, the macroscopic spatial derivative of the velocity field (8) is given by: 
 

 -1 -1
, , ,

( )
( ) ( , ) ( , ) ( , )

i j j

i
i x i i x i y

j j j

u x
u x u x y u x y u x y

x x y

∈
∈

 ∂ ∂ ∂
= = + ∈ = + ∈  ∂ ∂ ∂ 

&& & & &  (9) 

 
From (7) and (8), we obtain the following expansion of the rate of strain field: 
 
 1 -1 0 1( ( )) ( ( , )) ( ( , )) ( ( , )) ( ( , )) ...ij ij ij ij iju x u x y u x y u x y u x yε ε ε ε ε∈ −≡ ≈∈ + + ∈ +& & & & &  (10) 

where  
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 ( )

1 0

,
( ( , )) ( , )

j
ij i y

u x y u x yε − =& &  (11) 

 
 ( ) ( )

0 0 1

, ,
( ( , )) ( , ) ( , )

j j
ij i x i y

u x y u x y u x yε = +& & &  (12) 

 
 ( ) ( )

1 1 2

, ,
( ( , )) ( , ) ( , )

j j
ij i x i y

u x y u x y u x yε = +& & &  (13) 

 
The expansion of the stress rate is obtained by substituting the strain rate approximation (10) into the 
constitutive equation (3) which yields: 
 
 1 -1 0 1( ) ( , ) ( , ) ( , ) ( , ) ...ij ij ij ij ijx x y x y x y x yσ σ σ σ σ∈ −≡ ≈∈ + + ∈ +& & & & &  (14.a) 

 
where 
 
 ( ( , )),     -1,0,1,...s s

ij ijkh khL u x y sσ ε= =& &   (14.b) 

 
Similarly, the expansion for the stress field is given by: 
 
 1 -1 0 1( ) ( , ) ( , ) ( , ) ( , ) ...ij ij ij ij ijx x y x y x y x yσ σ σ σ σ∈ −≡ ≈∈ + + ∈ +  (15) 

 
Inserting the stress asymptotic expansion (14.a) into equilibrium equations (3) and making  use of 
the chain rule yields  various order equilibrium equations: 
 

 -2 -1
,O( ) :    0

jij y∈ σ =  (16) 

 

 -1 -1 -0
, ,O( ) :    0

j jij x ij y∈ σ σ+ =  (17) 

 

 0 0 1
, ,O( ) :    0

j jij x ij y ib∈ σ σ+ + =  (18) 

 
 s s s+1

, ,O( ) :    0,     s = 1,2,...
j jij x ij y∈ σ σ+ =   (19) 

 
To solve for the -2O( )∈  equilibrium equation we pre-multiply the rate form of (16) by 0

iu&  and 

integrate it over RVE domain, Θ, which yields 
 
 0 -1

,   0
ji ij yu dσ

Θ

Θ =∫ & &  (20) 

and subsequent integration by parts results in 
 
 0 -1 0 0

( , ) ( , )    0
j ki ij j i y ijkh h yu n d u L u dσ

Θ

Θ
Γ Θ

Γ − Θ =∫ ∫& & & &  (21) 
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where the first term in the above equation vanishes due to periodicity of the boundary conditions on 

ΘΓ . Assuming that the instantaneous stiffness tensor ( )ijkhL y  is positive definite the unique solution 

of the equilibrium equation (21) is  
 
 0 0 0

( , ) 0        ( )
ji y i iu u u x= ⇒ =& & &  (22) 

 
The strong form of the O( )−1∈  equilibrium follows from (15) and the rate form of (17) which yields  
 

 ( )( )0 1
( , ) ( , )

,
 0

h h
j

ijkh k x k y
y

L u u+ =& &   (23) 

 
To solve for (23) up to a constant we introduce the following separation of variables 
 
 1 0

( , )
( , ) ( ) ( )

n

mn
i i m x

u x y y u x= ℜ& &  (24) 

 
in which mn

iℜ  represents the instantaneous y-periodic function with symmetry with respect to 

indexes m and n.  
 
We further denote  
 
 

( , )
( ) ( )

j

mn mn
ij i y

y yΨ = ℜ  (25) 

 
and the equilibrium equation (23) can be expressed as  
 

 ( )( )0

( , ) ,
( ) ( )

n
j

kh
ijkh khmn mn m x y

L I y u x+ Ψ &  (26) 

 
where 
 

 
1

( )
2khmn km hn kn hmI δ δ δ δ= +  (27) 

 
and kmδ  is the Kronecker delta. For an arbitrary macroscopic velocity field 0

iu&  equation (26) yields 

 

 ( )( )
,

( ) 0
j

kh
ijkh khmn mn

y
L I y+ Ψ =  (28) 

 
To solve for the O( )0∈  equilibrium equation we integrate the rate form of (18) over RVE domain 
which yields 
 
 ( ) ( )1 1 0

( , ) ( , ) ( , ), ,
( ) ( )   0

h h h
j j

ijkh k x ijkh k y k x iy x
L y u d L y u u d b d

Θ Θ Θ

Θ + + Θ + Θ =∫ ∫ ∫ && & &  (29) 

where the first term vanishes due to the periodicity resulting in 
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 ( ) 0
( , )

,

( )   0
n

j

mn
ijkh khmn kh m x i

x

L y I d u b
Θ

  
+ Ψ Θ + Θ =     

∫ &&  (30) 

 
where Θ  is the volume of the RVE. The  rate of the local stress field, 

 

 ( )( ) ( )mn
ij ijkh khmn kh mnL y I uσ ε= + Ψ &%& , (31) 

 

the macroscopic strain rate field, 0
( , )( ) ( )

nmn m xu u xε =&% & , and the overall stress field  

 

 ( )1 1
( ) ( )mn

ij ij ijkh khmn kh mnd L y I d uσ σ ε
Θ Θ

= Θ = + Ψ Θ
Θ Θ∫ ∫ && %% &  (32) 

 
are defined in the usual manner [1], [22], [23]. 
 
 
From (29) the macroscopic equilibrium equation can be cast into the familiar form 
 
 , 0

jij x ibσ + =%  (33) 

 
Further denoting the homogenized stiffness tensor components as 
 

 ( )1
( ) mn

ijkh ijmn khmn khL L y I d
Θ

= + Ψ Θ
Θ ∫%  (34) 

 
the strong form of the macro-scale direct global problem (3)-(7) can be re-written as follows: 
 

 

,

0
( , )

( ) ( )

( )

j

j

ij x i

ij ijkh kh

ij i x

i i u

ij j i t

b in

L u in

u u in

u u on

n t on

σ

σ ε
ε

σ

 = − Ω


= ℜ Ω
 = Ω


= Γ
 = Γ

%
&& % %%

&% &

%

 (35) 

 
 
 3.2. Micro-Scale Direct  Problem 
 
 The solution of the boundary value problem (35) is a function of the characteristic function mn

iℜ . 

Further expressing the stress concentration factors on Θ as 
 
 ( ) ( )kh kh

ij ijmn khmn mns L y I= + Ψ , (36) 
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the characteristic functions mn
iℜ  and kh

ijs  are the solutions of  the following micro-scale direct  

problem: 
 
 

 

, 0

( ) ( )

0

0

j

mn
i

kh
ij y

kh kh
ij ijmn khmn mn

mn
i

kh
ij j

kh
ij j

is y periodic

s in

s L y I in

on

s n on

s n is y antiperiodic

γ

γ

Θ

Θ

 ℜ −
 = Θ
 = + Ψ Θ
  ℜ = 
  = 
 −

 
 (37) 

 

where •    denotes the jump operator at the interface between the micro-constituents γ Θ .  

 
 The instantaneous strain concentration function ( )ij

kh yℑ  is denoted as 

 
 ( ) ( )ij ij

kh ijkh khy I yℑ = + Ψ  (38) 

 
so that the local strain rate field ( ( , ))ij u x yε&  is given by: 

 
 ( ( , )) ( ) ( )ij

ij mn mnu x y y uε ε= ℑ && %  (39) 

 
 
 3.3 The weak and the discrete forms 
 

The weak form of (35) is given as: 
 

 

0

0

    :                                                            

( ) ( )  ;     ;
t

i ad

ij ij i i i i i ad

find u U such that

u d b d t d Uσ ε ϕ ϕ ϕ ϕ ∗

Ω Ω Γ


 ∈




Ω = Ω + Γ ∀ ∈


∫ ∫ ∫%
 (40) 

 
where adU  is the admissible space defined by: 

 

 { }31( )   /         ad i i i uU u H u u on = ∈ Ω = Γ   (41) 

 
1( )H Ω  is the Hilbert space and adU ∗  is the vector space defined as: 

 

 { }31( )   /    0     ad i i uU u H u on∗  = ∈ Ω = Γ   (42) 
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The system of nonlinear equations arising from the finite element discretization of (40)  yields: 
 
 int 0ext

A A Ar f f= − =  (43) 

  
where Ar  is the residual vector and  
 
 int ( ) ( )   ;         

t

ext
A i kh i khA A j jA j jAf u u B d f b N d t N dσ Ω Ω Ω

Ω Ω Γ

= Ω = Ω + Γ∫ ∫ ∫%   (44) 

 
are the components of the internal and external force vectors, respectively; jAN Ω  are the shape 

functions defined on  Ω; khABΩ  are the corresponding spatial derivatives ( )( , )jiA jA iB NΩ Ω= . 

 

Let Ad  ( )i iA Au N dΩ=  be the nodal components of the displacement field. The discrete equation (43) 

is solved using the Newton  method such that: 
 
 ( ) ( )1k k

A A Ad d d+ = + ∆  (45) 
 
where the displacement increment,  Ad∆ , for each iteration (k), from is obtained: 
 

 ( ) ( )  k k
AB A AK d r∆ =%  (46) 

  

 A
AB mnA mnkh khB

B

r
K B L B d

d
Ω Ω

Ω

∂
= = Ω

∂ ∫% %  (47) 

 
The instantaneous characteristic function rs

iℜ  is a solution of the following micro-scale weak form:  
 

 

31

31
, , ,

  ( )                                        

 ;     ( )

rs
i

rs
i j ijkh k h ijrs i j i

Find H such that

L d L d Hϕ ϕ ϕ
Θ Θ


 ℜ ∈ Θ  





 ℜ Θ = − Θ ∀ ∈ Θ  


∫ ∫

 (48) 

 

Let rs
AD  ( )rs rs

i iA AN Θℜ = D  be the nodal components of the characteristic functions, then the 

corresponding discrete form of (48) yields: 
 

 ( ) ( )rs rs
AB B mnA mnkh khB B khrs khAK B L y B d L y B dΘ Θ Θ Θ

Θ Θ

 
= Θ = − Θ 

 
∫ ∫D D  (49) 

 
where ABK Θ  is the RVE stiffness matrix; ( )mnkhL y  the instantaneous constitutive tensor of the micro-

phases; iAN Θ  the shape functions on Θ  and khABΘ  the corresponding symmetric spatial derivatives. 
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The above two scale nonlinear problem is solved incrementally (see [22], [23]). The stress update 
procedure is outlined below. 
 
 
 3.4. Stress update procedure 
 
 The constitutive relation for the elasto-plastic microstructure at a typical Gauss point  yρ ∈Θ  is  

 

 ( )( ) ( ) - ( )  e pL u L u uρ ρ ρ ρ ρ ρσ ε ε ε= =& & &&  (50) 

 
where Lρ  is the elastic stiffness matrix ; ( )e uρε&  is the elastic part of the microscopic strain rate (39).  

 
Following  the associative flow rule, the plastic strain rate ( )p uρε&  is given by: 

  

 
( )

( ) ( ) ;                 p u u ρ
ρ ρ ρ ρ

ρ

σ
ε λ

σ
∂Φ

= Ν Ν =
∂

&&  (51) 

 
where λ(u) is a plastic flow parameter; ( )ρ σΦ  is Von Mises yield function at a Gauss point, given 

by: 
 

 21 1
ˆ( ) - 0

2 3
Pρ ρ ρ ρσ σ σ σΤΦ = =  (52) 

 
For Von Mises plasticity, P is defined as: 
 

 

2 1 1 0 0 0

1 2 1 0 0 0

1 1 2 0 0 01ˆ ˆ ˆ;
0 0 0 3 0 03

0 0 0 0 3 0

0 0 0 0 0 3

TP P T P P

− − 
 − − 
 − −

= =  
 
 
  
 

            (53) 

 
in which T is 6×6 diagonal matrix with 1 in the first three diagonal locations and 2 in the remaining 

three diagonal entries; P̂  is a projection operator satisfying ˆ ˆ ˆP P P=  and ˆ ˆP P P P P= = , which 

transforms a vector to deviatoric space; ˆ ρσ  is the yield stress which evolves according to the  

hardening law as: 
 

 ( 1) ( ) ( 1)2 2
ˆ ˆ ˆ ˆ ˆ( ) ;                ( )

3 3
k k ku uρ ρ ρ ρ ρ ρ ρσ λ σ σ σ λ σ+ += Η = + ∆ Η & &      (54) 

 
where the backward Euler integration scheme is exercised; H is a hardening parameter defined as the 
ratio between effective stress rate and effective plastic strain rate.  
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Inserting  (39) and  (51) into (50) yields 
 

 ( )( ) - ( )  L u u Pρ ρ ρ ρ ρσ ε λ σ= ℑ & &%&  (55) 

 
and applying the backward Euler scheme gives 
 

 ( ) 1( 1) ( )k trialI u L Pρ ρ ρ ρσ λ σ
−+ = + ∆   (56) 

 
where trialσ ρ  is the trial stress given by: 

 
 ( ) ( )trial k L uρ ρ ρ ρ ρσ σ ε= + ℑ ∆ %  (57) 

 
Note that the instantaneous strain concentration factor ρℑ  is obtained from the solution of (48) 

which in turn depends on the instantaneous properties at each Gauss point. For simplicity of 
numerical implementation we assume: 
 
 ( 1) ( )k k

ρ ρ
+ ℑ = ℑ  (58) 

 
Substituting (56) into the yield function (52) yields the nonlinear equation with unknown plastic 
parameter increment ( )uρλ∆  at each Gauss point  which can be solved using Newton  method 

 

 ( )

1

( 1) ( )( ) ( ) k
k ku u

ρ

ρ
ρ ρ λ

ρ

λ λ
λ

−

+
∆

 ∂Φ
∆ = ∆ − Φ  ∂∆ 

 (59) 

 
where  
 

 ( )( ) 11 24
ˆ( )

9
P L P uρ

ρ ρ ρ ρ ρ
ρ

σ λ σ σ
λ

−−Τ∂Φ
= − + ∆ Η − Η

∂∆
 (60) 

 
Once the incremental plastic parameter ( )uρλ∆  is obtained, the local stress field follows from the 

integration of (56). 
 
 
4. Multiscale Analytical Sensitivity Analysis. 
 
 The Multiscale Analytical Sensitivity Analysis is based on the the direct differentiation of the 
direct problem (3)-(7) and subsequent multiple scale asymptotic analysis. In the present manuscript, 
only two-scale sensitivity analysis is considered, even though the methodology can  be generalized to 
multiple scales. Attention is restricted to the sensitivities with respect to material constants. 
 
 4.1. Macro-Scale Sensitivity Problem 
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 We assume that traction and displacement boundary conditions as well as the body force are 
independent of the design variables. The direct differentiation of the strong form (3)-(7) with respect 
to the design variables ( )P pα  yields: 

 
 , 0                                                  ( , )

jij x in x y∈Σ = Ω  (61) 

 
 ( ) ( )      ( , )ij ijkh kh ijkh khL w L u in x yε ε       ∈ ∈ ∈′Σ = + Ω& & &  (62) 

 
 ( , )( )                                              ( , )

jij i xw w in x yε ∈ ∈= Ω& &  (63) 

 
 0                          i uw in∈ = Γ  (64) 

 
 0                       ij j tn in∈Σ = Γ  (65) 

 
where 
 

 ijkh
ijkh

L
L

P

∂
′ =

∂
  (66) 

 
is the sensitivity of the constitutive tensor and 
 

 i
i

u
w

P

∈
∈ ∂

=
∂

, (67) 

 

 ij
ij P

σ ∈
∈ ∂

Σ =
∂

  (68) 

 
are the sensitivities of the displacement and the stress fields, respectively; iw∈&  and ij

∈Σ&  denote the 

corresponding time derivatives. 
 
 
 The double scale asymptotic analysis of the sensitivity problem (61)-(65) is carried out by 
approximating the solution sensitivity ( )iw x∈&  as follows: 

 
 0 1( ) ( , ) ( , ) ( , ) ...i i iw x w x y w x y w x y∈ = = + ∈ +& & & &  (69) 

 
Applying the chain rule to (69) yields the following expansion of the strain rate sensitivity: 
 
 1 1 0 1( ( )) ( ( , )) ( ( , )) ( ( , )) ( ( , )) ...ij ij ij ij ijw x w x y w x y w x y w x yε ε ε ε ε∈ − −≡ ≈∈ + + ∈ +& & & & &  (70) 
 

where  
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 1
( , )( ( , )) ( , )

jij i yw x y w x yοε − =& &  (71) 

 
 1 0 1

( , ) ( , )( ( , )) ( , ) ( , )
j jij i x i yw x y w x y w x yε = +& & &  (72) 

 
 1 1 2

( , ) ( , )( ( , )) ( , ) ( , )
j jij i x i yw x y w x y w x yε = +& & &  (73) 

 
The approximation of the stress rate sensitivity field is obtained by inserting (70) into the constitutive 
equation (62), which gives 
 
 1 -1 0 1( ) ( , ) ( , ) ( , ) ( , ) ...ij ij ij ij ijx x y x y x y x y∈ −Σ ≡ Σ ≈∈ Σ + Σ +∈Σ +& & & & &  (74) 

 
where 
 
 ( ) ( ( , )) ( ) ( ( , ))     -1,0,1,...s s s

ij ijkh kh ijkh khL y w x y L y u x y sε ε′Σ = + =& & &  (75) 

 
The analogous expression for the stress sensitivity  is: 
 
 1 -1 0 1( ) ( , ) ( , ) ( , ) ( , ) ...ij ij ij ij ijx x y x y x y x y∈ −Σ ≡ Σ ≈∈ Σ + Σ +∈Σ +  (76) 

 
Inserting the asymptotic expansion (76) into (61) and using the chain rule yields various orders of 
sensitivity equations: 
 

-2 -1
,( ) :    0

jij yO ∈ Σ =  (77) 

 
-1 -1 0

, ,( ) :    0
j jij x ij yO ∈ Σ + Σ =  (78) 

 
0 0 1

, ,( ) :    0
j jij x ij yO ∈ Σ + Σ =  (79) 

 
1

, ,( ) :    0,     1, 2,...
j j

s s s
ij x ij yO s+∈ Σ + Σ = =  (80) 

 
To solve for the -2O( )∈  sensitivity equation we pre-multiply the time derivative of (77) by 0

iw& , 

integrate it over the Θ and then perform integration by parts which yields 
 

 0 -1 0 0 0 0
( , ) ( , ) ( , ) ( , )  -   -  0

j h j hi ij j i y ijkh h y i y ijkh h yw n d w L u d w L w d
Θ

Θ
Γ Θ Θ

′Σ Γ Θ Θ =∫ ∫ ∫& & & & &  (81) 

 
where the first and the second term vanish due to the periodicity of the boundary conditions on ΘΓ  

and (22), respectively. Assuming that ijkhL′  is positive definite yields the unique solution 

 
 0 0 0

( , ) 0        ( )
ji y i iw w w x= ⇒ =& & &  (82) 
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The strong form of the -1O( )∈  equation is obtained from (75) and the rate form of (78) which yields 
 

 ( )( ) ( )( )0 1 0 1
( , ) ( , ) ( , ) ( , )

, ,
  0 

h h h h
j j

ijkh k x k y ijkh k x k y
y y

L w w L u u′+ + + =& & & &  (83) 

 
Using (24), the above equation can be re-written as follows 
 

 ( )( ) ( )( )0 1 0
( , ) ( , ) ( , )

,,
   0

h h n
jj

kh
ijkh k x k y ijkh khmn mn m x

yy
L w w L I u′+ + + Ψ =& & &  (84) 

 
The solution of (84) for 1( , )iw x y&  up to a constant is constructed in the form of  

 
 1 0 0

( , ) ( , )
( , ) ( ) ( ) ( ) ( )

n n

mn mn
i i im x m x

w x y y u x y w xχ= + ℜ& & &  (85) 

 
in which ( )mn

i yχ  is the y-periodic sensitivity of the characteristic function ( )mn
i yℜ  

 

 
( )

( )
mn

mn i
i

y
y

P
χ

∂ℜ
=

∂
 (86) 

 
Inserting (85) into (84) yields 
 

 ( )( ) ( )( )0 0
( , ) ( , )

, ,
    0

n n
j j

kh kh kh
ijkh khmn mn m x ijkh mn ijkh khmn mn m x

y y
L I w L L I u′+ Ψ + ℘ + + Ψ =& &  (87) 

 
where (y)mn

ij℘  is the y-periodic sensitivity defined as 

 

 ( , )

( )
( ) ( )

j

kh
ijkh kh

ij i y

y
y y

P
χ

∂Ψ
℘ = =

∂
 (88) 

 

For arbitrary values of 0
( , )( )

jij i xw wε =&% &  and 0
( , )( )

jij i xu uε =&% & , equation (87) yields the following two 

governing equations on the RVE domain  
 

 ( )( )
,

( ) ( ) 0
j

kh
ijkh khmn mn

y
L y I y+ Ψ =  (89) 

 
which is a direct RVE problem, and  
 

 ( )( )
,

( ) ( ) ( ) ( ) 0
j

kh kh
ijkh mn ijkh khmn mn

y
L y y L y I y′℘ + + Ψ =  (90) 

 
which is the sensitivity RVE problem. 
 
 
To solve for the 0O( )∈  sensitivity equation we integrate the rate form of (73) over the RVE domain 
which gives 
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( ) ( ) ( )

( )

1 1 1 0
( , ) ( , ) ( , ) ( , ), , ,

1 0
( , ) ( , ) ,

( ) ( ) ( )

( )  0

h h h h
j j j

h h
j

ijkh k x ijkh k x ijkh k y k xy y x

ijkh k y k x x

L y w d L y u d L y w w d

L y u u d

Θ Θ Θ

Θ

′Θ + Θ + + Θ

′+ + Θ =

∫ ∫ ∫

∫

& & & &

& &
 (91) 

 
The first two terms vanish due to the y-periodicity. Consequently, inserting (24) and (85) into (91) 
yields: 
 

 

( ){ }

( ){ }

0
( , )

,

0
( , )

,

( ) ( )

 ( ) 0

n

j

n

j

mn mn
ijkh kh ijkh khmn kh m x

x

mn
ijkh khmn kh m x

x

L y L y I d u

L y I d w

Θ

Θ

 
′℘ + + Ψ Θ 

 

 
+ + Ψ Θ = 

 

∫

∫

&

&
 (92) 

 
Let us denote the sensitivity of the macro-stress rate field as 
 

 
1

( ) ( )ij ij ijkh kh ijkh khd L w L uε ε
Θ

′Σ = Σ Θ = +
Θ ∫& & &% %% & % %  (93) 

 
where ijkhL′%  is the sensitivity of the instantaneous macroscopic constitutive tensor  given by: 

 

 ( ){ }1
( ) ( )mn mn

ijkh ijmn kh ijmn khmn khL L y L y I d
Θ

′ ′= ℘ + + Ψ Θ
Θ ∫%  (94) 

 
From (92) one can derive the following macroscopic sensitivity equation: 
 
 , 0

jij xΣ =%  (95) 

 
In summary, the macro-scale sensitivity problem (61)-(65) has the following concise form: 
 

 

,

0
( , )

0

( ) ( ) ( , ) ( )

( )

0

0

j

j

ij x

ij ijkh kh ijkh kh

ij i x

i u

ij j t

in

L w L u in

w w in

w on

n on

ε χ ε
ε

 Σ = Ω

 ′Σ = ℜ + ℜ Ω

 = Ω


= Γ
Σ = Γ

%
& & &% %% % %

&% &

%

 (96) 

 
 4.2. Micro-Scale  Sensitivity Problem 
 
 Since the displacement iu  and the characteristic functions kh

iℜ  are known prior to the sensitivity 

analysis (from  (35) and (37)), the solution of the boundary value problem (96) is function of kh
iχ , 

which can be calculated from the following micro-scale sensitivity problem: 
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,

( , ) ( , )

0

( ) ( ) ( )

0

0

j

n n

mn
i

kh
ij y

kh kh kh
ij ijmn m y ijmn km hn m y

mn
i

kh
ij j

kh
ij j

is y periodic

q in

q L y L y in

on

q n on

q n is y antiperiodic

χ

χ δ δ

χ γ

γ

Θ

Θ

 −
 = Θ
 ′= + + ℜ Θ
   = 
  = 
 −

  
 (97) 

 
where kh

ijq  is the sensitivity of the stress concentration factors kh
ijs  

 

 
kh
ijkh

ij

s
q

P

∂
=

∂
 (98) 

 
The sensitivity ( )ij wε&  of the local strain rate field is given by: 

 
 ( ) ( ) ( ) ( ) ( )ij ij

ij mn mn mn mnw y w y uε ε ε= ℑ +℘& && % %  (99) 

 
The stress rate sensitivity in  Θ is given as  
 

 ( ) ( ) ( ) ( ) ( )rs rs rs
ij ijrs mn mn ijrs mn ijrs mn mnL y w L y L y uε ε′ Σ = ℑ + ℑ + ℘ 

& && % %  (100) 

 

 
4.3. The weak and discrete forms of the sensitivity problem 
 
The weak formulation of the macro-scale sensitivity problem (96) is given as: 
 

 

 30 1

 31

  ( )   :                            

( ) ( ) 0;    ( )             

i

ij ij i

find w H such that

w d Hε ϕ ϕ
Ω


 ∈ Ω  





 Σ Ω = ∀ ∈ Ω  

∫ %

 (101) 

 
The discretization of (101) yields the following system of nonlinear equations: 
 
 int- 0ext

A A AR F F= =  (102) 
 
where AR  is the residual vector, and 
 

 int   ;            0ext
A kh khA AF B d FΩ

Ω

= Σ Ω =∫ %  (103) 
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The nodal components of the displacement sensitivity 0
AW  ( )0 0

i iA Aw N WΩ=  are obtained using 

Newton method  
 

 ( ) ( )1 0 0 0k k
A A AW W W+ = + ∆  (104) 

 

 ( ) ( ) ( )0 0k k k
AB B A AB BK W R K d′∆ = − ∆% %  (105) 

 
where ABK%  is the macro stiffness matrix for the direct problem (47) and ABK ′% the coupling term given 
by: 
 
 AB mnA mnkh khBK B L B dΩ Ω

Ω

′ ′= Ω∫% %  (106) 

 
Note that ijkhL′%  is  a  function of i rsχ , which is the solution of the following weak formulation on the 

microscale: 
 

 

31

31
, , , , ,

( ( ) :

 ;     ( )

rs
i

rs rs
i j ijkh k h i j ijkh k h ijrs i j i

Find H such that

L d L d L d H

χ

χ ϕ ϕ ϕ ϕ
Θ Θ Θ


 ∈ Θ  





′ ′  Θ = − ℜ Θ − Θ ∀ ∈ Θ  

∫ ∫ ∫

                                                                      

 (107) 

 
Further discretizing rs mn

i iA ANχ Θ= ℵ , the discrete form of (107) yields: 

 

 ( ) ( ) ( )rs rs
khA khrs khB B khA khrs rsB B khrs khAB L y B d B L y B d L y B dΘ Θ Θ Θ Θ

Θ Θ Θ

   
′ ′Θ ℵ = − Θ − Θ   

   
∫ ∫ ∫D  (108) 

 
where mn

Aℵ  are the nodal components of the characteristic functions on Θ; Note that the same 
stiffness  matrix is used to solve for  the micro-scale  direct and sensitivity problems.  Procedures for 
integrating the stress sensitivities are outlined in Section 4.4. 
 
 
4.4 Stress sensitivity update procedure 
 
 We start from the rate of stress sensitivity  given by 
 

 ( ) ( )( ) - ( ) ( ) - ( )  p pL w w L u uρ ρ ρ ρ ρ ρ ρε ε ε ε′Σ = +& & & & &  (109) 

 
where Lρ′  is the sensitivity of elastic stiffness matrix, which is equal to zero if the sensitivity  is not 

with respect to one of the elastic constants. 
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The sensitivity  of the plastic strain rate, ( )p wρε& , is given as follows: 

 

 
( )

( ) ( ) ( ) ;                 p w w u ρ
ρ ρ ρ ρ ρ ρ

ρ

ψ
ε λ λ

σ

∂ Σ
′ ′= Ν + Ν Ν =

∂
& &&  (110) 

 
where ( )wρλ  is the sensitivity of the plastic flow parameter. ψ ρ (Σ)  is the sensitivity of the Von  

Mises yield function at a Gauss point given as 
 

 
2 ˆˆ( ) 0
3

Pρ ρ ρ ρ ρψ σ σΤΣ = Σ − Σ =  (111) 

 
ˆ

ρΣ  is the sensitivity of the yield stress σ ρ : 

 

 ( )2ˆ ˆˆ ˆ( ) ( ) ( )
3

w u uρ ρ ρ ρ ρ ρ ρλ σ λ σ λ′Σ =  Η +  Η +  Η Σ& & & &  (112) 

 
which after the backward Euler integration gives 
 

 ( ) ( )1( 1) ( ) ( 1) ( 1)2ˆ ˆ ˆ ˆ( ) ( ) ( ) 
3

k k k kI u w wρ ρ ρ ρ ρ ρ ρλ λ σ λ σ
−+ + + ′Σ = + ∆ Η Σ + ∆ Η + ∆ Η  

 (113) 

 
where ′Η  is equal to 1 if the sensitivity parameter is the hardening parameter and zero otherwise. 
Substituting eqs. (39), (51), (99) and (110) into (109) yields 
 

 ( ) ( )( ) ( ) ( ) ( ) ( ) - ( )   L w u w P u P L u u Pρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρε ε λ σ λ ε λ σ′Σ = ℑ +℘ − − Σ + ℑ& & && & && % % %  (114) 

 
Assuming that ℘ ℘(k+1) (k)=  and applying the backward Euler scheme to (114)  yields 
 

 ( ) 1( 1) ( )k trialI u L Pρ ρ ρ ρλ
−+ Σ = + ∆ Σ  (115) 

 
where trial

ρΣ  is the trial stress sensitivity given at increment (k+1) by: 

 

( ) ( )( ) ( ) ( ) ( ) ( 1)( ) ( ) ( ) ( )trial k k k k kL w L L u P L u L wρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρε ε σ λ λ+′ ′Σ = Σ + ℑ ∆ + ℑ + ℘ ∆ − ∆ + ∆% %  

(116) 
 
 The sensitivity ( )wρλ∆  of the plastic parameter increment is obtained from the Newton method: 

 

 ( )

1

( 1) ( )

( )
( ) ( )

( )
k

k k

w
w w

w ρ

ρ
ρ ρ λ

ρ

ψ
λ λ ψ

λ

−

+
∆

 ∂
∆ = ∆ −   ∂∆ 

 (117) 

 
where  
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 ( )( ) ( )
1 11( 1) ( 1) ( 1) 24

ˆ( ) ( )
( ) 9

k k kP L P u P u
w

ρ
ρ ρ ρ ρ ρ ρ

ρ

ψ
σ λ σ λ σ

λ

− −−+ Τ + +∂
= − + ∆ − Ι + ∆ Η Η

∂∆
 (118) 

 
 
 5. Numerical examples 
 
 In this section we investigate the accuracy and computational efficiency of the proposed 
multiscale analytical sensitivity analysis. For simplicity, we consider a composite specimen subjected 
to uniform tension load. The state of uniform macro-stress  is modeled using a single eight-node 
hexahedral element as shown in Fig. 2.a. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure. 2. Unidirectional periodic composite: (a) macro domain Ω, (b) RVE domain Θ. 

 
 Two RVE models have been considered. The first, with isotropic linear elastic micro-constituents. 
The Multiscale Analytical Sensitivity Analysis (MASA) is performed with respect to the Young’s 
modulus, E, and Poisson ratio, ν. In the second numerical example, we consider an elastic 
reinforcement embedded in the elasto-plastic matrix. The sensitivity analysis is performed with 
respect to the hardening parameter, H. In both cases, the sensitivity results obtained by the MASA 
approach are compared to those obtained  using CFD method. 
 
 
5.1. Linear elastic composite 
 
 The properties of the elastic composite  considered are as follows: 
 
 Matrix (1): Young’s Modulus E1 = 105 Mpa, Poisson Ratio ν1 = 0.25. 
 Fiber (2): Young’s Modulus E2 = 2.105 Mpa, Poisson Ratio ν2 = 0.20. 
 

Y1 

Y2 
γ 

Θ 

F/4 

F/4 

F/4 

F/4 

Macro-scale 
Gauss point 

Ã Â 

Æ Ç 

Ä Å 

À 
Á 

(a) 

(b) 

Ω 

[γ = (Y1 ∩ Y2)] 

∗
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 In the following we denote pL L pα
α= ∂ ∂% %  and pw u pα

α= ∂ ∂ . Tables 1A, 2A, 3A, 4A, give the 

sensitivity of the macro-constitutive tensor components, 1111L% , 3333L% , L%1212  and 2323L% , with respect to 

the elastic parameters E1, ν1, E2, ν2, respectively. The sensitivities obtained by the MASA approach 
are compared to those computed using  CFD method for 21.a ap e pδ −= × . The x-component 

1 2 1( )w w w=  and the z-component 3w  of the displacement sensitivity  at node Ç are shown in tables 

1B, 2B, 3B, 4B, respectively. 
 
 
Table 1A     Table 1B    
Sensitivity of macro constitutive tensor components               Sensitivity of the displacement field with respect to E1  
with respect to E1      
         
 MASA CFD   MASA CFD 

1E
1111L%  (e-1) 6.091605 6.091500  1E

1w  (e-9) 4.753287 4.755000 

1E
3333L%  1.038295 1.038350  1E

3w (e-8) -4.777277 -4.77600 

1E
1212L% (e-1) 3.602927 3.602950     

1E
2323L% (e-1) 2.083333 2.083350     

 
 
Table 2A     Table 2B   
Sensitivity of macro constitutive tensor components               Sensitivity of the displacement field with respect to E2  
with respect to E2      

        
 MASA CFD   MASA CFD 

2E
1111L% (e-1) 5.537794 5.538000  2E

1w (e-9) 5.070172 5.065000 

2E
3333L% (e-1) 2.403461 2.403500  2E

3w (e-8) -1.337427 -1.338000 

2E
1212L% (e-2) 9.382623 9.383000     

2E
2323L% (e-1) 2.000000 2.000000     

 
 
Table 3A     Table 3B   
Sensitivity of macro constitutive tensor components               Sensitivity of the displacement field with respect to ν1  
with respect to ν1     
 

 MASA CFD   MASA CFD 
1

1111Lν% (e+4) 1.019670 1.020000  1
1wν (e-3) -3.395203 -3.400000 

1
3333Lν% (e+4) 1.297869 1.295000  1

3wν (e-3) -1.317338 -1.300000 

1
1212Lν% (e+3) -3.002439 -3.00000     

1
2323Lν% (e+3) -1.736111 -1.73500     

 
 
Table 4A     Table 4B   
Sensitivity of macro constitutive tensor components               Sensitivity of the displacement field with respect to ν2  
with respect to ν2     
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 MASA CFD   MASA CFD 
2

1111Lν% (e+4) 1.432844 1.43500  2
1wν (e-3) -3.186963 -3.185000 

2
3333Lν% (e+3) 8.972921 8.95000  2

3wν (e-4) 6.179274 6.200000 

2
1212Lν% (e+3) -1.501220 -1.50000     

2
2323Lν% (e+3) -3.20000 -3.20000     

 
 
In terms of accuracy, the sensitivities obtained by the MASA approach agree well with those 
computed using CFD approach (0 to 0.4% difference). In terms of computational efficiency, CFD 
approximation requires two to three factorizations of the elastic macro-stiffness K%  and micro-
stiffness K Θ  for each design parameter totaling  16 to 24 factorizations. Using MASA approach, on 
the other hand, the same sensitivities can be obtained by performing 2 factorizations only.  
 
 
5.2. Nonlinear elastoplasticity problems. 
 
The properties of micro-phases considered are as follows: 
 
 Matrix: Young’s Modulus E1 = 103 Gpa, Poisson Ratio ν1 = 0.3, yield stress 24 Mpamσ = , 

isotropic hardening modulus H = 2.102 Gpa. 
 Fiber: Young’s Modulus E2 = 8.103 Gpa, Poisson Ratio ν2 = 0.2. 
 
 
The sensitivity analysis is performed with respect to plastic hardening parameter H. Figures 3 and 4 
show the evolution of displacement sensitivities, 1w  and 3w ,  versus the load parameter, 

respectively. Results of MASA approach are compared to those of CFD approach for two different 
values of design parameter step size, δH = 10-2 H and δH = 10-5H. 
 

 x - component  o f  the  d i sp lacement  sens i t iv i ty
  w i th  respec t  to  harden ing  parameter  (1 . e -5 )
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Figure. 3. Evolution of x-component of the displacement sensitivity versus load parameter for 
1

5

H

E
=  
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 z -component of the displacement sensitivity
  with respect to hardening parameter(1.e-5)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0 0.2 0.4 0.6 0.8 1 1.2

Loading parameter

(CFD) - 2.

(MASA)

(CFD) - 0.002

 
 

Figure. 4. Evolution of z-component of the displacement sensitivity versus load parameter for 
1

5

H

E
=  

 
It can be seen that the sensitivity results obtained by the CFD approximation with the step size, δH = 
2., is in  good agreement with the MASA approach (0 to 1% relative error). On the other hand, for 
the value of step size, δH = 0.002, the CFD gives inaccurate resolution of sensitivities.  In Figures 4 

and 5 we considered the Hardening parameter to Young modulus ratio of  
1

5

H

E
= . We further study 

the sensitivities for the Hardening parameter to Young modulus ratio of 
1

50

H

E
= . The results 

presented in Figures 5 and 6 show that the optimal value of the step size selected in the previous case 
results in oscillatory response of the sensitivities. This suggests that the optimal value of the step size  
in CFD approximation is problem dependent. 
 
 
 

x- component of the displacement sensitivity
with respect to hardening parameter (1.e-5)

-0.5

0

0.5
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Figure. 5. Evolution of the x-component of the displacement sensitivity (H = 2.101 Gpa) versus load parameter  
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x -component of the displacement sensitivity
with respect to hardening parameter (1.e-5)
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Figure. 6. Evolution of the z-component of the displacement sensitivity (H = 2.101 Gpa) versus load parameter  
 

 
6. Summary and future research directions 
 
 Multiscale analytical sensitivity analysis approach has been developed for inelastic periodic 
composites.  Comparison of the Multiple Scale Sensitivity Analysis to the central finite difference 
approximation revealed its advantage in terms of accuracy and computation efficiency.  We 
demonstrated that the CFD approximation is highly sensitive to the choice of the step size, whose 
optimal value is problem dependent.  
 
Despite its significant  advantage over the CFD approach, the proposed MASA approach  requires 
significant computational resources for large scale macro-problems with detailed Representative 
Volume Elements. For nonlinear history dependent problems the RVE problem has to be solved at 
every increment and for each macroscopic Gauss point. To alleviate this difficulty, in the future work 
we consider  multiple scale sensitivity analysis in the context of mathematical homogenization theory 
with eigenstrains [22], [23]. By this approach, the history data is updated only at two or three points 
within a microstructure, i.e., one for each phase. 
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