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Abstract  

A continuum stress measure is derived from molecular dynamics equations using a 
Generalized Mathematical Homogenization (GMH) theory. GMH consists of solving a 
coupled fine scale (atomistic unit cell) problem and a coarse scale (continuum) problem. 
The fine scale problem derived can be interpreted as a molecular statics (at 00 K ) 
problem, where the coarse scale problem derived is a constitutive law-free continuum 
equation, which calculates the Cauchy stress directly from atomistics. The continuum 
stress derived is compared to various versions of the virial stress formula. 

 

1 Introduction 

An important issue in bridging atomistic and continuum scales is the calculation of 
continuum fields from atomistics. The local virial stress iΠ  is commonly used to find the 
local or atomic level stress in molecular dynamics computations. It was developed by 
Clausius [1] and Maxwell [2] and gives the local stress around an atom i  
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where  im  is the mass of atom i ,   ix  its position, iu  its displacement; /i id dt=u u  the 
velocity ; x x xij j i= − ; ⊗  denotes the tensor or dyadic product of two vectors; iΘ  is 
the volume around atom i  and ijf designates the interatomic force between atoms i  and 
j  computed as 
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where ij ijx = x  is the distance between atoms i  and j ; Φ  is the interatomic potential or 
the energy of the atomic ensemble; x /ij ijx  is the unit vector in the direction of xij . In 
Eq. (2) for simplicity we considered the pairwise interatomic potential, which may be 
inadequate for solids.  

The first term in Eq. (1) reflects the notion that motion of atoms across a fixed surface 
applies pressure. The second term arises from interatomic forces. The first (kinetic) term 
is small compared to the second (mechanical) for solids but is dominant for gases. The 
local version of the virial stress has been shown to be erroneous in several cases. For 
instance, Cheung and Yip [3] have shown that for crystals with free surface the normal 
component of the local virial stress does not vanish for atoms at the outer surface. To 
circumvent some of the deficiencies found in local or point wise stress values, Cormier et 
al. [4] based on the work of Lutsko [5] introduced the average virial stress. The average 
virial stress, Π , in a representative volume Θcontaining a number of atoms is given by 
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Some authors argued that only the fluctuation part of the atomistic velocity should be 
used in the virial formulas (1) and (3). This version has been suggested by Irving and 
Kirkwood [6] and Hardy [7] among others. It modifies the expression of the average 
virial stress as 
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where u  is the local average velocity in Θ . 

Recently Zhou [8] and Zhou and McDowell [9] have cast some doubt on the validity 
of the first, dynamical, term in the average virial formulas (3),(4) since the desired 
continuum Cauchy stress is supposed to represent mechanical forces only. Based on the 
conservation principles they suggested that the Cauchy stress σ  be equal to the 
mechanical term in the average virial formula 
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It is important to note that many authors including Srolovitz et al. [10], Horstemeyer 
and Baskes [11] and Alber et al. [12] among others adopted (5) as a measure of the 
continuum stress. 
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In this paper, we derive the Cauchy stress expression directly from the molecular 
dynamics equations using the Generalized Mathematical Homogenization (GMH) theory 
developed in Section 3. The theory derives a coupled atomistic-continuum problem 
where the fine scale (atomistic) can be interpreted as a molecular statics (at 00 K ) 
problem, while the coarse scale is a constitutive law-free continuum equation, which 
gives the overall or Cauchy stress directly from atomistics. This multiscale approach is 
closely related to the Heterogeneous Multiscale Method (HMM) introduced by E and 
Enquist [13]. The main difference between the GMH and HMM is that the coarse and 
fine scale problems in GMH are derived directly from atomistics without making any a 
priori assumption about the mathematical structure of these equations. 

 

2 Governing Equations  

2.1 Molecular dynamics equations of motion  

We consider a periodic atomistic system composed of N  atoms. The initial position 
of atom i  in the reference configuration is denoted by iX , 1, 2, ,= "i N . The 
displacement of atom i  with respect to the reference position is designated as iu . Upon 
deformation, the new position of atom i  is ix   given by 

 i i i= +x X u ,     ( , )i i i t=u u X  (6) 

or in spatial description as 

 i i i= −X x u ,    ( , )i i i t=u u x  (7) 

The vector separating two atoms i and j in the reference configuration is given by 

 X X Xij j i= −  (8) 

The corresponding vector separating the two atoms in the deformed configuration is  

 x x xij j i= −  (9) 

   Substituting Eq. (7) into (9) yields   

 x X X u u X u uij j i j i ij j i= − + − = + −  (10) 
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Hereafter the Roman subscripts i and j are reserved for atom labels and will not be 
subject to the summation convention. Spatial directions, for which summation convention 
over repeated indices is enforced, will be denoted by Greek subscripts. 

For simplicity, we focus our attention on the pairwise potentials. However, the 
formulation can be extended to the three-body potentials and the EAM (Embedded-atom 
method) potentials [14]. We refer to [15, 16] for additional references. For pairwise 
potentials, the interaction between atoms i and j is depicted by ( )Φ ijx . The interatomic 
force ijf  applied on atom i  by atom j  is evaluated based on Eq. (2). 

   The equation of motion for atom i can be written as 

 
( )

( )u f xi i ij ij
j i

m
≠

= ∑��  (11) 

/i id dt=u u�  represents the material time derivative of iu . The label j denotes the 

neighboring atoms which interact with atom i , such that j i cr− <x x , with cr  being the 
cutoff radius. For stability issues related to the selection of the cutoff radius we refer to 
[17].  For simplicity, the initial external forces are absent.  

Due to periodic atomic structure, the mass of the atom im  and the interatomic forces 

ijf  are assumed to be periodic. Attention is restricted to the case where the wavelength of 
the traveling signal λ  is much larger than the size of the unit cell l , i.e., / 1lε λ= � . 

 

2.2 Multiple spatial scales and rescaling of the MD equations 

Due to the rapidly varying interatomic potentials, two distinct spatial coordinates are 
employed to describe the heterogeneity at the atomistic level: (i) the coarse scale denoted 
by x , at which the atomistic features are invisible, and (ii) the atomistic scale or fine 
scale, denoted by y . The two scales are related by 

 / 0 1y x ε ε= < �  (12) 

The corresponding scales in the reference configuration are denoted by X  and Y , 
respectively and are related by / ε=Y X . The resulting displacement field and its 
derivatives are functions of ,x y and t . Solution dependence on the fast time scale for 
finite temperature applications is discussed in [18]. 
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Prior to carrying out the multiple scale asymptotic analysis it is necessary to rescale 
the molecular dynamics (MD) Eq. (11). We start by considering continuum equations of 
motion ( ) 0u x σρ − ⋅ =�� ∇ , where ρ  is the mass density; σ  the Cauchy stress tensor and 

divσ σ⋅ =∇  denoting the divergence of the Cauchy stress tensor. For homogeneous 
media, stress derivatives are of order one, whereas for heterogeneous systems, certain 
components of stresses may be discontinuous, and therefore stress derivatives could be of 

1( )O ε − . Assuming (1)Oρ ∼  and the characteristic size of the unit cell ( )l O ε∼  then the 
volume of the unit cell 3( )O εΘ ∼  and 3( )im Oρ εΘ∼ ∼ . For more details on rescaling, 
we refer to [21]. Dividing Eq. (11) by the volume of the unit cell, yields 

 1 3
( )2

1( , , ) ( )u x y f xi i i ij ij
j i

k t
k

ρ
ε ≠

= ∑��  (13) 

where 1k  and 2k  are O(1) constants. Comparing Eq. (13) to the continuum equation of 
motion it follows that 

 2( ) ( )f xij ij O ε∼  (14) 

   To this end, we introduce the following (1)O  quantities: 

 3/ (1),m m Oε= ∼      2( ) ( ) / (1)f x f xij ij ij ij Oε= ∼  (15) 

Due to periodicity of masses, we have ( )m m= y . The rescaled MD Eq. (11) can be 
expressed as: 

 
( )

1( ) ( , , ) ( )y u x y f xi i i i ij ij
j i

m t
ε ≠

= ∑��  (16) 

where ( , , ) (1)i i i t Ou x y ∼  in the stretched coordinate system y . 

 

3 Generalized Mathematical Homogenization  

3.1 Multiple-scale asymptotic analysis  

We assume that the coarse scale coordinate x  takes continuous series of values and 
displacements ( , , )i i i tu x y  are continuous and differentiable in x , while the fine scale 
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coordinate y is discrete. We denote the displacement at atom i by ( , , )i tu x y  with i=x x . 
The displacements of the neighboring atoms ( , , )j j j tu x y  are expanded using Taylor 
series around the point x  

 ( , , )j j j j t=u u x y  

 1( , , ) ( , , ) ( ) ( , , ) : (( ) ( ))
2x x xu x y u x y x x u x y x x x xj j j i j j i j it t t= + ⋅ − + − ⊗ − +"∇ ∇ ∇ (17) 

where the dot denotes contraction and ⊗ designates dyadic or tensor product. In the 
indicial notation, the components of the gradient of the displacement field u  with respect 
to the deformed coarse scale configuration x are given as 
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and subsequently, Eq. (17) can be rewritten as 
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From Eq. (17) we have 

                 ( , , ) ( , , )j i j j j i i it t− = −u u u x y u x y  

                             ( , , ) ( , , ) ( , , ) ( )xu x y u x y u x y x xj i j j it t t= − + ⋅ − +∇  

 1 ( , , ) : (( ) ( ))
2 x xu x y x x x xj j i j it − ⊗ − +"∇ ∇  (20) 

Since the coarse and fine scales coordinates are related by Eq. (12), we have 

 ( )x x x y y yij j i j i ijε ε= − = − =  (21) 

Inserting Eq. (21) into (20) yields 
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        ( , , ) ( , , )j i j j j i i it t− = −u u u x y u x y  

 2 1( , , ) ( , , ) ( , , ) ( , , ) : ( )
2j i j ij j ij ijt t t tε ε= − + ⋅ + ⊗ +x x xu x y u x y u x y y u x y y y "∇ ∇ ∇  (22) 

   A multiple scale asymptotic expansion is employed to approximate the displacement as: 

 

 0 1( , , ) ( , ) ( , , )t t tε= + +u x y u x u x y "  (23) 

where the leading order term 0u  is assumed to be independent of the fine scale 
coordinate y ; In Eq. (23) only the first two terms in the asymptotic expansion are 
considered whereas the remaining higher order terms are neglected. 

Substituting the asymptotic expansion (23) into Eq. (22) yields 

   1 1 0[ ( , ) ( , ) ( ) ]xu u u x y u x y u x yj i j i ijε− = − +∇ ⋅ +  

                 2 1 01[ ( , ) ( ) : ( )]
2x x xu x y y u x y yj ij ij ijε ∇ ⋅ + ∇ ∇ ⊗ +"  (24) 

where for notation brevity we omit the dependence of displacements on time t . 

   The position vector separating two atoms i and j in the reference configuration 
expressed in the stretched coordinate y  is denoted by 

 ( ) / /ij j i j i ijε ε= − = − =Y Y Y X X X  (25) 

where (1)ij OY ∼ . 

Substituting Eqs. (24) and (25) into (10) yields 

 2( , ) ( , )x X u u x y x yφ ψij ij j i ij ijε ε= + − = + +"  (26) 

where 

 1 1 0( , ) ( , ) ( , ) ( )xx y Y u x y u x y u x yij ij j i ijφ = + − +∇ ⋅  (27) 

 1 01( , ) ( , ) ( ) : ( )
2x x xx y u x y y u x y yij j ij ij ijψ = ∇ ⋅ + ∇ ∇ ⊗  (28) 
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Since ( , ) (1)x yφij O∼  and ( , ) (1)x yψ ij O∼ , we have 

 
2 ( , )

( )
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ij

ij

O
ε

ε
ε

∼  (29) 

where ⋅  denotes the vector norm. Due to (29) the normalized interatomic force can be 
expanded around φijε  as 

                      2( ) ( )f x f φ ψij ij ij ij ijε ε= + +"  

 2 2ˆ( ) ( ) ( )ˆ
f

f φ ψ ψ
φ

ij
ij ij ij ij

ij

oε ε
∂

= + ⋅ + + +
∂

" "  (30) 

where 

 ˆ ( , ) ( , )x y x yφ φij ijε=  (31) 

We further define the normalized gradient (1)ij O′f ∼ as 

 ˆ
f f

f
φ φ

ij ij
ij

ij ij

ε
∂ ∂

′ = =
∂ ∂

 (32) 

Equation (30) can be rearranged as 

 2ˆ ˆ( ) ( ) ( ) ( ) ( )f x f fφ φ ψ ψij ij ij ij ij ij ij ijoε ε′= + ⋅ + + +" "  (33) 

Substituting the asymptotic expansion (23) and Eq. (33) into the rescaled molecular 
dynamics equations of motion (16) yields 

 0 1 2

( )

1 ˆ ˆ( )[ ( , ) ( , , ) ] [ ( ) ( ) ( ) ( )]y u x u x y f f φ ψ ψi i ij ij ij ij ij ij
j i

m t t oε φ ε ε
ε ≠

′+ + = + ⋅ + + +∑�� �� " " " (34) 

Collecting terms of equal power of ε , gives the equilibrium equations at different 
orders starting at 1( )O ε − : 

1( ) :O ε −   
( )

ˆ( ) 0f φij ij
j i≠

=∑                                                                                               (35) 
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0( ) :O ε    0

( )

ˆ( ) ( , ) [ ( ) ]y u x f φ ψi ij ij ij
j i

m t
≠

′= ⋅∑��                                                                    (36) 

 

3.2 The atomistic unit cell problem 

Consider the 1( )O ε −  equilibrium equation (35) first. Substituting the normalized 
interatomic force vector (15) into Eq. (35) yields  

 
( )

ˆ( ) 0f φij ij
j i≠

=∑      ∀i  (37) 

From Eq. (27) we have 

     1 1 0ˆ ( , ) [ ( , ) ( , ) ( ) ]xx y Y u x y u x y u x yφ φij ij ij j i ijε ε= = + − +∇ ⋅  

                          1 1 0ˆ ˆ( , ) ( , ) ( )xX u x y u x y u x xij j i ij= + − +∇ ⋅  (38) 

where 

 1 1ˆ ( , ) ( , )ε=u x y u x y  (39) 

   From Eqs. (9), (21), (26) and (31), we have  

 ˆ( , ) ( , )y x x y x yφ φij ij ij ijε ε= ≅ =  (40) 

   Inserting Eq. (40) into (38) yields 

 0 1 1ˆ ˆ ˆ( ( )) ( , ) ( , ) ( , )x1 u x x y X u x y u x yφij ij j i−∇ ⋅ = + −  (41) 

where 1  is the second order identity tensor. Defining the inverse of the coarse scale 
deformation gradient as ( ) 10 0( )

−
= − xF 1 u x∇ ,  it follows that 

 0 1 1ˆ ˆ ˆ( , ) ( ) ( ( , ) ( , ))x y F x X u x y u x yφij ij j i= ⋅ + −  (42) 

    Inserting Eq. (42) into (37) yields the atomistic unit cell problem 

 ( )0 1 1

( )

ˆ ˆ( ) ( , ) ( , ) 0f F x X u x y u x yij ij j i
j i

i
≠

⎡ ⎤⋅ + − = ∀⎣ ⎦∑  (43) 
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Motion of atoms is governed by two sources: (i) the uniform coarse scale deformation 
gradient, 0F , and (ii) the fine scale correction 1( , )u x y  induced by the heterogeneity of 
the atomistic structure. This fine-scale contribution 1u  can be interpreted as a correction 
to the classical Cauchy-Born rule. Eq. (43) reflects the fact (c.f. Born & Huang [19]) that 
when a macroscopically uniform strain is applied on the atomistic cell, the deformation 
field is generally nonuniform, i.e., an internal relaxation occurs and the corresponding 
inhomogeneous atomic displacements are determined by the equilibrium condition of 
each atom in the cell [12].  

 

3.3 The coarse scale equations of motion 

We proceed by considering the 0( )O ε  equilibrium equation (36). Substituting the 
normalized quantities (15) into (36) yields 

 0

( )

ˆ( ) ( , ) [ ( ) ]y u x f φ ψi ij ij ij
j i

m t ε
≠

′= ⋅∑��    ∀i  (44) 

Summing Eq. (44) for all atoms in the unit cell and dividing the resulting equation by 
the volume of the unit cell, Θ , yields  

 0

( )

1 ˆ( ) ( , ) [ ( ) ]y u x f φ ψi ij ij ij
i i j i

m t ε
≠

′= ⋅
Θ Θ∑ ∑∑��  (45) 

Since the above summation is performed over the unit cell, the coarse scale field 
0 ( , )tu x  is taken as constant for all the atoms in the unit cell.  Recalling the definition of 

mass density as 

 1 ( )yi
i

mρ =
Θ∑  (46) 

then Eq. (45) can be written as 

 0

( )

ˆ( , ) [ ( ) ]u x f φ ψij ij ij
i j i

t ερ
≠

′= ⋅
Θ∑∑��  (47) 

Further exploiting the chain rule yields 



11 

 

 

 x x

f f
f f

x x
φ

φ
φ

ij ij ij
ij ij ij

ij

∂ ∂ ∂
′= = ⋅ = ⋅

∂ ∂ ∂
∇ ∇  (48) 

From Eq. (38), we have 

                     1 1 0( , ) ( , ) ( )x x xY u x y u x y u x yφij ij j i ij⎡ ⎤= + − + ⋅⎣ ⎦∇ ∇ ∇  

 1 1 0( , ) ( , ) ( )x x x xu x y u x y u x yj i ij= − + ⋅∇ ∇ ∇ ∇  (49) 

Substituting Eq. (49) into (48) yields 

 1 1 0[ ( , ) ( , ) ( ) ]x x x x xf u x y u x y u x y fij j i ij ij′ ⋅ − + ⋅ = ∇∇ ∇ ∇ ∇  (50) 

From Eq. (28), we have 

     1 01[ ( , ) ( ) : ( )]
2x x xf f u x y y u x y yψij ij ij j ij ij ij′ ′⋅ = ⋅ ⋅ + ⊗∇ ∇ ∇  

                 1 01[ ( , ) ( ( ) )]
2x x xf u x y u x y yij j ij ij′= ⋅ + ⋅ ⋅∇ ∇ ∇  

                 1 01 [2 ( , ) ( ( ) )]
2 x x xf u x y u x y yij j ij ij′= ⋅ + ⋅ ⋅∇ ∇ ∇  

                 1 1 01 [ ( , ) ( , ) ( ( ) )]
2 x x x xf u x y u x y u x y yij j i ij ij′= ⋅ − + ⋅ ⋅∇ ∇ ∇ ∇  

 1 11 [ ( , ) ( , )]
2 x xf u x y u x y yij j i ij′+ ⋅ + ⋅∇ ∇  (51) 

In view of Eq. (50), Eq. (51) can be written as 

 1 11 1 [ ( ( , ) ( , ))]
2 2x xf f y f u x y u x y yψij ij ij ij ij i j ij′ ′⋅ = ⋅ + ⋅ + ⋅∇ ∇  (52) 

To proceed with the derivation, we recall the identity 

 ( )x x xv w v w v w⋅ ⊗ = ⋅ + ⋅∇ ∇ ∇  (53) 
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where v  and w  are vectors, and for the special case of w being independent of x  we 
have 

 ( )⋅ ⊗ = ⋅x xv w v w∇ ∇  (54) 

Based on Eq.  (54), Eq. (52) can be written as 

 1 11 1[ ] [( ( , ) ( , )) ]
2 2x xf f y f u x y u x y yψij ij ij ij ij i j ij′ ′⋅ = ⋅ ⊗ + ⋅ ⋅ + ⊗∇ ∇  (55) 

Substituting Eq. (55) into Eq. (47) yields 

   0

( )

1( , ) { [ ]}
2 xu x f xij ij

i j i
tρ

≠

= ⋅ ⊗ +
Θ∑∑�� ∇  

 ( )1 1

( )

1 { ( , ) ( , ) }
2 xf u x y u x y xij i j ij

i j i≠

⎡ ⎤′ ⋅ ⋅ + ⊗⎣ ⎦Θ∑∑ ∇  (56) 

In the remainder of this section we show that the second term in Eq. (56) vanishes for 
a  periodic atomistic medium. We start by recalling  

 2    ( , ) ( , )

x x x X X u u x

x y x yφ ψ
ji i j i j i j ij

ji jiε ε

= − = − + − = −

= + +"
 (57) 

where 

 1 1 0( , ) ( , ) ( , ) ( , ) ( )ji ij ji i j ji= − = + − +∇ ⋅xx y x y Y u x y u x y u x yφ φ  (58) 

 1 01( , ) ( , ) ( , ) ( ) : ( )
2ji ij j ji ji ji= − = ∇ ⋅ − ⊗x x xx y x y u x y y u x y y∇ ∇ψ ψ  (59) 

   The Newton’s third law requires 

 f fij ji= −  (60) 

   From Eqs. (58) and (60) we have the following relation 

 
( )

f f f f
f f

φ φ φ φ
ij ji ji ji

ij ji
ij ij ji ji

∂ ∂ ∂ ∂
′ ′= = − = − = ≡

∂ ∂ ∂ − ∂
 (61) 
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Let the interacting neighbor atoms of atom i  be denoted as 1 2, , , , ,p kn n n n" "  where 

k  is the number of the interacting atoms such that 
pn i cr− <x x , 1, 2, ,p k= " . The 

second term in Eq. (56) can be expanded as 

 

1 1 1

2 2 2

1 1

( )

1 1

1 1

1 1

1

{ [( ( , ) ( , )) ( )]}

   { [( ( , ) ( , )) ( )]

    [( ( , ) ( , )) ( )]

[( ( , ) ( , )) ( )]

[(

x

x

x

x

x

f u x y u x y x x

f u x y u x y x x

f u x y u x y x x

f u x y u x y x x

f u
p p p

k

ij i j j i
i j i

in i n n i
i

in i n n i

in i n n i

in

≠

′ ⋅∇ ⋅ + ⊗ −

′= ⋅∇ ⋅ + ⊗ −

′+ ⋅∇ ⋅ + ⊗ − +

′+ ⋅∇ ⋅ + ⊗ − +

′+ ⋅∇ ⋅

∑ ∑

∑

…

… 1( , ) ( , )) ( )]}x y u x y x x
k ki n n i+ ⊗ −

 (62) 

The summation in (62) is carried out over all atoms in the unit cell. First, we consider 
the case that both atom i  and any of its interacting neighboring atoms pn  ( 1, 2, , )p k= "  
are in the unit cell. The summation for each interacting atom pair given by 

 
1 1

1 1

[( ( , ) ( , )) ( )]

[( ( , ) ( , )) ( )] 0 ( 1, 2, , )
x

x

f u x y u x y x x

f u x y u x y x x
p p p

p p p

in i n n i

n i n i i n p k

′ ⋅∇ ⋅ + ⊗ − +

′ ⋅∇ ⋅ + ⊗ − = = "
 (63) 

vanishes due to Eq. (61). 

If any of the interacting neighboring atom pn  lies outside the unit cell, by periodicity, 
the displacement and force vector of atom pn  take the same value as the corresponding 
atom in the unit cell and thus summation (63) holds.  More details are provided in the 
Appendix for a model problem of an atomistic chain with a second nearest neighbor 
interaction. 

In view of Eqs.(62) and (63) we have 

 1 1

( )

{ [( ( , ) ( , )) ]}xf u x y u x y x 0ij i j ij
i j i≠

′ ⋅ ⋅ + ⊗ =∑∑ ∇  (64) 

 Substituting Eq. (64) into (56) yields 

 0

( )

1( , ) [ ]
2xu x f xij ij

i j i
tρ

≠

⎧ ⎫
= ⋅ ⊗⎨ ⎬Θ⎩ ⎭

∑∑�� ∇  (65) 
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where xij  is evaluated based on Eq. (42) 

 ( )0 1 1ˆ ˆ( , ) ( , ) ( , )x x y F X u x y u x yφij ij ij j iε≅ = ⋅ + −  (66) 

The coarse scale governing equations of motion can be written as 

 

0

( )

( , )
1

2

xu x 0

f x

σ

σ ij ij
i j i

tρ

≠

− ⋅ =

= ⊗
Θ∑∑

�� ∇
 (67) 

where σ in Eq. (67) coincides with the Cauchy stress. By comparing Eq. (67)b and Eq. 
(4) it can be seen that Cauchy stress is identical to the mechanical term in the virial stress 
formula. Note that symmetry of Cauchy stress follows from the balance of the angular 
momentum and therefore the order of the tensor product between fij and xij is 
interchangeable. We will refer to (67)b as the modified virial formula. 

 

4 The two-scale information-passing algorithm and verification 

  The two-scale problem described by Eqs. (43) and (67) can be solved as follows: 

(i) Solve the coarse scale problem (Eq. (67)a with appropriate initial and 
boundary conditions)  using finite element semidiscretization in space and 
explicit time integration and calculate the coarse scale deformation gradient  
0( , )tF x  

(ii) For every Gauss point in the coarse scale, solve the unit cell problem for 
1ˆ ( , )u x yi using Eq. (43) and calculate the Cauchy stress by Eq. (67)b. Go to (i). 

4.1 Formulation of the model problem 

In this Section, we detail the formulation, implementation and verification of the 
generalized mathematical homogenization approach for the model problem of the atomic 
chain illustrated in Figure 1.  
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Figure 1: An atomic chain with the three-atom unit cell 

We suppose that the atoms are initially equally spaced with spacing a  and every atom 
interacts only with its nearest neighbors. The interatomic potentials are assumed to take 
the form of the Lennard-Jones potential. The interatomic potential between the first and 
the second atom in the unit cell is 1Φ  and that between the second and the third atom is 

2Φ  given by 

 12 6
1 1( ) 4 [( ) ( ) ]r

r r
σ σεΦ = − ,          12 6

2 2( ) 4 [( ) ( ) ]r
r r
σ σεΦ = −  (68) 

where 1ε  and 2ε  are characteristic energy scales of the interaction and σ  the 
characteristic length scale of the interaction. We assume that the initial configuration of 
the atomic chain is in equilibrium without external forces so that 1/ 62a σ= . 

   The interatomic forces are evaluated as  

 7 131 1
01

24
[( ) 2( ) ]

d
f

dr r r
ε σ σ
σ

Φ
= = − ,      7 131 2

12

24
[( ) 2( ) ]

d
f

dr r r
ε σ σ
σ

Φ
= = −  (69) 

   The atomistic unit cell problem (43) reduces to 

                               0 1 1
, 1 1ˆ ˆ( ( ( , ) ( , )))i i i if F a u x y u x y+ ++ − −  

 0 1 1
1, 1ˆ ˆ( ( ( , ) ( , ))) 0i i i if F a u x y u x y− −+ − =        0,1,2∀i =  (70) 

  
l

0=i     1    2     

Unit cell

1m 2m 1m

• • •

2δ

d  
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   Eq. (70) provides three equations for and0,1  2i = . Due to periodicity 

 1,0 12f f− = ,    23 01f f= ,    1 1 1
1 1 3ˆ ˆ ˆ( , ) ( , ) ( , )u x y u x y u x y− = = ,   1 1

2 0ˆ ˆ( , ) ( , )u x y u x y=  (71) 

only one of the equations is independent, given by 

                                0 1 1
01 1 0ˆ ˆ( ( ( , ) ( , )))f F a u x y u x y+ − −  

 0 1 1
12 0 1ˆ ˆ( ( ( , ) ( , ))) 0f F a u x y u x y+ − =  (72) 

There are two unknowns in Eq. (72). To solve for Eq. (72),  we specify periodic 
boundary conditions 

 1 1
0 2ˆ ˆ( , ) ( , ) 0u x y u x y= =  (73) 

   Inserting Eq. (73) into (72) yields the nonlinear unit cell problem 

 0 1 0 1
01 1 12 1ˆ ˆ( ( ( , ))) ( ( ( , ))) 0f F a u x y f F a u x y+ − − =  (74) 

   The constitutive law-free coarse scale equation of motion (67) becomes 

 0 ( , ) 0xu x tρ σ− =��  (75) 

with the initial and boundary conditions: 

 0( , 0) ( )u x p x= ,         0( , 0) ( )u x q x=  (76) 

 0(0, ) 0u t = ,          ( , ) 0L tσ =  (77) 

where L  is the length of the atomic chain. Assuming a unit cross-sectional area for the 
atomistic chain the mass density is given by 

 
2

1 2
1

1
( ) ( )/i

i

m y m m l
l

ρ
=

= = +∑  (78) 

and the Cauchy stress  is 

 
2 2 2

, 1 , 1 , 1 , 1 , 1 , 1 1, 1,
1 ( ) 1 1

1 1 1[ ] [ ]
2 2 2ij ij i i i i i i i i i i i i i i i i

i j i i i
f x f x f x f x f x

l l l
σ + + − − + + − −

= ≠ = =

= = + = +∑∑ ∑ ∑  (79) 
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with 

                                      0 1 1
, 1 1ˆ ˆ[ ( , ) ( , )]i i i ix F a u x y u x y+ += + −  

 0 1 1
1, 1ˆ ˆ[ ( , ) ( , )]i i i ix F a u x y u x y− −= + −  (80) 

In view of the periodicity conditions 

 01 23f f= ,      01 23r r=  (81) 

the Cauchy stress reduces to 

 01 12
01 12

x x
f f
l l

σ = +  (82) 

4.2 The two-scale algorithm 

   The coarse scale equation (75) depends on the fine scale variable 1û , which is 
determined by the nonlinear unit cell problem (74) subjected to the periodic boundary 
conditions (73). The nonlinear unit cell problem in turn depends on the coarse scale 
deformation gradient 0F , which is obtained from the constitutive law-free coarse scale 
equation of motion. The coarse scale equation of motion (75) and the nonlinear unit cell 
problem (74) are coupled and have to be solved concurrently. 

The two-scale algorithm summarized in this Section is based on the finite element 
semidiscretization in space and explicit time integration for advancing the coarse scale 
problem and the Newton’s method for solving a sequence of nonlinear molecular statics 
problems. Alternatively, fixed-point iteration methods discussed in [17] can be employed  
to improve robustness but at the expense of super-linear rate of convergence. 

   Finite element semidiscretization of the weak form of the coarse scale equation yields 
the semi-discrete equations of motion 

 ( ) ( ( ))int t+ =Md f d 0  (83) 

with initial conditions 

 0(0)=d d ,      0(0)=d d  (84) 
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where ( )td  is the vector of nodal displacements; M and ( ( ))in tf d  are the usual 
definitions of mass matrix and internal force vector. Eq. (83) is integrated using explicit 
time integration. For details, we refer to [20]. 

 The nonlinear unit cell problem (74)  

 0 0
01 12( ) ( ( )) ( ( )) 0g z f F a z f F a z= + − − =  (85) 

is solved using Newton-like method with prescribed  0F  and 1
1ˆ ( , )z u x y= . 

At each time step, the nonlinear unit cell problem (85) is first solved for 1
1ˆ ( , )u x y , then 

the Cauchy stress σ  and the internal force vector ( )in
nf d  are evaluated.  

4.3 Verification 

We consider an atomistic chain consisting of 601 atoms schematically depicted in 
Figure 1. The fixed-free boundary conditions are assumed. The chain is subjected to a 
bell-shaped initial displacement pulse with width 2δ  centered at the midpoint of the 
atomic chain. The atomistic chain possesses a periodic structure with the unit cell of 
length l composed of three atoms with masses 1m  and 2m . The inter-atomic potentials are 
Lennard-Jones potential given in Eq. (68). Material parameters are: 2 1/ 2m m =  and 

2 1/ 3ε ε = .   The ratio between the pulse width and the size of the unit cell is set to 
2 / 80lη δ= =  in order to minimize the effect of dispersion, which cannot be captured by 

the O(1) theory developed in the manuscript.   We refer to [21] for a methodology aimed 
at resolving dispersion effects. 

The time step for the integration of the coarse-scale equation of motion is chosen 
approximately as the time for the wave to transverse a unit cell: 

 /ct l cΔ = ,         /c E ρ=  (86) 

where E  is the homogenized property evaluated based on the quadratic approximation of 
the interatomic potentials  

 1 2

1 2

k k l
E

k k
=

+
,       

1/3
1

1 2

36 4
k

ε
σ

×
= ,       

1/3
2

2 2

36 4
k

ε
σ

×
=  (87) 

   The choice of the time step mtΔ  for the molecular dynamics simulation is dictated 
by the natural fine scale time scale [22] evaluated as 
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 /mτ σ ε=  (88) 

where ,ε σ  and m  are the characteristic energy and length scales of the interatomic 
potential and the characteristic mass of the atom, respectively. Choosing mtΔ  of the 1-
2%  percent larger than τ  generally leads to satisfactory energy conservation [22]. 

 
Figure 2: Displacements and stresses ( / 0.006)d l =  

    In our numerical investigation, the ratio between the time steps of the coarse-scale 
equation of motion and the molecular dynamics simulation is  / 3c mr t t= Δ Δ = . In 
general, however, when a unit cell contains thousands of atoms, this ratio would be 
substantially higher. 
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Figure 3: Displacements and stresses ( / 0.18)d l =  

The displacements at atom 401, the Cauchy and virial stresses in the unit cell 
containing atom 401 are plotted in Figures 2 and Figure 3. In Figure 2, the amplitude of 
the pulse is relatively small compared with the size of the unit cell ( / 0.006)d l =  giving 
rise to linear wave propagation, whereas in Figure 3 the amplitude of the pulse is 
comparable to the size of the unit cell ( / 0.18)d l =  resulting in nonlinear wave 
propagation. We compare four methods: the proposed nonlinear GMH, homogenization 
technique employing harmonic approximation of the interatomic potentials, the 
homogenization technique with the coarse-scale stress evaluated according to the virial 
formula Eq. (3) and the reference solution based on molecular dynamics.    

It can be observed from Figure 2 and Figure 3 that for relatively small excitations, the 
harmonic approximation provides a satisfactory solution, while in the nonlinear regime, 
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the responses predicted by the harmonic approximation is inadequate. On the other hand, 
the response predicted by the nonlinear GMH compares favorably with the molecular 
dynamics simulation. The response predicted by the virial formula (Eq.(3)) shows a 
considerable deviation from the molecular dynamics solution.  

For the model problem considered, the deviation from the average velocity in the unit 
cell has been found to be small compared to the average velocity.  Thus, the version of 
the virial formula given in Eq. (4) provides comparable results to the GMH approach 
developed in this manuscript. 

 

5 Appendix 

Consider the 1D atomistic unit cell depicted in Figure 4 consisting of 1n +  atoms. The 
linear mass density is  

 nm m m m l1 2 3( )/ρ = + + + +  (89) 

where by periodicity 0 nm m= .  

 

                                      Figure 4: Atomistic unit cell 

Assuming the second nearest neighbor interaction, the summation in Eq. (62) is 
expanded as 

1 1 1 1

( ) ( )

{ [( ( , ) ( , )) ( )]} { [ ( , ) ( , )]( )}ij i j j i ij x i x j j i
i j i i j i

f u x y u x y x x
≠ ≠

′ ′⋅ ⋅ + ⊗ − = + −∑∑ ∑∑xf u x y u x y x x∇

1 1 1 1
( 2) 2 2 ( 1) 1 1

1
{ [ ( , ) ( , )]( ) [ ( , ) ( , )]( )

n

i i x i x i i i i i x i x i i i
i

f u x y u x y x x f u x y u x y x x− − − − − −
=

′ ′= + − + + − +∑   

1 1 1 1
( 1) 1 1 ( 2) 2 2[ ( , ) ( , )]( ) [ ( , ) ( , )]( )}i i x i x i i i i i x i x i i if u x y u x y x x f u x y u x y x x+ + + + + +′ ′+ − + + −  

1= −i      0      1      2      3      4                     n  1n +  2n +  

l  

 1m    2m    3m     4m                    nm  

• • •
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1 1
1( 1) 1 1 1 1[ ( , ) ( , )]( )x xf u x y u x y x x− − −′= + − +

1 1 1 1
10 1 0 0 1 12 1 2 2 1[ ( , ) ( , )]( ) [ ( , ) ( , )]( )x x x xf u x y u x y x x f u x y u x y x x′ ′+ − + + − +

1 1 1 1
13 1 3 3 1 20 2 0 0 2[ ( , ) ( , )]( ) [ ( , ) ( , )]( )x x x xf u x y u x y x x f u x y u x y x x′ ′+ − + + − +

1 1 1 1
21 2 1 1 2 23 2 3 3 2[ ( , ) ( , )]( ) [ ( , ) ( , )]( )x x x xf u x y u x y x x f u x y u x y x x′ ′+ − + + − +

1 1 1 1
24 2 4 4 2 31 3 1 1 3[ ( , ) ( , )]( ) [ ( , ) ( , )]( )x x x xf u x y u x y x x f u x y u x y x x′ ′+ − + + − +

1 1 1 1
32 3 2 2 3 34 3 4 4 3[ ( , ) ( , )]( ) [ ( , ) ( , )]( )x x x xf u x y u x y x x f u x y u x y x x′ ′+ − + + − +

1 1 1 1
35 3 5 5 3 42 4 2 2 4[ ( , ) ( , )]( ) [ ( , ) ( , )]( )x x x xf u x y u x y x x f u x y u x y x x′ ′+ − + + − +

1 1 1 1
43 4 3 3 4 45 4 5 5 4[ ( , ) ( , )]( ) [ ( , ) ( , )]( )x x x xf u x y u x y x x f u x y u x y x x′ ′+ − + + − +

1 1
46 4 6 6 4[ ( , ) ( , )]( )x xf u x y u x y x x′ + − + +"

1 1 1 1
( 1)( 3) 1 3 3 1 ( 1)( 2) 1 2 2 1[ ( , ) ( , )]( ) [ ( , ) ( , )]( )n n x n x n n n n n x n x n n nf u x y u x y x x f u x y u x y x x− − − − − − − − − − − −′ ′+ − + + − +

1 1 1 1
( 1) 1 1 ( 1)( 1) 1 1 1 1[ ( , ) ( , )]( ) [ ( , ) ( , )]( )n n x n x n n n n n x n x n n nf u x y u x y x x f u x y u x y x x− − − − + − + + −′ ′+ − + + − +

1 1 1 1
( 2) 2 2 ( 1) 1 1[ ( , ) ( , )]( ) [ ( , ) ( , )]( )n n x n x n n n n n x n x n n nf u x y u x y x x f u x y u x y x x− − − − − −′ ′+ − + + − +  

1 1 1 1
( 1) 1 1 ( 2) 2 2[ ( , ) ( , )]( ) [ ( , ) ( , )]( )n n x n x n n n n n x n x n n nf u x y u x y x x f u x y u x y x x+ + + + + +′ ′+ − + + −  

  1 1
1( 1) 1 1 1 1[ ( , ) ( , )]( )x xf u x y u x y x x− − −′= + − +   

1 1 1 1
10 1 0 0 1 20 2 0 0 2[ ( , ) ( , )]( ) [ ( , ) ( , )]( )x x x xf u x y u x y x x f u x y u x y x x′ ′+ − + + − +

1 1 1 1
( 1)( 1) 1 1 1 1 ( 1) 1 1[ ( , ) ( , )]( ) [ ( , ) ( , )]( )n n x n x n n n n n x n x n n nf u x y u x y x x f u x y u x y x x− + − + + − + + +′ ′+ − + + − +

1 1
( 2) 2 2[ ( , ) ( , )]( ) 0n n x n x n n nf u x y u x y x x+ + +′ + − =                                                                (90)         

The equality (90) is obtained due to the periodicity 

 ( 1)( 1) ( 1)1n nf f− + −′ ′= ,      ( 1) 01n nf f+′ ′= ,   (91) 

 ( 2) 02n nf f+′ ′= ,     1 1nx x− −= ,     0nx x= ,     1 1nx x+ = ,     2 2nx x+ = .   (92) 
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