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Abstract

A continuum stress measure is derived from molecular dynamics equations using a
Generalized Mathematical Homogenization (GMH) theory. GMH consists of solving a
coupled fine scale (atomistic unit cell) problem and a coarse scale (continuum) problem.
The fine scale problem derived can be interpreted as a molecular statics (at 0°K )
problem, where the coarse scale problem derived is a congtitutive law-free continuum
eguation, which calculates the Cauchy stress directly from atomistics. The continuum
stress derived is compared to various versions of the virial stress formula.

1 Introduction

An important issue in bridging atomistic and continuum scales is the calculation of
continuum fields from atomistics. The local virial stress IT. is commonly used to find the

local or atomic level stress in molecular dynamics computations. It was developed by
Clausius[1] and Maxwell [2] and gives the local stress around an atom
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where m, isthe mass of atom i, x, itsposition, u, its displacement; u, = du, /dt the
velocity ; x, = x; —x;; ® denotes the tensor or dyadic product of two vectors; O, is
the volume around atom  and £, designates the interatomic force between atoms 7 and

j computed as

f = 1) Xij ®)



where ,; = ‘x‘ is the distance between atoms ¢ and j; ® istheinteratomic potential or
the energy of the atomic ensemble; x; / z,; is the unit vector in the direction of x,;. In

Eqg. (2) for simplicity we considered the pairwise interatomic potential, which may be
inadequate for solids.

Thefirst term in EQ. (1) reflects the notion that motion of atoms across a fixed surface
applies pressure. The second term arises from interatomic forces. The first (kinetic) term
is small compared to the second (mechanical) for solids but is dominant for gases. The
local version of the viria stress has been shown to be erroneous in severa cases. For
instance, Cheung and Yip [3] have shown that for crystals with free surface the normal
component of the local viria stress does not vanish for atoms at the outer surface. To
circumvent some of the deficiencies found in local or point wise stress values, Cormier et
al. [4] based on the work of Lutsko [5] introduced the average virial stress. The average
viria stress, IT, in arepresentative volume © containing a number of atomsis given by
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Some authors argued that only the fluctuation part of the atomistic velocity should be
used in the virial formulas (1) and (3). This version has been suggested by Irving and
Kirkwood [6] and Hardy [7] among others. It modifies the expression of the average
virial stress as

—m, (1'11. — u) (u — u) ZXU

=i

(4)

where u isthelocal average velocity in ©.

Recently Zhou [8] and Zhou and McDowell [9] have cast some doubt on the validity
of the first, dynamical, term in the average viria formulas (3),(4) since the desired
continuum Cauchy stress is supposed to represent mechanical forces only. Based on the
conservation principles they suggested that the Cauchy stress o be equa to the
mechanical term in the average virial formula

SN, o, (5)

X, €0 j=i

It is important to note that many authors including Srolovitz et al. [10], Horstemeyer
and Baskes [11] and Alber et al. [12] among others adopted (5) as a measure of the
continuum stress.
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In this paper, we derive the Cauchy stress expression directly from the molecular
dynamics equations using the Generalized Mathematical Homogenization (GMH) theory
developed in Section 3. The theory derives a coupled atomistic-continuum problem
where the fine scale (atomistic) can be interpreted as a molecular statics (at 0°K )
problem, while the coarse scale is a constitutive law-free continuum equation, which
gives the overall or Cauchy stress directly from atomistics. This multiscale approach is
closely related to the Heterogeneous Multiscale Method (HMM) introduced by E and
Enquist [13]. The main difference between the GMH and HMM s that the coarse and
fine scale problems in GMH are derived directly from atomistics without making any a
priori assumption about the mathematical structure of these equations.

2 Governing Equations
2.1 Molecular dynamics equations of motion

We consider a periodic atomistic system composed of N atoms. The initial position
of atom ¢ in the reference configuration is denoted by X, , i=12,---,N . The

displacement of atom i with respect to the reference position is designated as u, . Upon
deformation, the new position of atom ¢ is x; given by

x, =X, +u, u=u(X;,t) (6)

or in spatia description as
Xi=x —u, w=u(x;,t) (7

The vector separating two atoms 7 and j in the reference configuration is given by
X =X, -X (8)

The corresponding vector separating the two atomsin the deformed configuration is

X; =X; —X 9)

Substituting Eq. (7) into (9) yields
x; =X, - X;+tu; —u; =X +u; -y (10)



Hereafter the Roman subscripts : and j are reserved for atom labels and will not be

subject to the summation convention. Spatial directions, for which summation convention
over repeated indicesis enforced, will be denoted by Greek subscripts.

For simplicity, we focus our attention on the pairwise potentials. However, the
formulation can be extended to the three-body potentials and the EAM (Embedded-atom
method) potentials [14]. We refer to [15, 16] for additional references. For pairwise
potentials, the interaction between atoms i and j is depicted by ®(x;). The interatomic

force f; applied onatom i by atom j isevauated based on Eq. (2).

The equation of motion for atom 7 can be written as

mu; = Z £ (Xij) (11)

i(#0)

u, =du, /dt represents the material time derivative of u, . The label j; denotes the
neighboring atoms which interact with atom+ , such that ‘x j —xi‘ <r,, with r, being the
cutoff radius. For stability issues related to the selection of the cutoff radius we refer to
[17]. For simplicity, theinitial external forces are absent.

Due to periodic atomic structure, the mass of the atom m and the interatomic forces
f; are assumed to be periodic. Attention is restricted to the case where the wavelength of
thetraveling signal 4 is much larger than the size of theunitcell | ,i.e, e=1/1 <« 1.

2.2 Multiple spatial scales and rescaling of the MD equations

Due to the rapidly varying interatomic potentials, two distinct spatial coordinates are
employed to describe the heterogeneity at the atomistic level: (i) the coarse scale denoted
by x, at which the atomistic features are invisible, and (ii) the atomistic scale or fine
scale, denoted by y . The two scales are related by

y=x/¢ O<exl (12)

The corresponding scales in the reference configuration are denoted by X and Y,
respectively and are related by Y =X/& . The resulting displacement field and its
derivatives are functions of x,y and t. Solution dependence on the fast time scale for

finite temperature applications is discussed in [18].



Prior to carrying out the multiple scale asymptotic analysis it is necessary to rescale
the molecular dynamics (MD) Eq. (11). We start by considering continuum equations of
motion pii(x) -V -0 =0, wherep is the mass density; o the Cauchy stress tensor and

V.o =dive denoting the divergence of the Cauchy stress tensor. For homogeneous
media, stress derivatives are of order one, whereas for heterogeneous systems, certain
components of stresses may be discontinuous, and therefore stress derivatives could be of

O(e™) . Assuming p ~ O(1) and the characteristic size of the unit cell | ~ O(g) then the
volume of the unit cell ® ~O(¢®) and m ~ p® ~ O(¢®) . For more details on rescaling,
werefer to [21]. Dividing Eqg. (11) by the volume of the unit cell, yields

ko, (x;,y;,t) = Z (Xu (13)

2 j(=i)

where k; and k, are O(1) constants. Comparing Eq. (13) to the continuum equation of
motion it follows that

fij (Xij) ~ 0(52) (14)
To thisend, we introduce the following O(1) quantities:
m=m/e*~0@), f(x;)=f(x;)/e*~0) (15)

Due to periodicity of masses, we have m=m(y). The rescaled MD Eq. (11) can be
expressed as.

m (y)u; (x;,y;,t) = Z (X” (16)

(=)

where u, (x;,y;,t) ~ O(1) inthe stretched coordinate system vy .

3 Generalized Mathematical Homogenization
3.1 Multiple-scale asymptotic analysis

We assume that the coarse scale coordinate x takes continuous series of values and
displacements u, (x,,y,,t) are continuous and differentiable inx, while the fine scale
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coordinate y is discrete. We denote the displacement at atom ¢ by u(x,y,,t) with x=Xx; .
The displacements of the neighboring atoms u,(x;,y;,t) are expanded using Taylor
series around the point x

u; :uj(x].,y].,t)
=u(x,y;,t)+Vu(x,y;,t) (x —xi)+%VXqu(x,yj,t):((xj %) ®(x; —x)) +---(17)

where the dot denotes contraction and ® designates dyadic or tensor product. In the
indicial notation, the components of the gradient of the displacement field u with respect
to the deformed coarse scale configuration x are given as

ou, (x,y;,t)
[qu(xiyj ’t)]aﬁ' :a—J (18)
Xy
and subsequently, EqQ. (17) can be rewritten as
aua(xiy]’ ’t)
Uj, = uja(Xj 1Y 1) = ua(Xan 1t)+T(Xm - Xi/;’)+
: ’ (19)
EM(X —X )X =X )4
2 axﬂax}/ iB )gﬁ ir Xi}’
From Eq. (17) we have
u; —uw =ug(xgLy ) - (x,ygLt)
=u(x,y;,t)—u(x,y;,t) +Vau(xy;,t)-(x; -x;) +
1 _ 5
vavxu(x’yj’t)'((xj_Xi)®(xj_Xi))+“' (20)
Since the coarse and fine scales coordinates are related by Eqg. (12), we have
Xij:Xj_Xi:g(yj_Yi):‘c"yij (21)

Inserting Eq. (21) into (20) yields



u; —w =u(xg,y gt —u(xg,yst)
1
=u(x,y;,t)-u(x,y;,t) + eV u(x,y;,t)-y; +52§vax“(x’)’j’t) Hy; ®y)+- (22)

A multiple scale asymptotic expansion is employed to approximate the displacement as:

u(x,y,t) =u’(x,t) + eu'(x,y,t) +--- (23)

where the leading order term u® is assumed to be independent of the fine scale
coordinate y ; In Eq. (23) only the first two terms in the asymptotic expansion are

considered whereas the remaining higher order terms are neglected.
Substituting the asymptotic expansion (23) into Eq. (22) yields

u, —u =gu'(x,y;)-u'(x,y,)+V,u’(x)-y; ]+

SV (0Y) ¥, 5 VLV ) 3, By )+ (22

where for notation brevity we omit the dependence of displacementsontime ¢ .

The position vector separating two atoms i and j in the reference configuration
expressed in the stretched coordinate y is denoted by

Yij:Yj—Yi:(Xj—Xi)/g:Xijlg (25)

where Y; ~O(1).
Substituting Egs. (24) and (25) into (10) yields

x; =X +tu; —u; =g (X,y)+82l//ij (x,y)+- (26)

where
¢ (x,y) = Y, + ul(X’yJ' ) _ul(X’Yi )+ quo(x) Y (27)
v (x,y)= qul(x1y1)'yij +%vax“0(x) (Y ®yy) (28)



Since ¢ (x,y) ~O() and ; (x,y) ~O(), we have

H52Wij (X1Y)H

~0 29
L] O (29)

where ||| denotes the vector norm. Due to (29) the normalized interatomic force can be
expanded around &g as

fj(xij)zfj(ggéj +€2l//ij +--)

T () + Z; (&, 4+ oy, ) (30)
where
4 (x,y) = &g (x,y) (31)

We further define the normalized gradient f; ~ O(1) as

_, of o,
fi=—=¢—= (32)
od od
Equation (30) can be rearranged as
f,0) = T(d)+ T () (v +-) + oy +-+) (33)

Substituting the asymptotic expansion (23) and Eq. (33) into the rescaled molecular
dynamics equations of motion (16) yields

m (Y)[E° (x,t) + i’ (x,y;, 1)+ ] =% DI @)+ (@) ey +)+ 0y +-] (39)

j(=1)

Collecting terms of equal power of ¢, gives the equilibrium equations at different
orders starting at O(s™) :

O™: D f(4)=0 (35)

J(=1)



O(=%): M)iE°(xt) =Y [T(4)-v;] (36)

(=)

3.2 Theatomistic unit cell problem

Consider the O(¢™") equilibrium equation (35) first. Substituting the normalized
interatomic force vector (15) into Eq. (35) yields

> t,(#)=0 Vi (37)

()
From Eq. (27) we have
;15j = &g (x,y) = &lY; +u1(x,yj )—u'(x,y,)+V u’(x)- Y]
=X +ﬁl(x1y1)_ﬁl(X’Yi)+Vx“0(x)'xij (38)

where
i'(x,y) = cu'(x,y) (39)
From Egs. (9), (21), (26) and (31), we have
ey =x; = e (x,y) = (xy) (40)
Inserting Eq. (40) into (38) yields

(1-Vu'(x)- @ (x,y) =X, +a'(x,y,) - d'(x,y;) (41)

where 1 is the second order identity tensor. Defining the inverse of the coarse scale
deformation gradient as (F“)f1 =1-V_ u'(x), itfollowsthat

¢ (x,y) = F°(x)- (X, + ' (x,y,) -6 (x,,)) (42)
Inserting EQ. (42) into (37) yields the atomistic unit cell problem

Zf (FO(X) [XU +u'(x, Y- u'(x, y,)]) 0 Vi (43)

(=)




Motion of atoms is governed by two sources: (i) the uniform coarse scale deformation
gradient, F°, and (ii) the fine scale correction u'(x,y) induced by the heterogeneity of

the atomistic structure. This fine-scale contribution u* can be interpreted as a correction
to the classical Cauchy-Born rule. Eq. (43) reflects the fact (c.f. Born & Huang [19]) that
when a macroscopically uniform strain is applied on the atomistic cell, the deformation
field is generally nonuniform, i.e., an internal relaxation occurs and the corresponding
inhomogeneous atomic displacements are determined by the equilibrium condition of
each atom in the cell [12].

3.3 The coarse scale equations of motion

We proceed by considering the O(&°) equilibrium equation (36). Substituting the
normalized quantities (15) into (36) yields

MW’ () =¢> [fj ()] Vi (44)

(=)

Summing Eq. (44) for all atoms in the unit cell and dividing the resulting equation by
the volume of the unit cell, ©, yields

Sy M-S Y Y I6) v (45)

i j(#)

Since the above summation is performed over the unit cell, the coarse scale field
u’(x,t) istaken as constant for all the atoms in the unit cell. Recalling the definition of
mass density as

=¥ me) (46)

then Eq. (45) can be written as

pii°(x,1) == ZZ[ ()] (47)

ij(=)

Further exploiting the chain rule yields
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of, of. O¢
V.t =4 __ 4 3 _ fli .ij
ox O¢ ox

From Eq. (38), we have
V=V, [Yu + ul(X’yJ' )—u'(x,y;)+V,u’(x)- N ]
= qul(xy y,- ) _qul(X, yi ) + vaxuo(x) . yij

Substituting Eg. (49) into (48) yields

fi[Vu'(xy)-Vu(xy)+V.Vu'(x)y]=Vf

From Eq. (28), we have

' ' 1 .
fy -y =1, '[qul(x’yi)'yﬂ +§vax“0(x) (¥ ®yy)]

, 1
=f; '[qul(x1yj' )+ (vavxuo(x) A )] Yi

1,
:Efij '[vaul(x’yl')"'(vaxuo(x)')’ij )]'yij
1.,
=S V(e y)) -V (y) + (V.Y 0’ (x)-y)l -,

+1f' [V ui(xy) + Vi (x,y)] -y,

In view of Eq. (50), Eq. (51) can be written as

1

! 1 !
£y, = ZVXf” Yits £ [V, (u'(x,y)+u'(x,y))]-y;

To proceed with the derivation, we recall the identity

V. - (v®wW)=vV_-w+V v-w

11
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where v and w are vectors, and for the special case of w being independent of x we
have

V -(vBw)=V v-w (54)

Based on Eq. (54), Eq. (52) can be written as
' 1 1 i 1 1
fi v :va -[f; ®yij]+§fij Vol (xy) +u(xy;) ®y;] (55)
Substituting Eq. (55) into Eq. (47) yields

P’ (x,1) :iz Z{Vx [f; ®x; 1} +
20

ij(=)

%iz TGV (W) rwitey ))ox, ) (56)

In the remainder of this section we show that the second term in Eqg. (56) vanishes for
a periodic atomistic medium. We start by recalling

X; =X; —X; =X, —Xj U, —u; =-X;
) (57)
=eg (x,y) ey (x,y) +--
where
¢ (x,y) =4 (x,y) =Y, +u'(x,y;) —u'(x,y )+ V,u’(x) -y, (58)
1
Vi (x,y)= Vi (x,y)= vx“l(xn}’j)'yj'i _vavxuo(x) : (yji ®yji) (59)
The Newton’ s third law requires
fij = _fji (60)
From Egs. (58) and (60) we have the following relation
, of; of; of ofy .,
fij = == == = = fji (61)
og, og, o(-¢,) 094,
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Let the interacting neighbor atoms of atom : be denoted as n;,n,,---,n,,---,n, where

k is the number of the interacting atoms such that |x, —xi‘<rc, p=12.---,k. The

second term in EQ. (56) can be expanded as

D 2 A Vol y) +ut(xy ) @ (x; - x)

ij(=)
= Dt Y, () el (x,y,) @ (x, — X))
+Eﬁ'V{Ku%xy0+u%xy%»Cﬂxm—mﬂ+ (62)
et BV [y Fut (Y, )@ (x, —x)] +
ot B VL y) ey, ) © (x, —x)]}

The summation in (62) is carried out over all atoms in the unit cell. First, we consider
the case that both atom 7 and any of its interacting neighboring atoms n, (p=12,---,k)

arein the unit cell. The summation for each interacting atom pair given by

£, -V, [y) +ul(ny, ) ®(x, —x)]+

(63)
£,V [y, ) +u'(xy)®(x -x,)]=0 (p=12--k)

vanishes due to Eq. (61).

If any of the interacting neighboring atom n lies outside the unit cell, by periodicity,
the displacement and force vector of atom n, take the same value as the corresponding

atom in the unit cell and thus summation (63) holds. More details are provided in the
Appendix for a model problem of an atomistic chain with a second nearest neighbor
interaction.

In view of Egs.(62) and (63) we have

22 ALVl (xy) et (xy ) ®x =0 (64)

i ()

Substituting Eqg. (64) into (56) yields

.0 1
pu(x,t) =V, {%z z [f; ®x; } (65)

i)
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where x;; is evaluated based on Eq. (42)
x; = e (x,y) =F°-(X; +i'(x,y ) - 0" (x,,)) (66)

The coarse scale governing equations of motion can be written as

pi’(x,t)-V_-o=0

1
0=%Zqu ®X;

i)

(67)

where o in Eq. (67) coincides with the Cauchy stress. By comparing Eq. (67)b and Eqg.
(4) it can be seen that Cauchy stressisidentical to the mechanical term in the virial stress
formula. Note that symmetry of Cauchy stress follows from the balance of the angular
momentum and therefore the order of the tensor product between f; and x; is

interchangeable. We will refer to (67)b as the modified virial formula.

4 The two-scale information-passing algorithm and verification
The two-scale problem described by Egs. (43) and (67) can be solved as follows:

) Solve the coarse scale problem (Eqg. (67)a with appropriate initial and
boundary conditions) using finite element semidiscretization in space and
explicit time integration and calculate the coarse scale deformation gradient
F'(x,t)

(i)  For every Gauss point in the coarse scale, solve the unit cell problem for
u'(x,y,) using Eq. (43) and calculate the Cauchy stress by Eq. (67)b. Go to (i).

4.1 Formulation of the model problem

In this Section, we detail the formulation, implementation and verification of the
generalized mathematical homogenization approach for the model problem of the atomic
chainillustrated in Figure 1.
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Figure 1: An atomic chain with the three-atom unit cell

We suppose that the atoms are initially equally spaced with spacing a and every atom
interacts only with its nearest neighbors. The interatomic potentials are assumed to take
the form of the Lennard-Jones potential. The interatomic potential between the first and
the second atom in the unit cell is @, and that between the second and the third atom is

®, given by
@,(r) = 4&1[(%)” - (%)6] L Dy = 482[(%12 - (%)6] (68)

where ¢ and ¢, are characteristic energy scales of the interaction and o the
characteristic length scale of the interaction. We assume that the initial configuration of
the atomic chain isin equilibrium without external forces so that a=2"°c .

The interatomic forces are evaluated as

(R IR CAR G

dr o r r dr o r r

Jon

The atomistic unit cell problem (43) reducesto
f;,i+1(Fo(a + 721<$7 yz‘+1> - ,&l<$’ yz))) -

ch'—l.i(FO(a + ﬁl(x, Y,) — ﬁl(x’ Y1) =0 Vi=0,1,2 (70)
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Eq. (70) providesthree equationsfor : =0,1and 2. Due to periodicity
Foo=1lor fs =l (zy,)=1(zy)="1(y), @(y)=171(zy)71)
only one of the equations is independent, given by
fu(F(a+ 14 (z,y,) — @'(2,9,))) —

j‘iQ(Fo(a—1—121(33,%)—121(:5,%))): 0 (72)

There are two unknowns in Eq. (72). To solve for Eg. (72), we specify periodic
boundary conditions

i'(z,y,) = 4'(z,,) = 0 (73)
Inserting EQ. (73) into (72) yields the nonlinear unit cell problem

fu(F(a + @' (2,,))) = fo(F'(a — @' (2,3,))) = 0 (74)

The constitutive law-free coarse scale equation of motion (67) becomes
pli’(x,t)—c, =0 (75)

with theinitial and boundary conditions:

u'(z,0)=p(z),  4'(x,0)=q(z) (76)
u’(0,¢) =0, o(Lit)=0 (77)

where L is the length of the atomic chain. Assuming a unit cross-sectional area for the
atomistic chain the mass density is given by

1 2
pzjzmi(y):(ml'i'mﬁ/l (78)
=1
and the Cauchy stress is
13 13 13
szz Z fi %, =EZ[ fiiaXia+ fiiaXal :EZ[ fiinXiat finXxayl (79)
i1 (1) i1 i1
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with

Lijr1 = F(J[a + ' (z, Yipr) — u'(z, Y;)]

g, = F'la+d'(z,y,)— @' (z,y,,)] (80)
In view of the periodicity conditions

Joo = hs> Tor = T3 (81)

the Cauchy stress reducesto

-+ flz 'R (82)

4.2 Thetwo-scale algorithm

The coarse scale equation (75) depends on the fine scale variable 4", which is
determined by the nonlinear unit cell problem (74) subjected to the periodic boundary
conditions (73). The nonlinear unit cell problem in turn depends on the coarse scale
deformation gradient F°, which is obtained from the constitutive law-free coarse scale
equation of motion. The coarse scale equation of motion (75) and the nonlinear unit cell
problem (74) are coupled and have to be solved concurrently.

The two-scale algorithm summarized in this Section is based on the finite element
semidiscretization in space and explicit time integration for advancing the coarse scale
problem and the Newton’s method for solving a sequence of nonlinear molecular statics
problems. Alternatively, fixed-point iteration methods discussed in [17] can be employed
to improve robustness but at the expense of super-linear rate of convergence.

Finite element semidiscretization of the weak form of the coarse scale equation yields
the semi-discrete equations of motion

Md(t) + £ (d(t)) = 0 (83)
with initial conditions

d(0)=d,, d(0)=d, (84)

17



where d(t) is the vector of nodal displacements; M and f"(d(¢)) are the usua

definitions of mass matrix and internal force vector. Eq. (83) is integrated using explicit
time integration. For details, we refer to [20].

The nonlinear unit cell problem (74)
9(z) = f(F'(a +2)) = fo(F'(a—2)) = 0 (85)
is solved using Newton-like method with prescribed F° and z = 4'(z,,) .

At each time step, the nonlinear unit cell problem (85) is first solved for 4'(z,,), then
the Cauchy stress o and the internal force vector f"(d,,) are evaluated.

4.3 Verification

We consider an atomistic chain consisting of 601 atoms schematically depicted in
Figure 1. The fixed-free boundary conditions are assumed. The chain is subjected to a
bell-shaped initial displacement pulse with width 26 centered at the midpoint of the
atomic chain. The atomistic chain possesses a periodic structure with the unit cell of
length | composed of three atoms with masses m and m, . The inter-atomic potentials are
Lennard-Jones potential given in Eq. (68). Material parameters are: m,/m =2 and
&,1&=3. The ratio between the pulse width and the size of the unit cell is set to
n =206/l =280 in order to minimize the effect of dispersion, which cannot be captured by

the O(1) theory developed in the manuscript. We refer to [21] for a methodology aimed
at resolving dispersion effects.

The time step for the integration of the coarse-scale equation of motion is chosen
approximately as the time for the wave to transverse a unit cell:

At =1/c, c=+E/p (86)

where E isthe homogenized property evaluated based on the quadratic approximation of
the interatomic potentials

kKl 36 x4'%¢ 36 x4'%¢,
—l2 k=L, =2

E - ) )
k, + E, o’ o’

(87)

The choice of the time step A¢_for the molecular dynamics simulation is dictated

m

by the natural fine scale time scale [22] evaluated as
18



T=o0m/e (88)

where ¢,0 and m are the characteristic energy and length scales of the interatomic
potential and the characteristic mass of the atom, respectively. Choosing At of the 1-
2% percent larger than 7 generally leads to satisfactory energy conservation [22].
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Figure 2: Displacements and stresses (d /| = 0.006)

In our numerical investigation, the ratio between the time steps of the coarse-scale
equation of motion and the molecular dynamics simulation is = At /At =3. In

general, however, when a unit cell contains thousands of atoms, this ratio would be
substantially higher.
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Figure 3: Displacements and stresses (d /| = 0.18)

The displacements at atom 401, the Cauchy and viria

stresses in the unit cell
containing atom 401 are plotted in Figures 2 and Figure 3. In Figure 2, the amplitude of
the pulse is relatively small compared with the size of the unit cell (d/1 =0.006) giving
rise to linear wave propagation, whereas in Figure 3 the amplitude of the pulse is
comparable to the size of the unit cell (d/I =0.18) resulting in nonlinear wave
propagation. We compare four methods. the proposed nonlinear GMH, homogenization
techniqgue employing harmonic approximation of the interatomic potentials, the

homogenization technique with the coarse-scale stress evaluated according to the virid
formula Eg. (3) and the reference solution based on molecular dynamics.

It can be observed from Figure 2 and Figure 3 that for relatively small excitations, the
harmonic approximation provides a satisfactory solution, while in the nonlinear regime,
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the responses predicted by the harmonic approximation is inadequate. On the other hand,
the response predicted by the nonlinear GMH compares favorably with the molecular
dynamics simulation. The response predicted by the virial formula (EQ.(3)) shows a
considerabl e deviation from the molecular dynamics solution.

For the model problem considered, the deviation from the average velocity in the unit
cell has been found to be small compared to the average velocity. Thus, the version of

the virial formula given in Eq. (4) provides comparable results to the GMH approach
developed in this manuscript.

5 Appendix

Consider the 1D atomistic unit cell depicted in Figure 4 consisting of n+1 atoms. The
linear mass density is

p:(m1+m2 + my +"'+mn,)/l (89)

where by periodicity m, =m,.

m m m m m,
e 6 ¢ & o ... ©o
1=-1 0 1 2 3 4 n N+1 Nn+2
[

le »l
I~ 'I

Figure 4: Atomistic unit cell

Assuming the second nearest neighbor interaction, the summation in Eqg. (62) is
expanded as

2 2 A6 Vol y) +ut ey DO (xy = x)I =3 D { FTu (x ¥) + U (% y 104 = %)}

~ & i)
- Zn:{ fiEi—Z)[ui(X, y,)+ U>1<(X1 Yi)I(X o= %)+ fiEi—l)[u>1<(X’ yi)+ ui(x, Yl (X = %)+

fien [ (% Y1) + U (6 V)] (60 = %) + Ty [UL 06 ) + U (X W01 (X2 = %)}
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1( 1)[u (X, y1)+u (X, YD)l (X, = %) +
ol (% ¥4) + U (%, o)1 (% = %) + Fo[Us (%, ¥) + Uy (% Y,)1 06 — %) +
FiAlus (6 ¥3) + U (6 Ya)] 06 = %) + Foo[U5 (%, ¥,) + U (% Vo)l (% = %,) +
Fau[Uy (X, ¥2) + Uy (% Y1 (% = %) + Tl U (X, o) + U (X, Ya)] (% — %,) +
FoalUs (X, ¥,) + U5 (%, V)] (%, = %) + T [U (X, Ya) + U5 (X, Y)] (6 — %3) +
FanlUs (%, Ya) + U (X, Y,)1 (% = %) + Fog[Uy (X, ¥s) + Uy (X, Y, )1 (%, = %) +
Fas[Us (X, ¥5) + U (% Ya) (% = %5) + Fol Uy (%, Ya) + U (X, Y5)1 (% = X,) +
f4’3[u>1<(x, y4) + Ui(X, ys)](xs - X4) + f‘,'S[Ui(X, y4) + u>l<(xy ys)](xs - X4) +
’[ul(x ¥a) U (%, V) (% = X,) ++--+
-3y LU 0% Yo g) U (6 Yo )] (s = %o 0) + Tz [U O Yig) + U5 (X, Y )] (% = %, 0) +
(n 1)n[u (X Yn- 1) +U (X yn)](xn Xz 1)+ f(n 1)(n+1)[ux(xi Yn71)+ux(x1 yn+1)]()§q+1_ Xn—1)+
o2 LU 0% V) + U5 (%, Y )1 (%5 = %) + Frin o [UL 06 Vo) + U 06 Yo )T (X, 4 = %) +
n(n+1)[u (X yn)+u (X yn+1)](xn+l Xn)+ fn(n+2)[ux(X! yn)_,_u)l((x’ yn+2)](xn+2_xn)

= fl,(—l)[u>l((xl Yo) + Uy (%, Y_ )1 (X, — %) +
1'0[U1(X y1)+ul(x Yol (% —%) + fz'o[ul(x Y2)+U1(X Yol (% —%,) +
F e (U 06 Yos) + U (6 Yo )] (Xoug = Xo0) + Fgy [ (% ¥) + U (X, Yo )] (g = X,) +
n(n+2)[u (X yn)+u (X yn+2)](xn+2 Xn) :0 (90)
The equality (90) is obtained due to the periodicity
f!

1 1A 1
(n-1(n+1) — f(-1)1' fn(n+l) = f01’ (91)

fn!(n+2) = folz’ Xia = X X=X X1 = X X2 =% (92)
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