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Abstract

A two-level, linear algebraic solver for asymmetric, positive de�nite systems

is developed, using matrices arising from stabilized �nite element formulations

to motivate the approach. Based on the analysis of a representative smoother,

the parent space is divided into oscillatory and smooth subspaces according

to the eigenvectors of the associated normal system. Using an aggregation

technique, a restriction/prolongation operator is constructed, which relies only

on information contained in the matrix. Various numerical examples, on both

structured and unstructured meshes, are performed using the two-level cycle

as the basis for a preconditioner. Results demonstrate the complementarity

between the smoother and the coarse-level correction.

1 Introduction

Stabilized �nite element formulations, commonly used in computational 
uid dynam-

ics (CFD), produce positive de�nite algebraic systems; but, these systems are gener-

ally asymmetric due to the presence of �rst-order derivatives in the model equations.
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Practical �nite element simulations of 
uid 
ow problems often generate enormous

algebraic systems which require very eÆcient solution strategies in order to render

such applications feasible. So there is a clear need for robust, highly eÆcient solvers

for asymmetric, positive de�nite systems. And multilevel techniques, which ideally

achieve linear scaling between computational work and problem size, represent the

elusive grail of linear algebraic solvers.

Since their introduction in the seminal paper by Fedorenko [18] in 1962, the litera-

ture on multilevel methods has exploded. Many early results and the basic theoretical

and computational foundations of the multilevel approach can be found in texts by

Hackbusch [21] and Wesseling [31], and articles by Brandt [6] and St�uben & Trotten-

berg [26]. An outline of a basic multilevel methodology is given in the next section,

where the focus is maintained on the algebraic problem, and algebraic manipulations.

Multilevel methods are based on a two-level kernel, which is used recursively to

achieve the multilevel structure. On the higher level, a so-called \smoother" is applied

to reduce certain components of the error. Then a \restriction" operator is used to

project the approximate solution down to the next lowest level|the \coarse level"

in the two-level paradigm|where additional components of the error are reduced to

complement the smoother. Following this correction on the coarse level, the updated

approximation is injected using a \prolongation" operator back into the higher-level

space where, again, the smoother is applied.

Smoothers are computationally inexpensive and generally pulled o� the shelf, as

it were. Gauss-Seidel, Kaczmarz and variants of SOR methods are commonly used as

smoothers for symmetric, positive de�nite problems. Kettler [23] and Wesseling [30]

demonstrated that incomplete LU (ILU) decompositions are e�ective and robust for a

variety of problems, including those involving asymmetric, positive de�nite systems.

But, what really distinguishes di�erent multilevel approaches is the method used

to generate the coarse-level matrix and the nature of restriction and prolongation

operators, which combine to specify the transfer between di�erent levels.
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Multilevel methods are classi�ed as either \geometric" or \algebraic" depending

on how the coarse-level matrix is formed and how the components of the error are

separated and classi�ed. With the geometric approach, restriction and prolongation

are most often accomplished by averaging and interpolating, respectively. The coarse-

level problem is then formed by coarsening the underlying approximation space used

to discretize the continuous problem, so that the error corrections are progressively

smoother in appearance as one proceeds to lower levels; and, the coarse-level matrix

results from a rediscretization using a coarser approximation space. In this sense,

geometric multilevel methods are tied directly to the discretization of the problem,

which presents many numerical diÆculties and limitations (cf. reference [8]).

It is often preferable to deal directly with the algebraic problem once it has been

formed at the highest level. Ideally, this leads to a purely algebraic approach that

allows us to separate the algebraic solver from the rest of the problem. Because

algebraic multilevel methods only require that the coarse-level variables satisfy fairly


exible algebraic criteria, the problem can be restricted based on any subspace; and,

the coarse-level matrix is formed as a matrix product. Also, algebraic multilevel

theory can be abstracted from the underlying di�erential operator and the details of

its discretization, as with the mathematical framework described by McCormick [24].

The motivation and many of the basic principles behind Algebraic Multi-Grid

(AMG) methods are described by Brandt et al. [8]. A theoretical study is given

by Brandt [7] for the particular variant of AMG proposed in [8], which also estab-

lishes some basic requirements for multilevel success from the algebraic perspective.

Algebraic Multigrid, as advanced in [8] and [7], demonstrates that the smoothing

procedure is ine�ective for positive de�nite systems when the residual is small rel-

ative to the error, and consequently restricts the algebraic problem by averaging in

the directions of the strong couplings between unknowns, as measured by the relative

magnitudes of the o�-diagonal matrix entries.

The Black Box Multigrid of Dendy [15, 16, 17] exploits the structure of nested,
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uniform rectangular grids, and provides a prolongation operator based on the coef-

�cients of the �nite di�erencing operator used to discretize the di�erential operator.

The restriction operator is the transpose of the prolongation operator, and the coarse-

level matrix is obtained by a matrix product involving the higher-level matrix and the

restriction and prolongation matrices. However, the implicit reliance on grid structur-

ing to formulate the prolongation operator severely limits the practical applications

of this approach. Similar limitations apply to the multilevel proconditioner proposed

by Axelsson & Vassilevski [1, 2] and the blackbox multigrid solver of De Zeeuw [14],

among many others, which rely on nested, structured, and interelated meshes.

One of the important challenges of multilevel methods involves the use of unstruc-

tured meshes, or nonuniform p-re�nement, which leads to an irregular structure of the

matrix entries. Bulgakov [10, 11], Bulgakov & Kuhn [12], and Van�ek, et al. [27, 28]

employ aggregation techniques whereby adjacent �nite element domains, and the de-

grees of freedom attached to them, are clustered together. The unknowns associated

with each cluster can be combined to form a smaller set of coarse-level variables,

which de�ne the restriction operator; and, its transpose provides the prolongation

operator. Again, the coarse-level matrix is computed as a matrix product.

Fish & Belsky [19] use an aggregation technique as part of a two-level solver for

symmetric, positive de�nite systems. It is noted that the smoother acts to reduce

the components of the error in the directions of the eigenvectors of the system matrix

associated with the largest eigenvalues, which was also observed by Brandt [7]. The

restriction operator is based on the eigenspace of the submatrices associated with

the aggregates of elements. In the present paper, we extend the method of [19] to

problems involving asymmetric, positive de�nite systems, where the eigenvectors of

the system matrix do not necessarily separate the subspaces of interest.

While the multilevel methodology may be used by itself to invert the algebraic

system, it is often most e�ective when used as a preconditioner for an appropriate

iterative accelerator. It is noted that several multilevel cycles e�ectively invert the
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matrix, so that one or two cycles represent an approximate inverse to this same matrix,

and can be used to precondition the original system. The preconditioned system

can then be solved using a projection-type iterative technique, such as GMRES or

TFQMR (cf. Saad [25] or Hackbusch [22]). This is demonstrated in the examples of

section 6.

2 Overview of Multilevel Methodology

Consider the linear algebraic system of equations,

Ku = f (2.1)

with the solution u 2 R
N , and the right-hand-side vector f 2 R

N . The system matrix

K 2 RN � RN is positive de�nite, but generally asymmetric.

If we take the regular splitting

K =M�N; (2.2)

where M;N 2 RN � RN , we can construct a (stationary) relaxation scheme whereby

the successive approximations are updated recursively in the following way:

ui+1 = (I�M�1K)ui +M�1f ; (2.3)

the superscripts \i" and \i + 1" indicating the iteration numbers, so that ui is the

approximation after the i th iteration. The matrix M is chosen so that it is com-

putationally inexpensive to invert. (cf. the standard references by Varga [29] and

Young [32], and a nice summary in Ciarlet [13], x5.)
If we specify the exact solution as u, and the error after iteration i as ei = ui � u,
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then the relaxation scheme (2.3) is equivalent to the following iterations on the error:

ei+1 = (I�M�1K) ei = S ei (2.4)

The matrix M�1 is called the preconditioner, since the relaxation scheme (2.3) is

equivalent to �xed-point iterations on the preconditioned system M�1Ku =M�1f .

The matrix S = (I�M�1K) in equation (2.4) is called the iteration matrix, and it is

the so-called \smoothing" property of this matrix operator that is important in the

multilevel context.

The main drawback of simple relaxation schemes of the form given in equation

(2.3) is that they typically fail to reduce all components of the error with equal

e�ectiveness. A pertinent example is the homogeneous, one-dimensional advection

problem

@u

@x
� �

@2u

@x2
= 0 on 
 = (0; 1)

u(0) = g1 and u(1) = g2

as �! 0, which we discretize using the SUPG stabilized �nite element formulation of

Brooks & Hughes [9] and linear elements. Figure 1 shows: (a) the initial error; (b) the

error after �ve iterations of the weighted Jacobi relaxation scheme (with ! = 2=3);

and, (c) the error after �ve more iterations.

This example, as Figure 1 shows, demonstrates how the \oscillatory" components

of the error can be eliminated in only a few iterations, whereas the \smooth" compo-

nents of the error are reduced very slowly. While simple relaxation schemes may not

converge to the solution quickly, if at all, they can often be used as a smoother to

eliminate the oscillatory components of the error very eÆciently. multilevel methods

seek to complement this smoothing behavior by addressing the smooth components

of the error separately.

We note that the overall, parent space RN can be divided into two subspaces A
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(a) initial error

(b) error after
      5 iterations

(b) error after
      10 iterations

0

0

0

1

1

1

Figure 1: Weighted Jacobi iterations

and B ,

R
N = A � B ; (2.5)

where A � R
N is of dimensionM < N , and B � R

N is of dimension N �M . We will

call A the smooth, or coarse, subspace, and B is the oscillatory subspace. These two

subspaces are not necessarily orthogonal.

We can construct a basis fqig for the smooth subspace A where qi 2 R
N , so that:

A = spanfqig for i = 1; 2; : : : ;M (2.6)

If we de�ne the matrix Q to be the N �M matrix whose columns are the vectors qi,

we can uniquely specify an arbitrary vector v 2 A as

v =
MX
i=1

aiqi = Qa (2.7)
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where Q = [q1 q2 � � � qM ] 2 R
N � R

M , a = (a1; a2; � � � ; aM)t 2 R
M , and the su-

perscript \t" indicates the transpose. The matrix Q : RM ! R
N is the prolongation

operator; and its transpose, Qt : RN ! RM , is the restriction operator. These two

operators, Q and Qt, allow us to transfer between the parent space RN and the

smooth, or coarse, subspace A .

Given an approximate solution u�1 after i = �1 smoothing iterations of the form

(2.3), we can obtain a corrected approximation uc = u�1 +Qa which removes certain

components of the error so that the corrected residual Rc = Kuc � f is orthogonal to

the smooth subspace A :

hRc;Qi = hKuc � f ;Qi = 0 (2.8)

where h�; �i is the standard inner product on R
N . This gives the following coarse-level

problem:

K0 a = �QtR�1 (2.9)

where R�1 = Ku�1 � f is the residual after �1 smoothing iterations, and K0 = QtKQ

is the coarse-level matrix.

The solution to the coarse-level problem (2.9) is then:

a = �K�1
0 QtR�1 (2.10)

so that the corrected approximation is given by:

uc =
�
I�QK�1

0 QtK
�
u�1 +QK�1

0 Qtf : (2.11)

The coarse-level correction of equation (2.11) is equivalent to the following operation
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on the error:

ec =
�
I�QK�1

0 QtK
�
e�1 = Te�1 (2.12)

where the operator

T = I�QK�1
0 QtK; (2.13)

and e�1 = u�1 � u, ec = uc � u.

The smoothing iterations (2.3) and the coarse-level correction (2.11) can be com-

bined to form a two-level cycle, which is diagrammed in Figure 2. Starting with

the same initial error as in the previous example, Figure 2a, we perform only two

presmoothing iterations using equation (2.3) and a weighted Jacobi smoother. The

smoothing e�ect on the error is given by equation (2.4) and shown in Figure 2b. The

coarse-level correction is accomplished using equation (2.11), which yields the atten-

uated but highly oscillatory error shown in Figure 2c. Finally, two postsmoothing

iterations are performed, using the same smoother, resulting in the error shown in

Figure 2d. We note that a signi�cant reduction in all components of the error has

been accomplished at the end of the this cycle.

The two-level cycle is equivalent to the following operation on the error:

ecycle = S�2 TS�1 ecycle�1 (2.14)

where �1 and �2 are the number of presmoothing and postsmoothing iterations, respec-

tively. This two-level methodology can be extended to multiple levels by applying the

two-level scheme recursively to the coarse-level problems (cf. Hackbusch [21]). Prac-

tical implementations must allow for multiple levels in order to maintain a relatively

small problem at the coarsest level, which is solved directly. But important questions

can be answered by the two-level scheme, which is the focus of the current paper.
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Presmoothing Postsmoothing

QQT

Restriction Prolongation

(a)

(b) (c)

(d)

Coarse Level 
Correction

e
0

e
�1
= S

�1e
0 e

c

= Te
�1

e
cycle

= S
�2e

c

Figure 2: Diagram of Two-level Cycle

An e�ective multilevel scheme will achieve a similar level of error reduction with

each cycle, so that every component of the error is reduced signi�cantly (unlike what

happened with the simple relaxation scheme illustrated in Figure 1). There is one im-

portant proviso, however: the coarse-level correction of equation (2.11) must comple-

ment the smoothing of equation (2.3). That is to say, the coarse-level correction must

address those components of the error that are e�ectively ignored by the smoother.

This complementary relationship is precisely what we wish to demonstrate with the

two-level scheme. So the �rst step in designing a multilevel scheme is to characterize

the subspace on which the smoother is most e�ective at reducing the error.

3 Analysis of Smoothing in One Dimension

Once an e�ective smoother has been chosen, a complementary prolongation opera-

tor Q must be designed; that is, an appropriate basis fqig for the coarse subspace A

10



must be found. The oscillatory subspace B is, by de�nition, the subspace on which the

smoothing iterations of equation (2.3) are most e�ective at reducing the error. The

coarse subspace can then be viewed as the orthogonal complement of the oscillatory

subspace in the parent space RN , or A = RN n B . So, to design the prolongation oper-
ator we must �rst characterize the oscillatory subspace B by studying a representative

smoother.

To �nd the directions in which the smoother is most e�ective at reducing the error,

we study the iteration matrix S of equation (2.4) for a relatively simple model problem

on the one-dimensional domain 
 = [0; L], as depicted in Figure 3. The domain is

divided into N + 1 segments of equal length h = L=(N + 1), so that xj = jh where

j = 0; 1; : : : ; N + 1. We consider the scalar advection-di�usion model equation,

c
du

dx
� �

d2u

dx2
= f; (3.1)

where c is the advection coeÆcient (or speed) and � is the coeÆcient of di�usion.

jj-1 j+10 1 N+1Nj-2 j+2

xN+1 = (N + 1)hx0 = 0
xj = jh

Figure 3: Domain of 1D Model Problem

The element Peclet number for a particular discretization is given by � = jcjh
2�
, and

it measures the relative strength of the advective and di�usive mechanisms; whereby,

�� 1 indicates that the second-order di�usion term dominates the problem on the

length scale of the elements, and �� 1 indicates that the �rst-order advection term

dominates the discrete problem. The element Peclet number is the free parameter

which delineates the various cases of interest.

Assuming Dirichlet boundary conditions, the SUPG stabilized �nite element for-
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mulation [9] leads to a linear algebraic problem,

Ku = f (3.2)

where K 2 RN � RN , and u; f 2 RN . The matrix K is given by:

K =

2
6666666664

a+ b �b
�a a+ b �b

. . .

�a a + b �b
�a a + b

3
7777777775

(3.3)

where

a =
�+ c2�

h
+
c

2
; b =

�+ c2�

h
� c

2
; and � =

h

2jcj
�
coth�� 1

�

�
:

The matrixK is positive de�nite, generally asymmetric, and diagonally semidominant

for 0 � � <1.

We consider the weighted Jacobi smoother, whose iteration matrix is given by:

S! � I� !D�1K = I� !

a+ b
K = I� ! �K (3.4)

where D is the diagonal of K, I is the identity matrix, ! is the weighting factor, and

�K = 1

a+b
K. Referring to equation (2.3), the weighted Jacobi method results in the

following relaxation scheme:

ui+1 =

�
I� !

a+ b
K

�
ui +

!

a + b
f (3.5)

so thatM�1 = !
a+b

I. This converges for 0 < ! � 1 given the above system (cf. Varga
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[29] or Young [32]). (We will use ! = 2=3 throughout, but we note that this is only

considered optimal, for smoothing purposes, in the symmetric case where � = 0.)

We de�ned the error for iteration number i to be ei = ui � u where ei 2 RN , so

that the weighted Jacobi iterations are equivalent to the following iterations on the

error:

ei+1 = S! e
i (3.6)

For this particular problem we know that the iterations (3.5) converge; what we want

to know is which components of the error are reduced most e�ectively by the iteration

matrix S! of equation (3.4), as per equation (3.6).

Before proceeding we de�ne the ampli�cation factor in the algebraic context,

A(A;x), for a given matrix A operating on a vector:

A(A;x) � kAxk
kxk =

�
xT ATAx

xTx

�1=2

(3.7)

where the norm kyk � (yTy)1=2 measures the \length" of the vector y. The ampli�-

cation factor quanti�es the relative change in length of a given vector in the direction

of x under the action of A. When A(A;x) > 1 the vector is ampli�ed; and, when

A(A;x) < 1 the vector is attenuated. The maximum of A(A;x) over all x is the

spectral norm of A.

It is clear from equation (3.7) that the ampli�cation factor is closely related to the

normal matrix ATA. In fact, if the eigenvalues of the normal matrix are arranged

in ascending order, the associated eigenvectors point in the directions of increasing

ampli�cation with respect to the matrix A. Furthermore, since the normal matrix is

symmetric it possesses a complete set of orthogonal eigenvectors which form a basis

for the space RN . As we shall see, this basis naturally separates the space into

smooth and oscillatory subspaces.

For the symmetric case the eigenvectors of the system matrix K and the normal
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matrix KTK coincide; but, in general the di�erential operator in equation (3.1) is

not self-adjoint, and the resulting sti�ness matrix K is asymmetric. To facilitate

the analysis, we note that the matrix �K is equivalent to the linear translation, or

di�erencing, operator:

�L = ��hD � h2

2
D2 (3.8)

where the central-di�erencing operators D and D2 are given by:

Dvj =
vj+1 � vj�1

2h
and D2vj =

vj+1 � 2vj + vj�1
h2

: (3.9)

In equation (3.8), the parameter �� = tanh(�) is an e�ective Peclet number for

the stabilized �nite element formulation, where �� = 0 for the purely di�usive case

(c = 0; k 6= 0; � = 0), and �� = 1 for the purely advective case (k = 0; c 6= 0; �!1).

Stabilization is responsible for limiting the parameter �� between 0 and 1 in accor-

dance with the problem's physical parameters and the element length (cf. Brooks &

Hughes [9]).

We can express the nodal error in terms of a discrete Fourier vectors,

e(j) = <e
 

1p
N

NX
n=1

�n exp

�
�{2n�j

N

�!
= <e

 
NX
n=1

�n'n(j)

!
(3.10)

where <e indicates the real part of a complex vector, e = (e(1); e(2); : : : ; e(N)) 2 RN

is the discrete error vector, the coeÆcients �n 2 C are complex constants, { =
p�1,

and the vectors

'n(j) =
1p
N

exp

�
{
2n�j

N

�
for j = 1; 2; 3; :::; N (3.11)

are the discrete Fourier modes indexed by n.
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We specify an inner product on the space C
N ,

hu;vi =
NX
j=1

v�(j) u(j) u;v 2 C
N (3.12)

where the superscript \�" indicates the complex conjugate. This inner product in-

duces the norm,

kuk = (hu;ui)1=2 : (3.13)

We observe that the basis vectors 'n(j) form an orthonormal set in that h'n;'mi = 0

when n 6= m, and h'n;'ni = 1.

The objective of the following analysis is to characterize the amplifying e�ect of

S! on arbitrary directional vectors. Since the di�erencing operator is linear we may

consider its e�ect on each individual Fourier vector separately, and then combine these

results by superposition to characterize the e�ect on arbitrary vectors. Applying the

operator �L to the nth Fourier mode we obtain:

�K'n = �L('n) =
h�
1� cos

�n�
N

��
+ {�� sin

�n�
N

�i
'n = zn'n (3.14)

The ampli�cation factor of �K operating on the nth mode, 'n, is then given by the

argument of the complex multiplier zn 2 C :

A( �K;'n) =

��
1� cos

�n�
N

��2
+ ��2 sin2

�n�
N

��1=2

(3.15)

And, the modulus of zn is denoted by �n, and is given by

cos(�n) =
h'n; �K'ni
k �K'nk

=
1� cos

�
n�
N

�
A( �K;'n)

: (3.16)

So, �nally, we have �K'n = �L('n) = zn'n = An exp({�n)'n, where the complex con-
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stant zn = An exp({�n) accounts for the rotation and ampli�cation, An = A( �K;'n),

for a given Fourier mode. Here, An is the ampli�cation in the Fourier context.

We consider the two limiting cases where � = 0 and �!1. The purely di�usive

case, where � = 0, is straightforward and well documented:

A( �K;'n)�=0 = 1� cos
�n�
N

�
= 2 sin

� n�
2N

�
(3.17)

cos(�n)�=0 = 1 =) �n = 0 (3.18)

where the modulus is always and, therefore, the real parts of the discrete Fourier

vectors correspond to the eigenvectors of �K.

For the purely advective case, �!1, we have:

A( �K;'n)�!1 =
p
2
�
1� cos

�n�
N

��1=2
(3.19)

cos(�n)�!1 =
1p
2

�
1� cos

�n�
N

��1=2
=

1

2
A( �K;'n)�!1 (3.20)

For this case it remains to be shown how the modulus is related to the ampli�cation

factor for an arbitrary vector, which will allow us to relate kS! k directly to kK k
for any  , and in particular for the eigenvectors  k of the normal matrix K

TK.

In the algebraic context, the ampli�cation factor of �K for an arbitrary unit vector

 , where k k = 1, is de�ned by equation (3.7) to be:

A( �K; ) = k �K k
k k = k �K k (3.21)

The real unit vector  can be represented as a linear combination of the Fourier
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vectors:

 =
NX
n=1

<e (pn'n) (3.22)

where pn 2 C are the complex coeÆcients. We can use the following relation for a

real matrix �K and the real unit vector  :

 t �K = h �K ; i = k �K k cos(�): (3.23)

where � is the acute angle formed by the vectors  and �K . Rearranging we obtain:

cos(�) =
 t �K 

k �K k : (3.24)

Now an expression for cos(�) exclusively in terms of k �K k is needed.
Evaluating the numerator in the previous result, using (3.20), we have:

 t �K =
1

2

NX
n=1

p2nA2

n: (3.25)

where An = A( �K;'n). We also �nd

k �K k = � t �Kt �K 
�1=2

=

 
NX
n=1

p2nA2

n

!1=2

: (3.26)

Finally, substituting equations (3.25) and (3.26) into (3.24), the general result for the

case where �!1 is obtained:

cos(�)�!1 =
1

2
A( �K; ) = 1

2
k �K k (3.27)

This gives us an expression for cos(�), in equation (3.20), in terms of k �K k only, so
that the the ampli�cation factor of the matrix S! may be related directly to kK k
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for any unit vector when �!1.

The ampli�cation factor of �K has stationary points in the direction of the eigen-

vectors of the normal matrix, �Kt �K, which we denote by  k. The ampli�cation factors

in these directions are the eigenvalues �k of �Kt �K. The normal matrix is symmetric

and we are, therefore, guaranteed a full set of orthogonal eigenvectors, so that the

normalized system can always be diagonalized,

�Kt �K = 	�	t (3.28)

where the eigenvector matrix is 	 = ( 1  2 � � � N ), when the eigenvalue matrix

� = diag(�1 �2 � � ��N) is arranged so that �1 � �2 � � � � � �N .

Using equation (3.4), again assuming normalized eigenvectors k kk = 1, we can

calculate the ampli�cation factors of S! relative to those of �K for the eigenvectors

 k for �!1:

kS! kk2 = 1 + !2k �K kk2 � !( T
k ( �K+ �KT ) k)

= 1 + !2k �K kk2 � 2!k �K kk cos(�)
(3.29)

We can now summarize the results for the two limiting cases. For � = 0 we have the

relation:

kS! kk2 = 1 +

�
!

a+ b

�2

kK kk2 � 2

�
!

a+ b

�
kK kk (3.30)

And, for �!1, using equation (3.27), we have:

kS! kk2 = 1 +

�
!

a+ b

�2

kK kk2 �
�

!

a+ b

�
kK kk2 (3.31)

These provide the lower and upper bounds, respectively, for the ampli�cation factor

of S! for any given 0 � � <1 (or, 0 � �� < 1). Figure 4 relates these bounds to both

the ampli�cation factor of �K, and the indices k of the eigenvectors  k of �K
T �K, such
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that the eigenvalues �k are arranged in increasing order (! = 2=3).

Since the eigenvectors  k span the space RN , we can specify the error vector as a

linear combination of these eigenvectors,

e =
NX
k=1


k k; where 
k 2 R; (3.32)

and we refer to the di�erent terms in the sum as the \components" for the given basis.

Figure 5 shows how the ampli�cation factor of S! varies with element Peclet number.

The curves corresponding to � = 0 (�� = 0) and �!1 (�� = 1) were calculated

according to the equations (3.30) and (3.31), while the intermediate curves were

calculated numerically. The smoother reduces most e�ectively those components of

the error in the directions of the eigenvectors of the normal matrix associated with

its largest eigenvalues. By de�nition, the span of these eigenvectors becomes the

oscillatory space: B = spanf kg, for k =M : : :N .

We can see this a little more clearly if we consider a couple of examples where

the initial error is the sum of the eigenvectors for the associated normal system,

e0 =
PN

k=1  k. First, we consider the symmetric case where � = 0. Figure 6a de-

picts the number of iterations required to reduce the various components of the error

by a factor of 100. The components are in the directions of the eigenvectors  k of

KtK, where the associated eigenvalues have been arranged in increasing order. We

observe that the components associated with the largest eigenvalues require far fewer

iterations to be reduced than the components in the balance of the space. Further,

if we look at the projection of the error after 10 smoothing iterations onto the eigen-

vectors of the normal matrix, in Figure 6b, we see that the components of the error

associated with the largest eigenvalues have been virtually eliminated while those

associated with the smaller eigenvalues persist.

We also consider the asymmetric case where �!1. The graphs in Figure 7

mirror those in Figure 6, and again we see in Figure 7a that the smoother requires
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relatively few iterations to reduce the error in the directions of the eigenvectors of

the normal matrix associated with its largest eigenvalues. Referring to Figure 7b,

we �nd, once again, that after 10 smoothing iterations the error has been drastically

reduced in the upper part of the spectrum, while in the lower part of the spectrum

the error is still quite large. (Note that the precise division between the smooth and

oscillatory subspaces is somewhat arbitrary.)

For positive de�nite systems the connection with the normal matrix generalizes,

and the upshot of all this is that the smoother naturally divides the space in terms of

the eigenvectors of the normal matrix. The smoother eliminates the components in the

directions of the eigenvectors associated with the largest eigenvalues. This suggests

that the ideal basis for the smooth, or coarse, subspace would be the eigenvectors of

the normal matrix associated with its smallest eigenvalues. If one could successfully

and inexpensively approximate these eigenvectors|say:  1; : : : ; N=3|one could

then construct a suitable prolongation operator to complement the smoother.
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Figure 6: Symmetric Case (� = 0, N=100)
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Figure 7: Asymmetric Case (�!1, N=100)
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4 Restriction/Prolongation Operator

According to the preceding analysis, the ideal subspace on which to perform the

coarse-level correction of equation (2.11) is the space spanned by the eigenvectors of

the normal matrix associated with its smallest eigenvalues. For the two-level scheme

these eigenvectors can be approximated e�ectively, and relatively inexpensively, using

an aggregation technique, the basic idea of which has been used in the multi-grid

framework by Bulgakov [11, 10], Bulgakov & Kuhn [12], Van�ek, et al. [27, 28], and

Fish $ Belsky [19].

An aggregate is simply a collection of adjacent, interior elements as depicted in

Figure 8. The aggregates are separated by bu�er elements so that for linear inter-

polating elements, each interior nodal degree of freedom is contained in only one

aggregate. The aggregation procedure is very similar to that outlined in [19], so we

refer to this paper for the details. The main di�erence here is that the degrees of

freedom attached to the boundaries are isolated so that the essential boundary con-

ditions are satis�ed exactly on all levels; and, the restriction/prolongation operator

is based on the eigenspace of the normal system.

Element contributions from the bu�er elements are assembled into the global

matrix in the traditional way. For the aggregates, however, the element contributions,

k
ae
, are �rst assembled into an aggregate submatrix, Ka,

Ka =
Nae

A
ae=1

kae: (4.1)

From this we can construct the normal aggregate submatrix, KT
aKa, which is sym-

metric and, therefore, can be diagonalized,

KT
aKa = 	a�a	

T
a (4.2)

where the eigenvector matrix is 	a = ( a1  a2 � � � aN�1
), and the eigenvalue matrix
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Figure 8: Aggregate

� = diag(�a1 �a2 � � ��aN�1) is arranged so that the eigenvalues are in ascending order

�a1 � �a2 � � � � � �aN�1 . We use the eigenvectors of the normal aggregate submatrix

to approximate the eigenvectors of the normal matrix. For each aggregate, we assem-

ble only those eigenvectors of KT
aKa associated with its smallest eigenvalues into the

columns of the prolongation operator Q,

Q =
m<Nae

A
ae=1

 ae: (4.3)

In this way we constrain the degrees of freedom on each aggregate so that they vary

only as a linear combination of this subset of vectors f a1 ; � � � ; amg.
The scheme is adaptive in the sense that the dimension of the smooth, or coarse,

subspace can be adjusted to better complement the smoother by taking more or fewer

eigenvectors. The importance of adjustability lies in the observation that while the

smoother deals with the oscillatory end of the spectrum and the coarse-level correction

deals with the smooth end of the spectrum, these subspaces must meet, or overlap,

somewhere in the middle. This can be accomplished by enhancing the smoother
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(e.g., adding more �ll levels to an ILU(n) preconditioner) or by enlarging the coarse

subspace. We have allowed both possibilities.

It should be noted that using the connectivities of the mesh vertices is not suited

to higher-order basis functions, since it assumes that the mesh edges constitute a

graph for the unknowns; and, this only holds when the discrete unknowns are associ-

ated with nodes attached to the mesh vertices. Nor is this technique directly suited

to aggregation beyond two levels, which is required for a true multilevel scheme. To

consider these cases we can use the non-zero pattern of the sparse matrices to con-

struct a graph of the unknown degrees of freedom and collect these into aggregates

based on this graph.

5 Numerical Examples

Ultimately, we want to use these multilevel cycles as a preconditioner, and solve the

preconditioned system with a projection-type iterative solver, or accelerator, such as

GMRES or TFQMR. To simplify notation we will denote the two-level preconditioner

in the following way:

GAMf�1; �2; n; Smg (5.1)

where �1 is the number of presmoothing iterations, �2 is the number of postsmoothing

iterations, n is the number of cycles (n = 1 is the V-cycle, and n = 2 the W-cycle), and

Sm is the smoother used (e.g., ILU(0)). GAM stands for Generalized Aggregation

Multilevel solver [19], and the approach described in the current paper extends this

method from symmetric to asymmetric, positive de�nite systems. The solvers were

implemented using the PETSc software developed at Argonne National Laboratories,

which is described in references [3], [4], and [5].

The objective behind the multilevel method is to scale the computational work

linearly with the number of unknowns in the algebraic system, N . If the number of
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Figure 9: (a) 2D Problem Speci�cation and (b) Exact Finite Element So-
lution for �!1

iterations required for convergence is independent of the problem size, and if each

iteration requires O(N) work, then the computational work required to solve the

system scales linearly with the problem size, N . With the two-level scheme we can

test the �rst requirement; but, unfortunately, we cannot test the second because the

work required by the exact solve at the coarse level grows faster than N , and will

eventually dominate the problem. The cure for this is to allow for multiple levels so

that the coarsest-level problem can be made relatively small and inexpensive.

Since overall timings are not really relevant for two-level methods (the coarse-level

problem being too expensive) we will not present comparisons for examples 1 and 3.

We will, however, address the issue of scalability in example 2. Here we examine the

key components of the two-level solver to verify that the CPU time scales linearly with

problem size, noting that the exact solve at the coarse level is inordinately expensive

and should be dealt with recursively using a multilevel scheme.
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5.1 Example 1|2D Advection-Di�usion

We �rst consider the two-dimensional, scalar advection-di�usion problem:

(c � r)u� ��u = 0 (5.2)

where c is the advective velocity, � is the coeÆcient of di�usion, and � is the Laplacian

operator. A schematic of the problem is given in Figure 9. For this example, we have

used a GMRES accelerator, but results for the TFQMR accelerator were similar.

In Figure 10 we compare the performance of the ILU(1) preconditioner with

the GAM f1; 1; 1; ILU(1)g preconditioner in terms of iteration count for the case as

�!1. The comparison is made on the basis of comparable reductions in the abso-

lute residual (as opposed to the preconditioned residual). In terms of iteration count,

the two-level preconditioner signi�cantly outperforms the ILU(1) preconditioner, but

what is most notable is that the iteration count for the two-level method is essentially

constant over a wide range of problem sizes.

We also consider the e�ects of varying the element Peclet number �. Here, a

GAM f2; 2; 1; ILU(0)g preconditioner was used, and the reduction of the normalized

(absolute) residual is shown in Figure 11 for various Peclet numbers. We �nd that

for all cases, convergence requires very few iterations, with the di�usion dominated

cases converging in fewer iterations than the advection dominated cases. The natural

boundary conditions along the out
ow boundaries made the problem more sensitive,

but did not upset the convergence when using the two-level preconditioner.

5.2 Example 2|2D Supercritical Airfoil

The second example is of a supercritical transonic airfoil. We solved the nonlinear

Transonic Small-Disturbance (TSD) system of equations, which is approximate for

thin bodies in inviscid 
uids. The stabilized �nite element formulation is presented

in [20] and the pressure �eld is shown in Figure 12. We can see from the �gure
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Figure 10: Iteration Count vs. Problem Size for ILU(1) and
GAMf1; 1; 1; ILU(1)g Preconditioners with GMRES Accel-
erator for �!1.

that the 
ow accelerates to supersonic speeds over the airfoil section, then transitions

through a shock wave attached to the airfoil surface, and leaves the trailing edge at

subsonic speeds. The equations are nonlinear, so the iteration counts represent the

average number of iterations per Newton step. (The standard deviation from the

mean was very small for the two-level preconditioner, but relatively large for the ILU

preconditioner.)

The convergence rates for the ILU(0) and GAMf2; 2; 1; ILU(0)g were compared
for several irregular, triangular meshes with uniform element size. Here, the con-

vergence was measured with respect to relative, preconditioned residuals. The con-

vergence criteria was a reduction by six orders of magnitude. Again, referring to

Figure 13, the iteration count for the two-level GAMf2; 2; 1; ILU(0)g preconditioned
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GMRES solver remains almost constant over a fairly large range of problem sizes,

whereas the number of iterations required by the ILU(0) preconditioned GMRES

solver grew at a faster rate. Results were similar for cases involving local mesh re-

�nement near the airfoil section.

For this example we will take up the question of timings. While the exact solve at

the coarse level for a two-level method is expected to be too computationally expensive

to render such a scheme practical. The other components of the scheme should remain

relatively inexpensive, however, since these do not change as we proceed to multiple

levels. Figure 14 shows the growth rate of the critical components of the two-level

method. The growth rate appears to be linear for all of these constituent parts. The

�gure also shows that the aggregation-based eigenvector approximation is relatively

inexpensive; and, that the aggregation process and the formation of the coarse-level
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Figure 12: Pressure Contours for Subsonic, Supercritical Flow over a
Circular-arc Airfoil

matrix K0 are the dominant components in terms of cost, although they too are fairly

inexpensive. The sparse matrix multiplications (\amub" routine from SPARSPAK)

used to calculate K0 are also shown.

5.3 Example 3|3D Transonic Nozzle

Finally, we consider the solution for a 3D, transonic (slightly subsonic) 
ow through

a converging-diverging nozzle. Linear, tetrahedral elements were used and a repre-

sentative solution is given in Figure 15. The same convergence criteria as with the

preceding problem was used.

Figure 16 shows the comparison between the iteration counts for the ILU(1)

preconditioner and the GAMf2; 2; 2; ILU(1)g preconditioner. Once again, we �nd

that the iteration count for the two-level GAM preconditioner is nearly constant,
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while that of the ILU(1) preconditioner grows quite rapidly. This demonstrates that

the smooth and oscillatory subspaces complement each other well, but it should be

noted that this complementarity requires some adjustment; speci�cally, the number

of smoothing iterations, the type of smoother, and the number of two-level cycles were

all varied to achieve good convergence behavior. The coarse-level reduction factor,

which also could have been easily adjusted, was left �xed at around 2.5-3 for this

problem.

6 Conclusions

Using a one-dimensional model problem, we have shown analytically that a repre-

sentative smoother reduces most e�ectively those components of the error in the
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directions of the eigenvectors of the normal matrix associated with its largest eigen-

values. This behavior suggests that the overall space can be divided, for multilevel

purposes, according to the eigenvectors of the normal system. Since the normal sys-

tem is symmetric, its eigenvectors constitute a complete, orthogonal basis.

An aggregation technique was then used to form the prolongation/restriction oper-

ator, but with some modi�cations this basic approach can be made purely algebraic.

Since the approach is algebraically based, results generalize naturally to problems

with higher dimensions and/or unstructured meshes. The results may hold for gen-

eral asymmetric, positive de�nite systems, but tests were conducted only on systems

which emanated from stabilized �nite element formulations.

Several example problems demonstrate that the basic two-level scheme, con-

structed based on the analysis, serves well as a preconditioner when combined with
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Flow Direction
Figure 15: Pressure Contours for Transonic Nozzle Flow

either a GMRES of TFQMR accelerator. The iteration counts remain nearly constant

over a fairly wide range of problem sizes and the solvers appear to be very robust, al-

though, the stabilized �nite element procedure generally does not yield pathologically

ill-conditioned systems.

The next step is to make the scheme recursive so that we obtain a true multilevel

method. Section 2 provides the basic framework, and based on the timings for the

constituent parts of the solver (i.e. the solution of the aggregate eigenvalue prob-

lems, the formation of the coarse-level matrices, etc.), all components are relatively

inexpensive to compute and possess linear growth rates with respect to the problem

size.
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Appendix

We include some of the raw data and statistics for the various example problems.

For Example 1, Figure 10:

Problem Size (dof)
5929 23,104 51,529 91,204 142,129 204,304

Prec. (1401) (5301) (11,701) (20,601) (32,001) (45,901)

ILU(1) 16 21 24 27 30 43
GAM 7 9 10 10 10 9

Table 1: Iteration Count vs. Problem Size for ILU(1) and
GAMf1; 1; 1; ILU(1)g Preconditioners with GMRES Acceler-
ator (Ex. 1).

where the problem size in parentheses is for the coarse-level problem.

Example 1, Figure 11:

Element Peclet Number
Iterations � = 0:0 � = 0:5 � = 1:0 � = 50 � =1

0 1 1 1 1 1
1 2:48� 10�1 3:39� 10�2 4:87� 10�3 1:61� 10�1 4:15� 10�1

2 4:61� 10�2 1:54� 10�3 4:91� 10�5 1:01� 10�1 2:61� 10�1

3 1:02� 10�2 7:53� 10�5 4:52� 10�7 7:37� 10�2 2:06� 10�1

4 2:03� 10�3 3:56� 10�6 3:99� 10�9 3:48� 10�2 1:28� 10�1

5 3:94� 10�4 1:49� 10�7 | 7:67� 10�3 4:49� 10�2

6 6:99� 10�5 6:52� 10�9 | 9:77� 10�4 9:25� 10�3

7 1:39� 10�5 2:53� 10�10 | 1:13� 10�4 1:25� 10�3

8 3:13� 10�6 | | 3:00� 10�5 2:94� 10�4

9 8:22� 10�7 | | 2:99� 10�6 6:98� 10�5

10 1:61� 10�7 | | 6:90� 10�7 2:31� 10�5

11 2:89� 10�8 | | 9:83� 10�8 3:49� 10�6

12 5:60� 10�9 | | 1:72� 10�8 7:37� 10�7

13 8:67� 10�10 | | 2:97� 10�9 1:47� 10�7

14 | | | 5:50� 10�10 3:53� 10�8

15 | | | | 8:12� 10�9

Table 2: E�ect of Peclet Number � on Convergence Rate. Relative Error
vs. Iteration Count

where the dashes \|" indicate a relative error of less than 1� 10�10.
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Example 2, Figure 13:

Problem Size (dof)
7122 22,540 50,724 115,328

Prec. (1444) (4385) (9354) (21,178)

ILU(0) 32 120 188 272
GAM 8 11 14 18

Table 3: Iteration Count vs. Problem Size for ILU(0) and
GAMf2; 2; 1; ILU(0)g Preconditioners with GMRES Acceler-
ator (Ex. 2)

Example 2, Figure 14:

Problem Size (dof)
Process 7122 22,540 50,724 115,328

eigenvector estimation 0.088 0.310 0.860 1.650
aggregation 0.350 1.036 2.590 5.834
compute K0 0.304 1.006 2.264 5.100

K0 = QTKQ product 0.398 1.230 2.842 6.072

Table 4: CPU Time (s) vs. Problem Size for the Critical Components of
the Two-level Method

Example 3, Figure 16:

Problem Size (dof)
3450 7584 17,259 44,082

Prec. (1471) (3025) (6775) (16,372)

ILU(1) 23 32 57 102
GAM 4 5 8 9

Table 5: Iteration Count vs. Problem Size for ILU(1) and
GAMf2; 2; 2; ILU(1)g Preconditioners with GMRES Acceler-
ator (Ex. 3).
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