
 

Stabilized Nonlocal Model for Dispersive Wave Propagation 
in Heterogeneous Media 

Gakuji Nagai* 

Institute of Industrial Science 
The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan  

e-mail: gakuji@iis.u-tokyo.ac.jp 

Jacob Fish 

Department of Civil Engineering 
Rensselaer Polytechnic Institute, Troy, NY 12180, USA 

e-mail: fishj@rpi.edu 

Katsuhiko Watanabe 

Institute of Industrial Science 
The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan  

e-mail: kwata@iis.u-tokyo.ac.jp 

Key words: dispersive wave, heterogeneous media, higher-order homogenization, nonlocal theory, 
stabilization 

Abstract 
In this paper, a general-purpose computational model for dispersive wave propagation in 
heterogeneous media is developed. The model is based on the higher-order homogenization with 
multiple spatial and temporal scales and the C0-continuous mixed finite element approximation of the 
resulting nonlocal equations of motion. The proposed nonlocal Hamilton principle leads to the stable 
discrete system of equations independent of the mesh size, unit cell domain and the excitation 
frequency. The method has been validated for plane harmonic analysis and for transient wave motion 
in semi-infinite domain with various microstructures. 
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1 Introduction 

The primary objective of this paper is to develop a mathematical and computational model for wave 
propagation in heterogeneous media that would be both stable and accurate for a wide range of wave 
frequency excitations. It is well known that the O(1) mathematical homogenization 1 2 3 is valid for the 
case of the wavelength λ of a traveling wave significantly larger than the characteristic length l of the 
heterogeneity. However, when the wavelength λ is comparable to that of the characteristic length l, the 
wave motion is affected by the heterogeneity due to successive reflection and refraction waves from 
the material interfaces, which is known as the dispersion, polarization correction, and attenuation 
phenomena at the macro scale  9. For such a case, the higher-order homogenization theory with 
multiple spatial and temporal scales has been used to resolve dispersion effects  5. 
Fish and Chen  4 have shown that the higher-order homogenization with two spatial scales only 
produces unbounded solution of stress as the time approaches infinity. To alleviate the problem of 
secularity they introduced multiple slow temporal scales in addition to two spatial scales. One of the 
solution procedures for the resulting macroscopic equations is based on the nonlocal approach, in 
which the slow temporal scales can be eliminated. Fish et al. 5 have validated this approach in one-
dimensional case and for macroscopically isotropic media in multiple dimensions. 
In the present paper, we focus on developing a general computational framework for wave propagation 
in macroscopically anisotropic heterogeneous medium. Attention is restricted to wave motion away 
from the boundaries. 

2 Brief Overview of Previous Work 

2.1 Higher-Order Homogenization with Multiple Spatial-Temporal Scales 

Assuming that the macroscopic length L = λ / (2π) is significantly larger than the characteristic length 
l of the heterogeneity, i.e., 0< l / L = ε <<1  8, consider macro- and micro- coordinate systems x and y, 
respectively, related by 

 y=x/ε (1) 
Following  5, in addition to multiple spatial scales the following multiple slow time scales are 
introduced  

 t0 = t,     t1 = ε t,      t2 = ε2 t (2) 
Using the chain rule, the spatial and temporal derivatives can be expressed as 
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where the comma followed by the subscript variable denotes the partial derivative and the 
superscripted dot represents the full time derivative. The displacement field u is approximated using 
the following asymptotic expansion: 
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Substituting equation  (4) into the governing equation of wave motion and subsequently taking 
perturbation with respect to ε gives a set of micro and macro equations of motion. Due to the linearity 
of the micro equations and periodicity, the following decompositions of u0, u1 and u2 are made: 
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where exij(.) denotes the strain operator with respect to the macro-coordinates x, and H and P are 
characteristic functions normalized as: 

 0,0 == jkl
i

kl
i PH  (6)  

where ⋅  denotes the averaging operator with respect to the micro coordinate y. H and P are obtained 
from the solution of the unit cell (micro) problem subjected to macroscopically constant and linear 
strain fields, respectively, with periodic boundary conditions. In absence of polarization effect  9, the 
resulting macroscopic equations of motion up to O(ε2) are given as: 
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where ρ and D are mass density and elastic tensor, respectively, and 
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2.2 Nonlocal Model 

To eliminate the multiple temporal scales t0, t1, t2 in equation  (7), equation  (4) is averaged over the unit 
cell (micro) domain: 

 +++== 2210 UUuuU εε  (9) 

Multiplying the second and the third of equation in  (7) by ε and ε2, respectively, then adding them to 
the first of it, and finally utilizing the chain rule with respect to the temporal derivative yields 
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Solution of equation  (10) by finite element method requires C1-continuous interpolation due to 
appearance of the fourth-order spatial derivatives. Furthermore, equation  (10) gives rise to the 
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imaginary wave speed for higher wave numbers whose wavelength λ is smaller than the characteristic 
length l  5. Even though the homogenization theory is not valid for λ < l, these instabilities may arise 
when fine meshes are used for the macro problem. In the next section, we present the C0-continuous 
finite element formulation with stabilization.  

3 Stabilized Nonlocal Modeling 

In this section we focus on developing a new mathematical model based on equation  (10), which will 
be stable for all frequency excitations independent of either the unit cell size or the finite element 
discretization. Moreover, the resulting discrete model will be based on the C0-continuous finite 
element formulation. 
For simplicity, attention is restricted to constant mass density. In this case, equation  (10) can be 
simplified as follows: 

 0)())(())(( 3
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jprj xxxxmnijprmnxxmnijmni UU  (11) 

Assuming that pr xxxkle ,)(U is differentiable, only symmetric part of the sixth-order tensor Rijprkl with 
respect to p and r affects the solution. Thus exploiting this symmetry, R can be rewritten as 
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From equation  (12) it can be seen that Rijprkl = Rklrpij. Hence, the symmetric part Rs of R can be recast 
into the following matrix representation 
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Using eigen-analysis the matrix Rs can be further decomposed into 

 +− += sss RRR  (14) 

where the eigenvalues of Rs− and Rs+ are semi-negative and semi-positive, respectively. Introducing 
assumed nonlocal strain ije  and assumed nonlocal stress ijσ , the following O(ε2) approximation of the 
nonlocal equation  (11) can be obtained. 
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where C0 is a compliance of the elastic tensor D0. Note that C0-continuous finite element interpolation 
of displacements, assumed stresses and strains can be exercised for the discretization of equation  (15). 
A two-field variational principle was discussed by Peerlings et al. 6 in attempt to utilize the C0-
approximation of the nonlocal fields. The two-field approximation is sufficient for stabilization in case 
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Rs is a positive scalar quantity. However, the three-field approximation is required in case Rs is 
indefinite.  
 
Remark 1: If Rs− and Rs+ are neglected, the irreducible form of the stabilized equation  (15) reduces to: 

 ( ) 0)()(
,0

20
0 =+−

j
ijkl xxklijklxkli eEeDU UU ρερ  (16) 

This form has been shown to be valid for macroscopically isotropic media  5. 
 
Remark 2: The proof of O(ε2) approximation  (15) of the nonlocal equation  (11) is given below. 
Assuming that 

pr xxije ,  and 
pr xxij ,σ  are differentiable, applying strain operator exij(.) to the first equation 

of  (15) and multiplying it by ε2 yields 
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Substituting equation  (17) into the first equation in  (15) we get 
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Similarly, substituting the third equation in  (15) into the second yields 
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Taking second-derivative of equation  (19) and multiplying it by ε2 yields 
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Remark 3: The corresponding Hamilton principle of equation  (15) is given as 
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where Ω and Γ denote the domain of macrostructure and its boundary defined by outward normal 
vector n, respectively; Γσ corresponds to the boundary where traction jiji nf σ=  is prescribed. Note 
that equation  (23) coincides with the Hu-Washizu principle in dynamics when ε approaches to zero.  
Equation  (23) follows from 
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which can be transferred into the weak form of equation  (15) by taking integration by parts: 
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Note that all boundary conditions in equation  (23) can be neglected in case there is no reflection from 
the boundaries. To resolve the boundary layers boundary-matching scheme is required  7,  10. 

3.1 Finite Element Discretization  

The following matrix notation is employed for the finite element discretization. 
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where the subscript e denotes the element number; NUe and BUe are the shape functions and the strain-
displacement matrices, respectively. 
Excluding the O(ε2) boundary terms the stabilized nonlocal equation  (15) is given as 
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where, 
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Static condensation of the assumed nonlocal stresses and strains gives: 

 { } { } { }fUKUM =+ UUUU
~  (32) 

where 
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Since −sR and +sR are semi-negative and semi-positive definite, respectively, σσK− and 1−
eeK  are semi-

positive and positive definite, respectively. Hence, σσσσ eee
T
e KKKK 1−+−  is positive and UUK~  is semi-

positive definite provided that the number of displacement degrees-of-freedom is larger than that of 
the assumed stresses. Thus the discretized approximation  (32) is unconditionally stable in dynamics. 
Note that if only two-field principle were employed (see Peerlings et al. 6), the discretized system 
might be unstable due to the indefinite character of Rs. 

4 Numerical Examples 

To validate the proposed stabilized nonlocal model we consider plane harmonic and transient response 
problems with different microscopic and macroscopic configurations.  

4.1 Macroscopically isotropic medium 

As the first example, let us consider the macroscopically isotropic microstructure shown in Figure 1. 
Young modulus, Poisson’s ratio, and density are given as E1=1GPa, ν1=0.2, ρ1=103kg/m3 for material 
1 and E2=50GPa, ν2=0.2, ρ2=103kg/m3 for material 2. The cell domain is discretized by 60x104 square-
shaped finite elements with four-node bilinear interpolation. The left edge of the macrostructure is 
fixed, while the right edge is subjected to the distributed impact load in the form of one sine-like 
function in the horizontal or vertical direction: 

 ( ) ( ){ } 2
4

0 /
0

02/)( mmN
Tt

TtTttTtatq
⎩
⎨
⎧

>
≤≤−−

=  (35) 

where a0 is scaled so that 1)(1 ≤≤− tq and T denotes the load duration. The macrostructure is 
discretized by square-shaped finite elements with eight-node serendipity interpolation for the nonlocal 
displacement Ui and four-node bilinear interpolations for both the assumed nonlocal strains ije  and the 
assumed nonlocal stresses ijσ . The size of the square-shaped elements is 5mm which corresponds to 
the half-length of the cell. Newmark β method (β =0, γ =1/2) is employed for time integration. 
The impact load  (35) with duration time T=70µs, which produces Gauss function like wave of about 
135mm for the P-wave and about 82mm for the S-wave, is applied in the horizontal and vertical 
direction. Figure 2 shows the time history of the vertical nonlocal displacement at the center of the 
macro-domain for the horizontal load. The reference solution was obtained by numerically solving the 
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heterogeneous system. Good agreement between the stabilized nonlocal model and the reference 
solutions can be observed, while the solutions obtained by the classical O(1) homogenization shows 
significant discrepancies. Moreover, it can be seen that the solutions obtained using the proposed 
nonlocal model and the previously developed  5 macroscopically isotropic nonlocal model  (16) are 
almost identical. 

4.2 Stratified Medium 

Consider the periodic unit cell shown in Figure 3, corresponding to the horizontally stratified medium 
composed of two dissimilar materials. The Young modulus, Poisson’s ratio, and density are the same 
as in the previous example. The cell domain is discretized by 302 square-shaped finite elements with 
four-node bilinear interpolation. Stratified medium is one of the configurations known to cause strong 
dispersion. Waves traveling in the vertical direction can be modeled as one-dimensional problem, 
whereas waves in horizontal direction have to be modeled in two dimensions. 

4.2.1 Plane Harmonic Wave Analysis 

To analyze the stability properties of the original nonlocal model  (11) and the proposed nonlocal 
model  (15) we consider the plane harmonic wave analysis. Figure 4 plots the relation between the 
wave number and the phase velocity for the wave propagating in the horizontal direction. Exact 
solution  12 13(for details see Appendix) is also plotted for comparison. In Figure 4, two lines for each 
solution correspond to the lowest symmetric and asymmetric deformation modes. It can be seen that 
the original nonlocal model  (11) is unstable (phase velocity becomes imaginary) for the wave number 
k=20*2π/m corresponding to the wavelength which is 5 times of that of the unit cell. This instability 
shows up only in the case of the macroscopic domain discretized with the mesh size comparable to 
that of the unit cell. On the other hand, the phase velocity for the stabilized nonlocal model  (15) is real 
for all wave numbers, but the solution becomes inaccurate for wave numbers larger than k=20*2π/m. 
The stabilization proposed here  (15) can be interpreted as a high-frequency filter. 

4.2.2 Transient Wave Analysis in stratified semi-infinite domain 

The semi-infinite macro-domain shown in Figure 5 is considered to validate the stability and the 
accuracy of the proposed model  (15). The infinite domain in the vertical direction is modeled by 
periodic boundary conditions. The length of the domain in the horizontal direction is 1000mm. The 
boundary on the left is fixed, while the right edge is subjected to the impact load  (35). Finite element 
interpolations are the same as in the previous example. 
The impact load  (35) with duration time T=50µs, which produces Gauss function like wave of about 
260mm for the P-wave and about 45mm for the S-wave, is applied in the horizontal and vertical 
directions, respectively. Figures 6 and 7 show the time history of the horizontal nonlocal displacement 
at the center of the macro-domain for the horizontal load and the time history of the vertical 
displacement for the vertical load, respectively. Reference solutions were obtained by solving 
numerically the heterogeneous system. Good agreement between the proposed stabilized nonlocal 
model and the reference solutions can be seen, while the solutions obtained by the classical O(1) 
homogenization and by the previous macroscopically-isotropic nonlocal model  (16) err badly.  

4.2.3 Transient Wave Analysis in stratified finite domain 

Consider a square macro-domain of 260mm in each direction as shown in Figure 8. The vertical 
boundary conditions are the same as in the previous example. The horizontal boundaries are stress-free. 
Three unit cells denoted as A, B and C in Figure 8 are considered. From the macroscopic description 
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point of view the three cells are identical, but their reflections characteristics from the boundary are 
different. Figures 9 and 10 show the time history of the horizontal nonlocal displacement at the center 
of the macro-domain for the horizontal load with duration time of T=50µs and the time history of the 
vertical displacement for the vertical load, respectively. The solutions obtained by the proposed 
stabilized nonlocal model are generally in reasonable agreement with the reference solutions, while the 
solutions obtained by the classical O(1) homogenization show significant deviations. Figure 9 shows 
that as the time increases and the waves are reflected from the boundaries the proposed stabilized 
nonlocal model becomes inaccurate. 

4.3 Transient wave analysis in semi-infinite domain with checker-board microstructure 

Consider a semi-infinite macro-domain shown in Figure 5 with the checker-board microstructure 
shown in Figure 11. The load and the boundary conditions are the same as in Section  4.2.2. Figures 12 
and 13 show the time history of the horizontal nonlocal displacement at the center of the macro-
domain for the horizontal load and the time history of the vertical displacement for the vertical load, 
respectively. Good agreement between the proposed stabilized nonlocal model and the reference 
solutions can be seen, while the solutions obtained by the classical O(1) homogenization and by the 
previous model  (16) show significant discrepancies in particular for the vertical load in Figure 13. 

5 Concluding Remarks 

A stabilized nonlocal model for dispersive wave motion in heterogeneous media has been developed. 
The model has been validated for problems on infinite and semi-infinite domains. The model 
incorporates periodic boundary conditions between the unit cells including boundary layers and 
therefore does not properly resolve wave reflections from the boundaries. Various boundary layer 
approaches and appropriate matching schemes are currently being investigated. An additional 
drawback of the method stems from the C0-approximation of the assumed nonlocal strains and stresses. 
Various Discontinuous Galerkin formulations are currently being tested to allow for static 
condensations of these fields at the element level. 
An interesting observation is that the mass matrix (see equation  (30)), consists of the classical mass 
matrix (consistent or lumped), as well as a dispersion-induced mass, which depends on the 
microstructural properties and the relative size of the microstructure compared to the component size. 
For low strain rates the second term has been found to be negligible. Since the dispersion fourth order 
tensor ijklE  is positive definite (see equation (8)) the added mass term gives rise to lower deformation 
energy absorption at high strain rates recently observed in the crash experiments[11]. 
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Appendix 

Consider an infinitely stratified medium, in which dissimilar isotropic materials are stacked 
alternatively. As shown in Figure A1, the local coordinates of each stack is defined so that x2=0 is 
aligned along the centerline with x1 being same for all layers. λ and µ are Lamé’s constants and ρ is 
mass density. The subscript m denotes material phase. 
With the notation of 1−=i , phase velocity c, and wave number k, for matrix domain, the 
displacement of the plane harmonic wave propagating in the horizontal direction can be expressed as 
 [ ])(exp)()( 12 ctxikxmmm −= Axu  (A1) 

The displacements can be further decomposed as follows: 

 
0 div,0rot ==
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Considering equation  (A2), each element of u can be expressed as 
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where,  
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Stress components related to tractions at the interface are given as 
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Similarly, displacements and stresses in the fiber domain can be obtained by replacing the subscript m 
to f. 
Continuity conditions of displacements and tractions on each interface, yields the following eight 
equations: 
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resulting in 
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where 1 denotes 4x4 unit matrix and 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−
−−−−

−−−

=

)sin()1()sin(2)sin()1()sin(2
)sin(2)cos()1()cos(2)cos()1(

)sin()sin()sin()sin(
)cos()cos()cos()cos(

22

22

ffffffffmmmmmmmm

ffffffffmmmmmmmm

fffffmmmmm

fffffmmmmm

s

hksskhkqkqhksskhkqkq
hksksihkqskihksksihkqski

hksihkqiqhksihkqiq
hksshkqhksshkq

µµµµ
µµµµ

G  

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−
−−−−−−

−−
−

=

)cos()1()cos(2)cos()1()cos(2
)sin(2)sin()1()sin(2)sin()1(

)cos()cos()cos()cos(
)sin()sin()sin()sin(

22

22

ffffffffmmmmmmmm

ffffffffmmmmmmmm

fffffmmmmm

fffffmmmmm

a

hksskihkqkqihksskihkqkqi
hkskshkqskhkskshkqsk

hkshkqqhkshkqq
hkssihkqihkssihkqi

µµµµ
µµµµ

G

 
[ ]
[ ]Ttmlmtflfa

T
lmtmlftfs

baba

baba

=

=

A

A
 (A9) 

For the nontrivial solution of equation  (A8) to exist the determinant of the matrix must vanish. Hence, 
we have 
 0)det()det( =as GG  (A10) 

Note that from equations  (A8) and  (A3), the deformation has been decomposed into symmetric and 
asymmetric modes.  The det(Gs)=0 and det(Ga)=0 are the corresponding conditions, respectively. 
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Equation  (A10) must be solved numerically with respect to the phase velocity c for each wave number 
k. 
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Figure 1: Configuration of macroscopically isotropic medium and macrostructure 
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Figure 2: Horizontal nonlocal displacement at center 
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Figure 3: Configuration of microscopic unit cell of stratified medium 
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Figure 6: Horizontal nonlocal displacement at center for horizontal load 
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                               Figure 7: Vertical nonlocal displacement at center for vertical load 
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Figure 8: Configuration of macrostructure and microstructures 
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Figure 9: Horizontal nonlocal displacement at center for horizontal load 
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Figure 10: Vertical nonlocal displacement at center for vertical load 
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Figure 12: Horizontal nonlocal displacement at center for horizontal load 
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Figure 13: Vertical nonlocal displacement at center for vertical load 
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Figure A1: Horizontally stratified medium 


