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Abstract

In this paper, a general-purpose computational model for dispersive wave propagation in
heterogeneous media is developed. The model is based on the higher-order homogenization with
multiple spatial and temporal scales and the C°-continuous mixed finite element approximation of the
resulting nonlocal equations of motion. The proposed nonlocal Hamilton principle leads to the stable
discrete system of equations independent of the mesh size, unit cell domain and the excitation
frequency. The method has been validated for plane harmonic analysis and for transient wave motion
in semi-infinite domain with various microstructures.
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1 Introduction

The primary objective of this paper is to develop a mathematical and computational model for wave
propagation in heterogeneous media that would be both stable and accurate for a wide range of wave
frequency excitations. It is well known that the O(1) mathematical homogenization123 is valid for the
case of the wavelength A of a traveling wave significantly larger than the characteristic length / of the
heterogeneity. However, when the wavelength A is comparable to that of the characteristic length 7, the
wave motion is affected by the heterogeneity due to successive reflection and refraction waves from
the material interfaces, which is known as the dispersion, polarization correction, and attenuation
phenomena at the macro scale 9. For such a case, the higher-order homogenization theory with
multiple spatial and temporal scales has been used to resolve dispersion effects 5.

Fish and Chen 4 have shown that the higher-order homogenization with two spatial scales only
produces unbounded solution of stress as the time approaches infinity. To alleviate the problem of
secularity they introduced multiple slow temporal scales in addition to two spatial scales. One of the
solution procedures for the resulting macroscopic equations is based on the nonlocal approach, in
which the slow temporal scales can be eliminated. Fish et al.5 have validated this approach in one-
dimensional case and for macroscopically isotropic media in multiple dimensions.

In the present paper, we focus on developing a general computational framework for wave propagation
in macroscopically anisotropic heterogeneous medium. Attention is restricted to wave motion away
from the boundaries.

2 Brief Overview of Previous Work

2.1 Higher-Order Homogenization with Multiple Spatial-Temporal Scales

Assuming that the macroscopic length L = A/ (2x) is significantly larger than the characteristic length
[ of the heterogeneity, i.e., 0<// L = £<<1 8, consider macro- and micro- coordinate systems x and y,
respectively, related by

y=xl& Q)

Following 5, in addition to multiple spatial scales the following multiple slow time scales are
introduced

o=t hH=&t, 6=t )
Using the chain rule, the spatial and temporal derivatives can be expressed as
().=C), +e7(),
() =), +e (), +e(C),

where the comma followed by the subscript variable denotes the partial derivative and the
superscripted dot represents the full time derivative. The displacement field u is approximated using
the following asymptotic expansion:

®)

u(X, Yo lgrty,t,) = U (X, Voto, 8, ) + & UN(X, Y, tg, by, t,) + E7UP(X, Y, by, by, ty) + oo 4)
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Substituting equation (4) into the governing equation of wave motion and subsequently taking
perturbation with respect to ¢ gives a set of micro and macro equations of motion. Due to the linearity
of the micro equations and periodicity, the following decompositions of u’, u* and u? are made:

“?(Xf Yiloit,t,) = “I-O(thmtlltz)

(X, Yito,13,1,) = U7 (X, t,13,1,) + HY (y) e, (U°) ®)

uiz(xv Yiloitiity) = Uiz(xvto:tlvtz) +H/k/(y) € u l) + Rﬂd(y) (exkl(uo)),x/

where e,;(.) denotes the strain operator with respect to the macro-coordinates x, and H and P are
characteristic functions normalized as:

(H!)=0, (P")=0 (6)

where (;) denotes the averaging operator with respect to the micro coordinate y. H and P are obtained

from the solution of the unit cell (micro) problem subjected to macroscopically constant and linear
strain fields, respectively, with periodic boundary conditions. In absence of polarization effect 9, the
resulting macroscopic equations of motion up to O(&?) are given as:

O(l) : poul?toto - Di;)mn (exmn (uo)),x/ =0
O(): Py, = Dj @ (U)),, = ~( 0 Yews (U)o, 250, @)
0(‘92) : pOUiZ,tOtO - Di?mn (exmn (U 2)),,\', = Dijz'prmn (exmn (uo)),x, X,X; - <lek/ >(exk/ (U 1)),t0r0

- <pPijmn >(exmn (uo)),x,toto - 2:00Ui1,t0tl - 2<pHikl >(exkl (uo)),t0t1 - 2p0ui0,t0t2 - pO”x?qtl

where p and D are mass density and elastic tensor, respectively, and

Po=(p)
Dg'?kl = <Dg'[mn {eymn ( H kl) + 5nzk 5nl }>
Djs = By D + Ry ®)

Eiqu = <H:ijpq>
Ry =(-H!D, H +e,, (P")D,, e, (P")

* Héj (D‘gp"‘"e)”ml (P ’kl) - D.vrmn eymn (P e ) )>

ijprkl = mnst e yst

2.2 Nonlocal Model
To eliminate the multiple temporal scales #, #, ¢, in equation (7), equation (4) is averaged over the unit
cell (micro) domain:

U=(u=u+eU'+&U%+.- 9

Multiplying the second and the third of equation in (7) by s and &, respectively, then adding them to
the first of it, and finally utilizing the chain rule with respect to the temporal derivative yields

pOUi - Dt?mn (exmn (U )),x, - SZD;WM” (exmn (U )),x,,x[,x/

+&(pH!" e, (U) +&* (P )(e,,, (U)), +0(s%) =0 o

Solution of equation (10) by finite element method requires C-continuous interpolation due to
appearance of the fourth-order spatial derivatives. Furthermore, equation (10) gives rise to the
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imaginary wave speed for higher wave numbers whose wavelength A is smaller than the characteristic
length / 5. Even though the homogenization theory is not valid for 4 < /, these instabilities may arise
when fine meshes are used for the macro problem. In the next section, we present the C’-continuous
finite element formulation with stabilization.

3 Stabilized Nonlocal Modeling

In this section we focus on developing a new mathematical model based on equation (10), which will
be stable for all frequency excitations independent of either the unit cell size or the finite element
discretization. Moreover, the resulting discrete model will be based on the C°-continuous finite
element formulation.
For simplicity, attention is restricted to constant mass density. In this case, equation (10) can be
simplified as follows:

pOU[ - ngmn (exmlz (U )),x, - gZD? (exmn (U )).x,.x,,x, + 0(53) = O (11)

ijprmn

Assuming that €. (U),x,xﬂ is differentiable, only symmetric part of the sixth-order tensor Ry, with
respect to p and r affects the solution. Thus exploiting this symmetry, R can be rewritten as

R;’prkl = ]/ 2 (R[jpr/cl + Rijrpk] )
= ]/2 <_ H;j (Dyrtp + Dsptr )Htkl + (eymn (P Pif) ey.vz (P "k/) + e_vmn (P ”j) ey.vz (P pk/))Dmnsl >

From equation (12) it can be seen that Ry« = Ry Hence, the symmetric part R* of R can be recast
into the following matrix representation

(12)

Riy ;

Rigw Rigps: . Sym
RS = Ropin R§212113R521122 (13)
1,3,5,2,12,11, ,]?,;2,22,1,1 ,R;Z,I,Z,Z,Z . R ;,2,22,22, L

s K L DS N L ps
Rllell R121211 :R121122 R121222 :R121112

| Rizions Rizoors Rizzoe Rizoros i Riziore Rizoss |

Using eigen-analysis the matrix R* can be further decomposed into
R'=R" +R" (14)

where the eigenvalues of R*™ and R* are semi-negative and semi-positive, respectively. Introducing

assumed nonlocal strain €; and assumed nonlocal stress &, the following O(&?) approximation of the
nonlocal equation (11) can be obtained.

pUi = (Ez/ + gpoEi/‘kIexkl (U )),x, =0

. 0= 2ps—- = 15
6;,=D W TE Ryprk/ek/,x,,x, (15)
- 2,0 pst 0 —

€; =¢€y U)+e CW, Rmnprkl Cklsto-sf,xp.r,.

where C° is a compliance of the elastic tensor D°. Note that C°-continuous finite element interpolation
of displacements, assumed stresses and strains can be exercised for the discretization of equation (15).
A two-field variational principle was discussed by Peerlings et al.6 in attempt to utilize the C’-
approximation of the nonlocal fields. The two-field approximation is sufficient for stabilization in case



WCCM V, July 7-12, 2002, Vienna, Austria

R is a positive scalar quantity. However, the three-field approximation is required in case R is

indefinite.

Remark 1: 1f R and R’ are neglected, the irreducible form of the stabilized equation (15) reduces to:

pOUi ( o Sl (U)+5 PoE x/klexkl(U)) =0

This form has been shown to be valid for macroscopically isotropic media 5.

(16)

Remark 2: The proof of O(?) approximation (15) of the nonlocal equation (11) is given below.
Assuming that ¢, and &, are differentiable, applying strain operator e;(.) to the first equation

of (15) and multiplying it by & yields

xij

2
& pe. (U) = ( 5, ) +0(E") =0

Substituting equation (17) into the first equation in (15) we get
U, - (O' +&%E. &, ) +0(e")=0

ipq = qrix,x,

Similarly, substituting the third equation in (15) into the second yields

— 2 ps+ 0 — 2 ps— 4
o, = ykl e U)+e Ry Crs© s, TE Ryprk/exkz(u),x,,x, +0(e%)

Taking second-derivative of equation (19) and multiplying it by & yields
&'c =¢&'Dje, ), . +0(e")

sr,xpr XpXy

Substituting equation (20) into (19), we have
;= nglexkl U)+e ( orkd +Ryprk[) € (U)‘xpx,. +0(e")

ij ijprki

Finally, substituting equation (21) into (18), we have

polji - D;klexkz u ),x, (Eypq Dgrkl R;/:rk] + Ry[;kl) e (U ),xl,x,.x/ + 0(84) =0

=D?
ijprkl
Remark 3: The corresponding Hamilton principle of equation (15) is given as

jf[—5L(u,u,é,a)—ap(u,u,aa)]dt=0
D 1 1,
L(UvUve:O'):JQ 2 UUI+25p0 z/k/ew(U)exk/(U)

1
0= 2
—D,ee, + 25 RW“e

2 ikl ™ ij ij.x, el\l X,
Lo proco
& ijmn™ “mnprst Sf]([o-l/ X, o-kl,x,.

-5,(e, L) -¢,
5F(U.U.e5)=] SUf,+& poEyye s (U)n, Jar
I (56 R, +00, Cf

mn Rmnpmt

CstkIGAl x, )n[)dr

A7)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)



Gakuji Nagai, Jacob Fish, Katsushiko Watanabe

where Q and T denote the domain of macrostructure and its boundary defined by outward normal
vector n, respectively; ', corresponds to the boundary where traction f; = &,n; is prescribed. Note
that equation (23) coincides with the Hu-Washizu principle in dynamics when ¢ approaches to zero.

Equation (23) follows from
(6U)T, +e,, (8 V)& o ey (U))ded
- J.l'a 5Ui‘92poEijk/exk/ (U)",dr = jr“ oU, f,dl

J'Q(dU,poUi-ke

xij

= 0~ = 2ps- = P
I_Q (5 e;D e,—d¢; ¢ Ry, — de,0, )dQ (26)
+[ 52,6°R;, 8, n,d0 =0
— — = — 20 ps+ 0 —
[, (65,e,(0)-65,8,-55,, ¢ C° Ry Con Jao

mnprkl ™~ klst™ st x,,

+[65,6°C° RyiChuB,., n,dl =0
r ijmn

mnprkl ™ kst ™" st,x,,

which can be transferred into the weak form of equation (15) by taking integration by parts:

J.Q oU, (pOUi —0;+ ‘gpoEijklexk[ (U)) / dQ=0

jQ Se, (— G, +D° e, + &R e, )dQ =0 (27)
U)+&’C® R C° & )dQ =0

J‘Q 5 Ji/' u ei/' +e fimn mnprkl ™~ klst™ st,x ,x,

xij

Note that all boundary conditions in equation (23) can be neglected in case there is no reflection from
the boundaries. To resolve the boundary layers boundary-matching scheme is required 7, 10.

3.1 Finite Element Discretization

The following matrix notation is employed for the finite element discretization.

[Ul U, ]T =N,U, ’[exl].(U) e, (U) 2e,, (U)]T =B, U

Ue™~ e

. 1 _ _ _ _ _ _ _ _

[Ull 022 012] = NEeo-e ’ O-ll,,\'1 Ull,xz 022_\'1 022,)(2 0-12,):l 612,)( = BEeo-e (28)

. —_ T — — — — — _ _ _

[611 € 2elz] =N,8, €1y, Gy, €22,y €22x, 2612,,\'1 2612,x2]T =Bkt
where the subscript e denotes the element number; N, and By, are the shape functions and the strain-
displacement matrices, respectively.
Excluding the O(£?) boundary terms the stabilized nonlocal equation (15) is given as

nelm U nelm U f
DMAE+ > K 8=40 (29)
e=1 ELN e=1 —
c c 0
where,
My, 0 0 N/p Ny +&°Bj,pEB, 0 0
M.=[ 0 0 0|=] 0 0 0ldQ (30)
00| 0 00
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0 0 K 0 0 BN
K.=| 0 K. K. |= jq 0 NIDN,-&*BLR"B, ~NIN_, dQ (31)
K;E« KETE« Ku'*ay P N;L’BUE _NO'ZL’NEE _SZB;ECORSJrCOBEe
Static condensation of the assumed nonlocal stresses and strains gives:
MUU{U}+}ZUU{U}:{f} (32)
where
RUU = KUE(_ Kﬁ + KETEK;EIKEE)_IKLCE (33)

nelm nelm nelm nelm nelm

MUU = Z MUUU ) KUE = z KUE(, ) K@ = Z KEEL, ) KEE = z KEEL, ) KEE = Z KEEL, (34)
e=1 e=1 e=1 e=1

e=1
Since R* and R’" are semi-negative and semi-positive definite, respectively, — K__and K-! are semi-
positive and positive definite, respectively. Hence, — K + K7 K-!K__ is positive and K,,, is semi-
positive definite provided that the number of displacement degrees-of-freedom is larger than that of
the assumed stresses. Thus the discretized approximation (32) is unconditionally stable in dynamics.

Note that if only two-field principle were employed (see Peerlings et al.6), the discretized system
might be unstable due to the indefinite character of R’

4 Numerical Examples

To validate the proposed stabilized nonlocal model we consider plane harmonic and transient response
problems with different microscopic and macroscopic configurations.

4.1  Macroscopically isotropic medium

As the first example, let us consider the macroscopically isotropic microstructure shown in Figure 1.
Young modulus, Poisson’s ratio, and density are given as E;=1GPa, 1=0.2, p=10%g/m® for material
1 and E£,=50GPa, ,=0.2, p,=10%g/m* for material 2. The cell domain is discretized by 60x104 square-
shaped finite elements with four-node bilinear interpolation. The left edge of the macrostructure is
fixed, while the right edge is subjected to the distributed impact load in the form of one sine-like
function in the horizontal or vertical direction:

q(t):{ao(t—lec)){t(t—T)}“ OtStiT N mm? (35)
>

where aq is scaled so that —1<g(¢f)<land T denotes the load duration. The macrostructure is
discretized by square-shaped finite elements with eight-node serendipity interpolation for the nonlocal
displacement U; and four-node bilinear interpolations for both the assumed nonlocal strains €; and the
assumed nonlocal stresses ;. The size of the square-shaped elements is 5mm which corresponds to

the half-length of the cell. Newmark g method (5 =0, y=1/2) is employed for time integration.

The impact load (35) with duration time T=70us, which produces Gauss function like wave of about
135mm for the P-wave and about 82mm for the S-wave, is applied in the horizontal and vertical
direction. Figure 2 shows the time history of the vertical nonlocal displacement at the center of the
macro-domain for the horizontal load. The reference solution was obtained by numerically solving the
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heterogeneous system. Good agreement between the stabilized nonlocal model and the reference
solutions can be observed, while the solutions obtained by the classical O(1) homogenization shows
significant discrepancies. Moreover, it can be seen that the solutions obtained using the proposed
nonlocal model and the previously developed 5 macroscopically isotropic nonlocal model (16) are
almost identical.

4.2  Stratified Medium

Consider the periodic unit cell shown in Figure 3, corresponding to the horizontally stratified medium
composed of two dissimilar materials. The Young modulus, Poisson’s ratio, and density are the same
as in the previous example. The cell domain is discretized by 30° square-shaped finite elements with
four-node bilinear interpolation. Stratified medium is one of the configurations known to cause strong
dispersion. Waves traveling in the vertical direction can be modeled as one-dimensional problem,
whereas waves in horizontal direction have to be modeled in two dimensions.

4.2.1 Plane Harmonic Wave Analysis

To analyze the stability properties of the original nonlocal model (11) and the proposed nonlocal
model (15) we consider the plane harmonic wave analysis. Figure 4 plots the relation between the
wave number and the phase velocity for the wave propagating in the horizontal direction. Exact
solution 1213(for details see Appendix) is also plotted for comparison. In Figure 4, two lines for each
solution correspond to the lowest symmetric and asymmetric deformation modes. It can be seen that
the original nonlocal model (11) is unstable (phase velocity becomes imaginary) for the wave number
k=20*27t/m corresponding to the wavelength which is 5 times of that of the unit cell. This instability
shows up only in the case of the macroscopic domain discretized with the mesh size comparable to
that of the unit cell. On the other hand, the phase velocity for the stabilized nonlocal model (15) is real
for all wave numbers, but the solution becomes inaccurate for wave numbers larger than k=20*27/m.
The stabilization proposed here (15) can be interpreted as a high-frequency filter.

4.2.2 Transient Wave Analysis in stratified semi-infinite domain

The semi-infinite macro-domain shown in Figure 5 is considered to validate the stability and the
accuracy of the proposed model (15). The infinite domain in the vertical direction is modeled by
periodic boundary conditions. The length of the domain in the horizontal direction is 1000mm. The
boundary on the left is fixed, while the right edge is subjected to the impact load (35). Finite element
interpolations are the same as in the previous example.

The impact load (35) with duration time T=50us, which produces Gauss function like wave of about
260mm for the P-wave and about 45mm for the S-wave, is applied in the horizontal and vertical
directions, respectively. Figures 6 and 7 show the time history of the horizontal nonlocal displacement
at the center of the macro-domain for the horizontal load and the time history of the vertical
displacement for the vertical load, respectively. Reference solutions were obtained by solving
numerically the heterogeneous system. Good agreement between the proposed stabilized nonlocal
model and the reference solutions can be seen, while the solutions obtained by the classical O(1)
homogenization and by the previous macroscopically-isotropic nonlocal model (16) err badly.

4.2.3 Transient Wave Analysis in stratified finite domain
Consider a square macro-domain of 260mm in each direction as shown in Figure 8. The vertical

boundary conditions are the same as in the previous example. The horizontal boundaries are stress-free.
Three unit cells denoted as A, B and C in Figure 8 are considered. From the macroscopic description
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point of view the three cells are identical, but their reflections characteristics from the boundary are
different. Figures 9 and 10 show the time history of the horizontal nonlocal displacement at the center
of the macro-domain for the horizontal load with duration time of T=50xs and the time history of the
vertical displacement for the vertical load, respectively. The solutions obtained by the proposed
stabilized nonlocal model are generally in reasonable agreement with the reference solutions, while the
solutions obtained by the classical O(1) homogenization show significant deviations. Figure 9 shows
that as the time increases and the waves are reflected from the boundaries the proposed stabilized
nonlocal model becomes inaccurate.

4.3 Transient wave analysis in semi-infinite domain with checker-board microstructure

Consider a semi-infinite macro-domain shown in Figure 5 with the checker-board microstructure
shown in Figure 11. The load and the boundary conditions are the same as in Section 4.2.2. Figures 12
and 13 show the time history of the horizontal nonlocal displacement at the center of the macro-
domain for the horizontal load and the time history of the vertical displacement for the vertical load,
respectively. Good agreement between the proposed stabilized nonlocal model and the reference
solutions can be seen, while the solutions obtained by the classical O(1) homogenization and by the
previous model (16) show significant discrepancies in particular for the vertical load in Figure 13.

5 Concluding Remarks

A stabilized nonlocal model for dispersive wave motion in heterogeneous media has been developed.
The model has been validated for problems on infinite and semi-infinite domains. The model
incorporates periodic boundary conditions between the unit cells including boundary layers and
therefore does not properly resolve wave reflections from the boundaries. Various boundary layer
approaches and appropriate matching schemes are currently being investigated. An additional
drawback of the method stems from the C%-approximation of the assumed nonlocal strains and stresses.
Various Discontinuous Galerkin formulations are currently being tested to allow for static
condensations of these fields at the element level.

An interesting observation is that the mass matrix (see equation (30)), consists of the classical mass
matrix (consistent or lumped), as well as a dispersion-induced mass, which depends on the
microstructural properties and the relative size of the microstructure compared to the component size.
For low strain rates the second term has been found to be negligible. Since the dispersion fourth order

tensor £, is positive definite (see equation (8)) the added mass term gives rise to lower deformation
energy absorption at high strain rates recently observed in the crash experiments[11].
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Appendix

Consider an infinitely stratified medium, in which dissimilar isotropic materials are stacked
alternatively. As shown in Figure Al, the local coordinates of each stack is defined so that x,=0 is
aligned along the centerline with x; being same for all layers. 4 and x are Lamé’s constants and p is
mass density. The subscript m denotes material phase.

With the notation of i=+/~1, phase velocity ¢, and wave number k, for matrix domain, the
displacement of the plane harmonic wave propagating in the horizontal direction can be expressed as

u, (x) = A, (x,,) explik(x, —cr)] (A1)
The displacements can be further decomposed as follows:

um = uml + umz (AZ)
rotu, =0, divu, =0
Considering equation (A2), each element of u can be expressed as
U, = (Amll +4,, )eXp[ik(xl - Ct)] (A3)

Upp = (AmIZ +4,, )eXp[ik(x1 - Ct)]
where,

10
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A= a,, cos(kq, x,,)+ib,, sin(kq,x,,)

A, =-s,1{b,, cos(ks, x,,) +ia,, sin(ks,, xmz)} (A4)
A.0= 4, {bml cos(kq,,x,,,) +ia,, Sin(kqumz)}

A= a,, cos(ks, x,,)+ib,, sin(ks, x,,)

4, = -1, =0, +2u,)/p, (A5)
5, :\/m, et =u,/p,

Stress components related to tractions at the interface are given as

UanZ = iklum {(Sir _1)Amll - 2Am11 }exp[lk(xl - Ct)] (Ae)
0-m12 = iklum {ZAmIZ - (sir _1)Am[2 }exp[lk(xl - Ct)]
Similarly, displacements and stresses in the fiber domain can be obtained by replacing the subscript m

t(c:)c{;ltinuity conditions of displacements and tractions on each interface, yields the following eight
equations:
U, (X, =h,)= ufl(xfz = _hf) Uy (X, ==h,) = ”fl(x/z = hf)
Upo (X, = h,,) = Upp (xfz = _hf) , Uy (X, =—h,) = Upp (xfz = h;*) (A7)
22 (xm2 = hm) =0 (x/z = _h/) G 22 (me = _hm) =0, (x/'z = h/)

C (X, =h,) = O 2 (xfz = _hf) C oo (X, =—h,) = O 122 (xfz = h/’)

{GS OHl OHAS}:O A8)
0 1||0G,||A,

where 1 denotes 4x4 unit matrix and
cos(kq,,h,) —s, cos(ks, h,) —cos(kq /) —s, cos(ks h,)
iq,, sin(kq,,h,) isin(ks,h,) iq, sin(kq ;h,) isin(ks i)

S ip, k(s2 —1)cos(kq,h,) 2iu, ks, cos(ks,h,) —iyfk(sf =1 cos(kq, ;) —2iu ks, sin(ks h,)

—2u,kg,sin(kg,h,)  w,k(ss-Dsin(ks,h,) —2ukq, sin(kq h,) pk(s?=D)sin(ks h,)

resulting in

isin(kg,,h,) —is,, sin(ks,h,) isin(kq h,) is,sin(ks h,)
q, cos(kq, h,) cos(ks, A, ) —q,cos(kq h,) —cos(ks h,)

| =, k(s2 =Y)sin(kq,h,)  —2u,ks, sin(ks,h,) - /Jfk(si =Ysin(kq h,) —2u ks, sin(ks k)
2iu, kg, cos(kq,h,) —iu,k(s,-1)cos(ks,h,) —2iukq, cos(kqh,) iuk(ss—1)cos(ks h,)
As = [atf b[f aim blm ]T

A, = [al/' btf a,, b, ]T

(A9)

For the nontrivial solution of equation (A8) to exist the determinant of the matrix must vanish. Hence,
we have

det(G,) det(G,) =0 (A10)

Note that from equations (A8) and (A3), the deformation has been decomposed into symmetric and
asymmetric modes. The det(G,)=0 and det(G,)=0 are the corresponding conditions, respectively.
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Equation (A10) must be solved numerically with respect to the phase velocity ¢ for each wave number

Horizontal nonlocal Disp. U (u m)

Horizontal nonlocal Disp. U (u m)
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S E>=50GPa, p2=0.2
\é’ p2 = 10°kg/m*
& Ei= 1GPa, =02
S p1=10%g/m*

10mm (60FEs)
Figure 1: Configuration of macroscopically isotropic medium and macrostructure
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Figure 2: Horizontal nonlocal displacement at center
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Figure 3: Configuration of microscopic unit cell of stratified medium
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Figure 4: Phase velocity spectrum of stratified medium
iodi t
Periodic a 19
IlOmm (2FES) ‘ 1= T N
T
| | Ao
4 ?

1000mm (200FEs)

Figure 5: Configuration of periodic macrostructure
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Horizontal nonlocal Disp. U (#m)

Horizontal nonlocal Disp. U (u m)

— Reference
03 === Classical homogenization
P I [ S B i Previous
0.2 & o
A A Stabilized nonlocal
0.1 a &
n Al y j\ \(. J{i N f‘\ Al 2 !\& A
0 v ; \-J._,;'_T,td \-/F /.l"i‘o_' v‘.\)\f\’s‘\ 4“ i[‘ a4 “\ 7_'{&-“
] v ) S V7
0.1 ¥ rrj Vi
i / iy
-0.2 y
_0'30 100 200 300 400 500 600 700 800 900 1000
Time (usec)
——— Reference
03 === Classical homogenization
0.2 . N . N B i Previous
: 1 ﬂ Stabilized nonlocal
LN N Lozl
> NI ~ﬂ\ AN LA ‘D_f[‘\'f' /\}«ﬂ‘\,' -
A ) X A 2D L Ao A L L\ f )
NANRYA A Hw' ERA W \: "‘*4/ Y v v
01 Tyl thy
: ) 1Y
i 1]
0.2 .
-0.3
1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
Time (u sec)
Figure 6: Horizontal nonlocal displacement at center for horizontal load
T | — Reference
3 1 —--- Classical homogenization
e B Previous
2 05 Stabilized nonlocal
a -
® | J WA A A
8 O———— S e v an v e v AASASNS NS
= VN
c
e -0.
S 4
g
0 100 200 300 400 500 600 700 800 900
Time (usec)
0 | — Reference
2 1 === Classical homogenization e
> 1 e Previous H
% 05 Stabilized nonlocal .!..I".‘
9 W o \J,\/‘;‘\.V. & L S
g A\ A\vl 3\7/--\ -—7J Wil -\J«%;/A;;-n.\%
<
c -0
c
g
2
1000 1100 1200 1300 1400 1500 1600 1700 1800 1900
Time (usec)

1000

14

2000



WCCM V, July 7-12, 2002, Vienna, Austria

Horizontal nonloal Disp. U («m)
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Figure 7: Vertical nonlocal displacement at center for vertical load
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Figure 8: Configuration of macrostructure and microstructures
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Figure 9: Horizontal nonlocal displacement at center for horizontal load
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Vertical nonloal Disp. U (u m)
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Figure 10: Vertical nonlocal displacement at center for vertical load
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Figure 11: Configuration of checker-board microstructure
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Horizontal nonlocal Disp. U (x m)

Horizontal nonlocal Disp. U (x m)
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Figure 12: Horizontal nonlocal displacement at center for horizontal load
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Figure 13: Vertical nonlocal displacement at center for vertical load
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Figure Al: Horizontally stratified medium
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