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Abstract: A space-time multiscale model for wave propagation in heterogeneous media is developed. The
model builds on the authors’ previous work on the higher-order mathematical homogenization theory with
multiple spatial and temporal scales, and is aimed at addressing the issues of stability and mathematical con-
sistency. Starting from the weak forms of homogenized macroscopic equations of motion, terms causing the
solution secularity are identified and enforced to vanish. This condition recovers the missing boundary con-
ditions and gives rise to two secularity constrains imposing the uniform validity of asymptotic expansions.
Finite element semidiscretization in space along with an analytical solution in time are employed to incorpo-
rate the secularity constrains in the leading-order solution and account for the slow time dependence of the
leading solution. Pade approximation is utilized to develop the time stepping schemes on the fast time scale.
The formulation is verified for wave propagation problems in semi-infinite and finite domains.
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1.0 Introduction

This manuscript is partially motivated by the fact that recent experiments conducted on
composite tubes [1] showed a clear tendency toward lower strain energy absorption at
higher crush rates - a surprising phenomenon that cannot be explained by current model-
ing and simulation practices. Impact of structural systems with sizeable microstructure is a
complex multiscale phenomenon in both space and time and yet existing modeling and
simulation tools are phenomenological in nature. In our previous studies we have shown
([2]-[5]) that existence of multiple temporal scales is one of the main causes for lower
strain energy absorption at high strain rates. Classical homogenization-based, nonlocal
and phenomenological models, such as Model 58 in LS-Dyna3D [20], err badly in com-
parison to both the reference solution obtained by modeling the problem on the scale of
heterogeneity and the experimental data [1]. In ([2]-[5]) we have shown that multiple tem-
poral scales give rise to the augmentation of the mass matrix. The added mass term has
been shown ([2]-[5]) to be positive definite and the multiscale formulation in space and
time translates into lower strain energy absorption at high strain rates.

The nonlocal formulation developed in ([2]-[5]) is not without shortcomings: (i) it is
unstable for high frequency excitations, (ii) it gives rise to fourth order differential equa-
tion with insufficient boundary conditions and, (iii) it results in poor predictions of wave
reflections from boundaries. In [6][10] a nonlocal three-field Hamilton variational princi-
ple has been developed to construct a high frequency filter aimed at stabilizing the nonlo-
cal equations of motion. Nevertheless, the computational complexity of the nonlocal
mixed formulation is substantial; the issue of missing boundary conditions has not been
fully resolved; and the problem of wave reflection from the boundaries has not been ade-
quately addressed.




The present manuscript is an extension of the authors’ previous work ([4]-[6]) and is
aimed at circumventing the deficiencies observed in the previous formulation. Starting
from the weak forms of homogenized macroscopic equations of motion ([4]-[6]), we iden-
tify the terms which give rise to the solution secularity and enforce them to vanish. This
condition recovers the missing boundary conditions and gives rise to two secularity con-
strains imposing the uniform validity of asymptotic expansions. The secularity constrains
are closely related to higher order equilibrium equations of Fleck and Hutchinson [7].
Finite element semidiscretization in space along with an analytical solution in slow time
scales and Pade approximation in fast time scale are employed. The formulation is verified
for wave propagation problems in semi-infinite and finite domains.

2.0 Synopsis of the Previous Work

2.1 Higher-order homogenization with multiple space-time scales

We consider the problem of elastodynamics of a heterogeneous solid with periodic
microstructure governed by the following equations

. 1 .

with initial-boundary conditions:

u(x,1=0) = p;(x), i x,1=0) = g,(x),inQ, )

where Q denotes the macroscopic domain of interest with boundary I' = ')\ T,

L,Als = & ; u; is the displacement field, e the small strain tensor, oy the stress ten-

sor, Cyjy; the elasticity tensor and p the mass density. The elasticity tensor and mass den-

sity are assumed to be locally periodic with a period denoted as Y. We assume that micro-
constituents possess homogeneous properties and satisfy equilibrium, constitutive, kine-
matics and compatibility equations as well as jump conditions at the interface between the
micro-phases.

On the premise that the dimension of the heterogeneity / is significantly smaller than the
characteristic size of the macroscopic problem L = A/(2m), with A denoting the wave-
length of the traveling signal, i.e., 0 <//L = € « 1, we introduce the macro- and micro-
coordinate systems x and y, such that

y = x/¢. S

In addition to the multiple spatial scales, the following multiple temporal scales are
introduced [4][5]




ty=1t, 1, =¢gt, t,=¢Tt, (5)
where 7, is the usual time scale, 7, and 7, are the slow time scales.

Using the chain rule, the spatial and temporal derivatives can be expressed as

-1 . 2
()i=)ete (), (=), +e( ), +6( ), ®)
where the superposed dot denotes the full time derivative.

The displacement field is approximated using multiple-scale asymptotic expansion in
the form

0 1 2 2
ui(xayv t) = ui(xvy: t()o t19t2)+8ui(x:y9 t(): tla t2)+8 ui(xvy: t()o t19t2)+ (7)

Substituting equation (7) into the governing equation (1) and identifying terms with
equal power of ¢ yields equilibrium equations at different orders. As a consequence of lin-

earity and periodicity, the general solutions to u’ , u' and u® take the following form
0 0
u;(x,y, 10,1, 15) = u; (x, 14,1, 1) ,
1 1 0
u;(x,y,t0,t,ty) = U (x, 19,1, t)) + Hypy(y)e g (u) ,

2 2 1 0
u; (x,y, 10, t,ty) = U;(x, 19, ), 1)) + Hyy(y)e (U ) + Pijmn(y)(exmn(” )),xj ,  (8)

where e, () = (u, oty xk)/ 2 is the macroscopic symmetric gradient of u ; H and P

are Y -periodic third- and fourth-rank tensors, respectively, which can be determined by
solving the following unit cell boundary value problems (see for example [2]-[6]):

0 0

Cijmn,yj =0, Cijmn(y) = Cijkl(lemn+ SmkSnl)’ )

1

0 0 1
Cijpmn,yj = 6(y)Dipmn -C

ipmn(y) > Cijpmn(y) = Cijpkamn + Cijleklpmn > (10)

where

1
lemn(y) = E(Hkmn,y,"-Hlmn,yk) = H(k,yl)mn >

1
Bkljmn(y) = E(ijmn,yl + Pljmn,yk) = P(k, y)jmn > (11)

0) = P()/Py. Po = (P)+ Dipn = (Cirn@). (12)




and

(- )y=mMm"[ -ar, (13)
Y

is the averaging operator. H and P are normalized as

Finite element method is utilized for the discretization of H and P, which yields a set
of linear algebraic systems with 6 right-hand-side vectors for H and 18 right-hand-side
vectors for P (3 and 6 right-hand-side vectors, respectively, for the 2D case) [8].

For simplicity, attention is restricted to the constant mass density, in which case the

macroscopic equations of motion up to 0(82) are given as ([2]-[6])

0 0 0

poui,totO_Dijmn(exmn(u )),X, =0, (15)

1 0 1 1 0 0
pOUi,toto_Dijmn(exmn(U ))»Xj = Dijkmn(exmn(u )),xkx,-_ZPoui,zozl > (16)

2 0 2 2 0
pOUi,toto_Dijmn(exmn(U )),Xj = Dijprmn(exmn(u )),X,xpxj-l_
1 1 1 0 0
Dijrmn(exmn(U )),erj_ 2pOUi,totl - 2pOui,tOtz_ pOMi,tlt1 ’ 17
with initial and boundary conditions
ICs: uio(xa 07 07 0) = pi(x) > l’.t?(xa O> O> 0) = gi(x) ’ (18)
Ul(x,0,0,0) = 0, Ui(x,0,0,0)=0, (s=1,2), (19)
0 — 0 0 T
BCs: u; = u; onl; [Dijklexkl(u )]nj = h; onl_, (20)
0
Up =0, onl; [Dye(U)n; =0 onTy (s = 1,2), @1)
where
[ 0 0
Dijklm - <Cijklm(y)> - <Ckrinrlm_Ckrlerij> ’ 22)
2 —
Dijklmn - Rijklmn+Sijklmn’ (23)
0

Rijklmn = <BstlmncstabBabkij> - <Hsistkerrmn> 4 Sijklmn = <Hainals>Dskmn' 24)




For symmetry properties of the macroscopic constitutive tensors, we refer to references
[9], [11] and [6].

2.2 Nonlocal dispersive models

By introducing the averaged displacement

Ux,1) = (u(x,y,0)) = 1} +eU} +& U + ..., (25)

and multiplying equations (16) and (17) by € and g’ , respectively, then adding the result-
ing equations to the leading-order equation (15) yields

. 0 1 2.2
pOUi_Dijmn(exmn(U))vxj_ gDijkmn(exmn(U)),xkxj —& Dijprmn(exmn(U)),x'xpxj = 0,0

where terms of 0(83) and higher are neglected and the relation between the full time
derivative and partial derivatives with respect to different time scales is exploited. Equa-
tion (26) gives rise to the imaginary wave speed for higher wave numbers. This phenome-
non is subsequently referred to as solution instability.

In absence of the polarization effect [11] (D1 = 0) and neglecting R in D’ , equation
(26) can be transformed into the so-called “good” Boussinesq equation [5]

. 0 0 .
pOUi_Dijkl(exkl(U)),xj_pOEijklUl,xkxj =0, (27)
where
0 2
Eij = € (HyiH,pp - (28)

Equation (27) is stable for any wave number and requires only c’ continuity. However,
since the sixth order tensor R has been neglected, the formulation is only valid for micro-
structures with negligible value of R . For problems where the magnitude of R is compa-

rable to that of § in D* , the model has been found to be inaccurate [6][10].

Beginning with equation (26) and neglecting the polarization effect (D1 = 0), Nagai et
al. [6][10] developed a stabilized nonlocal model based on the three-field mixed varia-
tional formulation with assumed nonlocal stresses and strains. The model has been vali-
dated for plane harmonic analysis and for transient wave propagation in semi-infinite
domain with different microstructures. Nevertheless, the issues of missing boundary con-
ditions and wave reflection has not been fully addressed.

3.0 Reformulation of Macroscopic Equations




The nonlocal model (26) has been constructed to eliminate the slow time scales from the
macroscopic equations of motion. And yet, in the process of substituting three higher
order macroscopic equilibrium equations by a single nonlocal ideation an indispensable
information has been lost giving rise to aforementioned shortcoming of the nonlocal
model.

In the present manuscript, an alternative approach is pursued. We begin from the
homogenized macroscopic equations of motion (15)-(17) without combining them into a
single (nonlocal) equation of motion. From the weak form of the macroscopic equations
the terms causing solution secularity are enforced to vanish giving rise to the governing
equations of motion subjected to the secularity constrains. The weak form for the leading

term, uo, is subsequently formulated. Finite element semidiscretization in space along
with an analytical solution in slow time scales and Pade approximation in fast time scale
are employed.

3.1 The Weak Form of macroscopic equations

The Weak Form of the macroscopic equations of motion (15)-(17) is given as follows:

For ¢ € (0, T], find u) (x, ty, t1, ,) € H(Q) and Ul(x, ty, t,,1,) € H(Q), (s = 1,2)

which satisfy boundary conditions (20) and (21), such that Vw,(x) H?)(Q)

0 0 0

[ Powitti 1, dQ = WDy (€ (7)) dQ = 0, (29)
Q Q

1 0 1
J-powiUi,totOdQ - J.WiDijmn(exmn(U )),deQ
Q Q

1 0 0
= _[WiDijkmn(exmn(u ))’xkxde a 2p0_[wiui,lotldQ > (30)

Q Q

2 0 2 2 0
J.powiUi,totOdQ - J-WiDijmn(exmn(U )),X,dQ = J.WiDijprmn(exmn(u )),x,xpxde +
Q Q Q
1 1 1 0 0
IwiDijrmn(exmn(U ) 0, A2 - piji(ZUi,tot, + 20U g, U gy )AL G
Q Q

with
0 .0
ui(x, 07 07 0) = pi(x)’ ui(x’ O’ O’ O) = gi(x)’

Ul(x,0,0,0) = 0, Uj(x,0,0,0) =0, (s = 1,2), (32)




where HZ(Q) is the Sobolev space defined as

HZ(Q) = {v =v(x),x € Qv,v v . € LZ(Q)} , (33)

with Lz(Q) denoting the set of square-integrable functions over Q, and
Hy(Q) = {w(x) e H(Q)|w(x)=0 onT,.ow/n = 0onT_} (34)

where n is the direction of the unit outward normal to I". Integrating equations (29), (30)
and (31) by parts yields

0 0 0 -
[ Powitti 1, AR+ [ € i W)Dy€ (0 )AQ = [ whidlS, (35)
Q Q r

(o2

1 0 1 1 0
IpowiUi,toton + jexij(w)Dijmnexmn(U )dQ = J‘wiDijkmn(exmn(u )),ande -

Q Q r
1 0 0
J-exij(w)Dijkmn(exmn(u )),Xde - poJ-wiui,tOtldQ > (36)
Q Q
2 0 2 2 0
J‘pOWiUi,tolon + Jexij(w)Dijmnexmn(U )dQ = _[WiDijprmn(exmn(u ))sxrxpnde
Q Q r

2 0 1 1
- J.exij(w)Dijprmn(exmn(u )),X,npdS + .[WiDijrmn(exmn(U )),Xrnde
r r

2 0 1 1
+ v[(exij(w)),xpl)ijprmn(exmn(u ))J,dQ - Iexij(w)Dijrmn(exmn(U )),X,dQ

Q Q
1 0 0
—po [ WiRUy + 2y, 1y, )AQ, (37)
Q
where
s 1 T
e(w)=Vw-= E[wa+(wa) 1, (38)

is the symmetric gradient of w .

3.2 Elimination of secularity




The right-hand-side of equation (36) contains solution to the associated homogeneous
equations of motion, which give rise to secularity. In order to eliminate the secularity we
enforce

1 0
J-wiDijkmn(exmn(u ) ndS =0, (39)
r
1 0 0
J [e4ii (WD ijkmn(€xmn(@ ) x, + 209wty , 142 = 0. (40)

Q
With the vanishing forcing terms and quiescent initial conditions, it follows that U '=o.
Likewise, the terms giving rise to the secularity in equation (37) are enforced to vanish

2 0 2 0
(WD rmn(€ o) 1idS = 0, [ (WD (€ (7)) 2 1,dS = 0, (41)
r r

2 0 0 0
| (€0 ))., Dijprmn(€xmn()) 1,42 = P [wi@u,, +u;,,)dQ = 0. (42)
Q Q

and in combination with quiescent initial conditions we get U™ =0.

Equations (39) and (41) must be satisfied for any admissible function w, so that we have
the following natural boundary conditions

7 I 0 _ 2 0
bi = Dijemn(€xmn @) 5, = 0 € = Dy (€ (7)) ety = 0 on Iy (43)

7 2

0
Ty = Dljprmn(exmn(u ))Jrnp =0onl. (44)

From equations (35), (40) and (42)-(44), the Strong Form for the leading term, uO, can
now be reformulated as follows:

0 0 0
poui,toto - Dijmn(exmn(u )),X, =0, (45)
with secularity constrains:
D, 0 201y, =0
l]kmn(exmn(u ))’xkxj_ poui’totl - > (46)
2 0 0 0
Dijprmn(exmn(u )),x,.xpxj - pO(zui,zotz + uiaﬁh) =0, 47)

and initial-boundary conditions:

0 .0
Mi (xa Oa Oa 0) = pi(x)’ ui (xa 07 07 0) = gi(x)v (48)




0o _ _ 0 0 -
wp =u; onl', . [Dyye (u)ln; =h; onlg (49)
bi=0, ¢;=0onl_; T;; =0onT. (50)

Remark 1: The secularity constrains (46)(47) and the boundary conditions (50) are closely
related to the higher order stress equilibrium and surface traction equations [7].

3.3 Finite element semidiscretization in space

The Weak Form of equation (45) with secularity constrains (46) and (47) is given as fol-
lows:

For t € (0, T], find u?(x, tpt ty) € Hz(Q), which satisfies u? = u; on I', and

[nglexkl(uo)]nj = h; on I, . such that Vw;(x) HS(Q)

0
ijmn

0
Q Q

(€omn(1)) ,dQ = 0, 5D

subjected to the Weak Form of the secularity constrains

1 0 0
IWiDijkmn(exmn(u )),kade - 2p0_[wiui,t0tldQ =0, (52)
Q Q
2 0 0 0
_[WiDijprmn(exmn(u )),X,prx_,dQ - piji(zui,totz + ui,tltl)dQ =0. (53)
Q Q

Integrating equations (51)-(53) by parts and utilizing boundary conditions (50) yields

0 0 0 -
[ Powitti 1, AR+ [ € i (W)Dy€ (@ )AQ = [ whidlS, (54)
9 o) T,
1 0 0
jexij(w)D,.jkmn(exmn(u )1, dQ+2p, j witty,  dQ = 0, (55)
Q Q
[ ez, D} mn (@), dQ = po [ w20}, , + 17, )dQ = 0 (56)
xij X, ijprmni=xmn Xy Po i ity i :
Q Q

Employing the C ! continuous finite element semi-discretization yields the semi-discrete
equations of motion

Md,, +Kd = F(1). 57)

t

subjected to the semi-discrete secularity constrains




2
Kd+2eMd,, =0, Kd-c'QMd, +Md, )=0, (58)

t

and initial conditions
d(0,0,0) = d,, d(0,0,0) = v, (59)

where d is the global displacement vector; M and K are the global mass and stiffness
matrices, respectively; F(7) is the external force vector; K, and K, are the global polar-
ization and dispersion stiffness matrices, respectively, given as:

Ne Ne
T T 0
M = {Myp; = A J‘poN,’ANiEdQe’ K = {Kyg) = A _[BijADijmannEdQe»
_1Q _.Q
e=1" e=1""¢
Se Ne
T_ T 1 ~
F(ty= 4 [Nhas,, K,={Kig}, = A [Bia(eDijim)Bunked?, ,
e = ]F; e = IQe
Ne
~T 2 2s ~
K,={K:t, = A IBAkij(S Dijkimn) B gmn1d€2, . (60)
Q

e=1""¢

The capital subscripts denote degrees-of-freedom; the lower case subscripts stand for

spatial dimensions ranging from 1 to 3 in 3D (or 1 to 2 in 2D). N, B and B are element
shape functions, strain-displacement, and strain gradient-displacement matrices, respec-
tively, defined as

0 1 ~ 1
u;(x) = Nyydy . By, = E(NkA,lJrNZA,k)’ Brima = E(NkA,lm'l'NlA,km)' (61)

2
Remark 2: The homogenized tensors eD' and ¢’D” can be directly calculated from the
known geometry and micromechanical material properties in the unit cell, independently
of the value of ¢.

4.0 Time Integration

The semi-discrete governing equations (57)-(59) can be integrated numerically, but would
require three-dimensional solution in #,,,, #, , which would significantly entail the overall

computational cost. Instead, we construct an analytical solution for slow time scales

10



(ty, t,) and utilize Pade approximation to develop time stepping schemes on the fast time

scale.

4.1 Analytical solution for the slow time scales

d
z = d,

Define

then equations (57) and (58) can be expressed as a first-order differential equation

z,l‘o = Az +f(t) ]
with secularity constrains
2
sz + .~3Gz’t1 =0, de,to -€ G(2z’tot2 + z,fm) =0,

and initial conditions

where

0 0
0 I 00
A = L . B, = : Bd:KO,
M K0 5K, 0 d

0
G=|:0 0}, f(t)={ -1 }
oM M F(1)

Taking the Laplace transform of equation (63) with respect to #,, yields

sz(s, Iy, 12) - C(tl, tz) = AzZ(s, 1, lz) +f(s) >
where s is the transform (complex) variable and
C(0,0) = C,.

From equation (67) we have

(62)

(63)

(64)

(65)

(66)

(67)

(68)

11



2(s,t, 1) = (sI-A) ' C(ty, 1,) + (sT-A) ' f(s) . (69)

Taking the inverse Laplace transform of the above equation yields

Iy
At
211 15) = € 'Cliy, 1) + [ e

0

A(l‘)_}”)f(mdk , (70)

where the convolution theorem has been used for the last term.

Remark 3: The integral term in equation (70) is due to the particular solution to the lead-
ing order equations of motion (63). The particular solution does not generate secularity in
the first and second order equations of motion and therefore it is convenient to remove it
from the consideration of secularity constrains.

Substituting the first term in equation (70) into the secularity constrains (64) and making
use of (63) yields

B¢ "Cl1,,1,) +5Ge™"C, = 0, 1)

1

B "C(1). 1))~ 26°GA""C, G "C,, +Bf(1) = 0 . 72)

1
From equation (66) it is a trivial exercise to show that the following relations hold:

B f(t) =0, B,f(1) = 0. (73)
The solution to equations (71) and (72) can be sought in the following form

At Aty+H t,/¢+H,t,/&
¢ 'Ct,ty) =¢ ' G, (74)

where H| and H, are two matrices yet to be determined. The initial conditions are satis-

fied automatically.

Substituting equations (74) and (73) into (71) and (72), and accounting for the relations

Aty Aty Aty Aty Aty At .
e C, =( Cy,e C, =(e C) and e C,. = (e C)y, ,ylelds

Atg+H,1,/¢+Hyt1,/ €
(B,+GH,)e C,=0,

2 Atg+Ht,/e+Hyt,/€
(B,A —-2GAH, - GH))e C,=0. (75)

12



The above equations have to be satisfied for any vector of initial conditions C, and non-
) . Atg+H /e +Hyt,/€ . )
singular matrix e . Therefore, it follows from equation (75):

2
B,+GH, =0,  B,A-2GAH,-GH; = 0. (76)

From the above equations, we can solve for H| and H, as

H, - _10 K'K,/2 m - _10 K 'K,;,/2 | )
-M'K,;2 0 M 'K,/2 0
where
K, = K;+K KK, . (78)
4P P

Substituting equation (74) into (70) yields

Iy
Aty+H 1,/ +H,t,/¢
2(tp, 1, 1,) = e Cy +.[

0

AP ro0an (79)

Recalling that 7, = ¢, ¢, = et and 7, = szt, we have from equation (79)

t

2(1) = e(A+H)’CO+jeA("“f(X)dx , (80)
0
where
H=H +H,. @1)

Now that the secularity constrains have been satisfied and the solution dependence on
the slow time scales has been accounted for in closed form, we proceed with the develop-
ment of the integration scheme for the fast temporal scale (see equation (80)) using Pade
approximation.

4.2 Time integration scheme

4.2.1 Time integration scheme for the unforced case

For clarity of the presentation we first consider the force-free case, f(#) = 0, in which
case equation (80) reduces to

13



e(A + H)t

z(t) = C,. (82)

from which it follows

A+H
e(A+H)Ate( +H)t _ e(A+H)At

zZ(t+ At) = C, z(1) . (83)

so that the value of the solution at the current time step is related to that of the previous
step by

A+ H)At
_ 0 ) z

Zp+1 = € n-: (84)
The exponential function ¢ can be approximated using the Pade approximation:
-1
M~ (I+bAt+ b, A+ b A" (I+aAt+
22 m. m
aA"t" +...+a,At") =P, . (85)
Most widely used are the following three variants:
t 7,
 (r=2ar 22 (14 1a)
P12_(1_3At+6‘4t I+3At ,
(1= tare 22 (1 dare La2)
Py, = (I—zAH 12A t I+2At+ 12A t]. (86)

All three schemes are unconditionally stable [12][13]. Only the P, scheme is sequen-

tial, in the sense that solution for displacement, velocity and acceleration vectors is uncou-
pled.

(A + H)At

Using the P, Pade approximation for e , we have from equation (84)

At At
[1 -G+ H)Jzn o= [1 +S(A+ H)Jzn . 87)
Substituting expressions for A and H from equations (66), (77) and (81) into (87) yields

d

n+1

At -1 At -1
__2_(1_1( K)v,,, = dn*‘j(I_K K))v, ,

14



Aty 1 Aty 1
where v = d is the velocity vector and
1

From equation (88), we can solve for the displacement and velocity vectors indepen-
dently:

At2~ . At2~ . ~
(K+ TKM K)dn+1 =( _TKM K)dn+AtKvn ,

At 12
where
K=K-K,. ©1)

Remark 4: For the special case of non-polarized and non-dispersive medium, K, = 0,

K, =0,and K reduces to K. The first equation in (90) reduces to

(k+5Ma,,, = 5Md,-Kd, + ~m, . ©2)
At At
from which we have
-1 4 4
M Kd,+d,, ) = —Z(dn—dn+1)+A—vn. (93)
At t

Rewriting equation (92) using the force-free equations of motion at 7, , and substituting

equation (93) into the reduced equation (90), we have

4 4 4
(K+ —ZM)dn+l = -—szn+Z—tMVn+Man ,
At At
_ 2
Viv1 = A_t(dn+1_dn)_vn' (94)

Equation (94) is the standard Newmark scheme with B = 1/4 and y = 1/2 known as
the trapezoidal rule [14].

4.2.2 Time integration scheme for the forced case

15



The forcing function f(¢) is approximated as a set of piecewise linear segments [15]. In
each interval (z, ¢ + At), we let f(¢) be represented by

A .
f(k)~fn+A—t(fn+l—fn) , in 0<A<LAYL, 95)
where f, and f, ,, are the external force values at time 7, and 7, , | = 1, + At, respec-
tively.

Based on the approximation of the forcing function (95), we can evaluate the following
integration as:

At

A(At=) AAt -1 -1 AA 21
[0 = VAT AT (YDA =S 09
0

Inserting the P, Pade approximation for A into equation (96) and pre-multiplying
through by (I — AtA/2) yields

At

At A(Ar=2) _ At
(1- ZA)je o0 = SHf, 41, ©7)
0

From equation (80), we have

At

Co"‘j
0

A+ H)At A(Ar-)
JA+H) Al

2(A?) = FOdn | 98)

After z(At) is evaluated, it becomes the initial value for evaluating z(2A¢) . Therefore,
we have the relation between the values of two consecutive time steps:

At
2,01 = ¢ TN 4 [ P00 an (99)

0

Pre-multiplying equation (99) by (I — AtA /2) and making use of (97) yields

At At A+H)A At
( ——2—A)Zn+1 = (I—"2—A)€( +H) tzn+—2—(fn+fn+l) . (100)

(A + H)A

Using the P, Pade approximation for e " in equation (100) and pre-multiplying

the resulting equation by [I — (A + H)At/2] yields
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[I—%—I(A +H)J(I—%—IA)zn+l - %—Z[I— %’(A +H)}(fn Af )+

[1— Al g +H)J(I— 2y )[1— A7 4 +H)} 1[1+ A% 4 +H)}z | (101)
2 2 2 2 "

If equation (101) is used directly in the time integration, displacement and velocity vec-
tors cannot be evaluated separately and they can only be solved in the coupled vector z,
with the degrees of freedom twice of the original finite element equations of motion. A
more efficient implementation is as follows:

Equation (101) can be written as two equations

[I—%I(A +H)an+1 = A{[I—%’(A +H)}(fn +foi )+

A (1= 3A) 1= S ] e
[1 2(A+H)}1 3 [1 2(A+H)J [1+2(A+H)]zn,
At
(I_EA)Zn+1 =w,, . (102)
Let
{qn+l}
W= . (103)
rn+1

Using the expressions for matrices and vector A, H and f(#) in equations (66), (77)
and (81), we can evaluate

b

1z

I_%I(A+H) _ I ) ~AtK K/2
AM 'K /2 1

—1z _

,+%I(A+H) _ I AtK K72 g Ay I1 Atl/?2 ’
_AtM 'K /2 I AMT'K/2 T
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2
A 4, I—%—K_IKM_IK+ O(Ah) %—ZK_IK+ O(AP)
[I—?(A +H)] - :
At 172 At2 1512

2

2k + oA I-=-M'KK K+o(A

2 172, .1
APK'KM\F +F_)/4
At At 1
7[1—7(A+H)}(fn +f,. ) = } S . (104)
AM N (F +F,, )/2

Since the P, Pade approximation is second-order accurate, we can neglect terms of

O(AtS) and higher. Substituting equation (104) into (102) yields

~ ~

2 2 . 2. -
(K+ A_tKM_lK)qn_,_ | = (K+ A_tKM_lK)dn + g|:K— 2K2 + ATZKM_lK:|Vn , (105)

4 4 2
2
At > AV At
Mrn+1 = _3(an+1_K2dn)+(M+TK)vn+?(Fn+Fn+l) > (106)
At2 At
-1 At
Vi1 = M |:(Mrn+1)_3Kdn+lj| ’ (108)
where
K=K-K,, K=K+K,. (109)

The time integration scheme becomes:

e Solve for g, by equation (105) based on displacement and velocity values of the
previous time step;

e Evaluate the vector Mr by equation (106);

n+1

e Solve for the displacement vector d, , | of the current time step by equation (107);
* Evaluate the velocity vector v, , , of the current time step by equation (108);
e Update the displacement and velocity vectors and the integration proceeds to the next

time step.

The algorithm necessitates sequential solution of two systems of linear equations at each
time step rather than solving a coupled system of linear equations with twice as many
degrees-of-freedom.
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5.0 Numerical Examples

We consider wave propagation in two-dimensional semi-infinite and finite domains.
Two microstructures in plane strain setting have been analyzed.

5.1 Semi-infinite domain

The semi-infinite domain and the corresponding two microstructures are illustrated in
Figure 1. The unit cells are composed of two material constituents with Young’s modulus,

Poisson’s ratio and mass density as £, = 60GPa, E, = 1GPa, v; = v, = 0.2 and

P =Py = 103Kg/ m>. In the vertical direction periodic boundary conditions are

assumed. The left edge of the domain is fixed while the right edge is subjected to a distrib-
uted impact load in the horizontal or vertical directions in the form of the Sine-like pulse

4
Pt = {Poa(t—T/Z)[t(t—T)] 0<i<T 110)

0 t>T

where T denotes the pulse duration; P, is the amplitude of the pulse and a is scaled to

a=3x 94/(8T9), so that —-P, < P(t)<P.

} Periodic
A .
h v 1 unit cell

J 240 mm
}4—% P(t)

I{ .lh ! T t
O 2

> h=10mm
h

AHA
=

h
Figure 1: Semi-infinite domain and two microstructures
Both unit cells are discretized with 60 x 60 square-shaped bilinear finite elements to
evaluate the homogenized constitutive tensors. For the checkerboard medium, the macro-
S . . 1 :
domain is discretized using 3 x 72 four-node C* continuous elements. For the reference

solution, the heterogeneous solid is discretized using 12 x 288 ¢ four-node square-
shaped bilinear elements. To evaluate the response obtained by the classical homogeniza-

tion, the macro-domain is discretized using 9 x 216 ¢’ four-node square-shaped bilinear

elements. The same discretization is used for the layered medium.

First, we consider a horizontally applied impact load with relatively long pulse duration
T = 2.1ms. The time history of the horizontal displacement at the point x = 120mm,
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y = h/3 obtained by the classic homogenization, the proposed multiscale approach and
the reference solutions are plotted in Figure 2. It can be observed that for the relatively
long pulse duration, i.e., low wave number for the traveling wave, the two approximation
methods are in good agreement with the reference solution.

Figure 2: Horizontal displacements at x = 120mm,y = h/3 for the horizontal load (the check-
erboard medium)

Next, we consider the cases of relatively short pulse durations. For the checkerboard
medium we consider 7 = 90us and T = 130us for horizontally and vertically applied
impact loading, respectively. For the layered medium we consider 7 = 70us and
T = 210ps for horizontally and vertically applied impact loading, respectively. For the
checkerboard medium, the horizontal displacement for the horizontal loading and the ver-
tical displacement for the vertical loading at the point x = 120mm, y = h/3 are plotted

in Figure 3 and Figure 4, respectively. For the layered medium, the horizontal displace-
ment for the horizontal loading and vertical displacement for the vertical loading at the

point x = 120mm,y = h/2 are plotted in Figure 5 and Figure 6, respectively. It can be

seen that the proposed multiscale model is in good agreement with the reference solution,
whereas the classical homogenization exhibit considerable discrepancies.

5.2 Finite domain

The configuration of the finite domain and the microstructure is illustrated in Figure 7.
The properties of the two material constituents are the same as in the case of semi-infinite
domain. The left edge of the finite domain is fixed while the right edge is subjected to the
distributed impact load in the horizontal direction in the form of the pulse given by equa-
tion (110). Figure 8 shows the horizontal displacements at the center of the domain for the
pulse duration 7 = 130us. It can be observed that the solution obtained by the proposed
method is in good agreement with the response obtained by the reference solution, while
the solution obtained by the classical homogenization exhibits significant deviations.

Figure 3. Horizontal displacements at x = 120mm, y = h/3 for the horizontal load (the
checkerboard medium)

Figure 4. Vertical displacements at x = 120mm, y = h/3 for the vertical load (the checker-
board medium)

Figure 5: Horizontal displacements at x = 120mm, y = h/2 for the horizontal load (the

layered medium)

Figure 6: Vertical displacements at x = 120mm, y = h/2 for the vertical load (the

layered medium)
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Figure 7: Finite domain and the microstructure

Figure 8: Horizontal displacements at the center for the horizontal load.
6.0 Conclusions and future work

A space-time multiscale model for wave propagation in heterogeneous media has been
developed and verified on semi-infinite and finite domains. The model builds on the
authors’ previous work on the higher-order mathematical homogenization theory with
multiple spatial and temporal scales ([4]-[6]), and is aimed at addressing the issues of sta-
bility and mathematical consistency. Starting from the weak forms of homogenized mac-
roscopic equations of motion, terms causing the solution secularity are identified and
enforced to vanish. This condition recovers the missing boundary conditions and gives
rise to two secularity constrains imposing the uniform validity of asymptotic expansions.
Finite element semidiscretization in space along with an analytical solution for slow time
scales and Pade approximation for the fast time scale are employed.

Several issues have not been addressed and will be the main focus of our future investiga-
tion:

1. While the formulation is general, only weakly polarized media has been implemented
and studied. If the polarization effects are significant, the polarization stiffness matrix K »

is asymmetric due to skew-symmetry of D' Accounting for polarization effects would
require consideration of nonsymmetric global stiffness matrices.

2. The governing macroscopic equations of motion (the Strong Form) involve the fourth-
order spatial derivative requiring C ! continuity of the solution in the Weak Form. In the
present manuscript we implemented C' continuous elements in 2D. However, for the gen-
eral 3D cases, C ! elements are extremely difficult to develop, if not impossible. Various

mixed formulations can be used instead, but the overhead compared to the c’ single field
variational formulation is substantial. In our future investigation we will consider applica-
tion of the Continuous/Discontinuous Galerkin (C/DG) approximation developed by
Engel et al. [21].

3. For numerical integration in fast time only implicit scheme has been investigated so far.
For high strain rates applications an explicit scheme will be developed in our future work.
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