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Abstract 

Computational methods for modeling complex three-dlmenaional woven structure\ are reviewed and software tools for automated model 
construction are described. The tools make use of image processing, geometric and attribute modeling, automated discretization, and 

efficient solvers. The discretization techniques control me\h periodicity and volume fraction errors of meshed constituents due to 
approximation of curved boundanes. Numerical examples for several woven structures are demonstrated in the context of linear elasticity. 
0 1999 Elsevier Science S.A. All rights reserved. 

1. Introduction 

This paper reviews the computational models and emphasizes the modeling tools which assist in the 
automatic extraction, construction and linking of model geometry and attributes, and automatically produce 
matched meshes and the associated boundary conditions for analysis of representative volume elements (RVEs) 
by the finite element method. The techniques can be applied at the scale of weaves or to smaller scale 
geometries for critical/non-periodic regions needed by multi-scale techniques [ 151. These tools include image 
processing tools, geometric and attribute modeling based on a feature description, automated matched mesh 
generation, and constituent mesh volume fraction adjustment. 

Analysis and design of complex woven architectures at the small scales of the materials has been made both 
possible and necessary due to advances in composite fabrication, automated meshing and efficient solution 
techniques. Complex weaves provide the tailored constitutive thermal and mechanical properties for composites 
used in aerospace and energy conversion. Three-dimensional finite element models of materials at the scale of 
weaves and fibers can be used to predict linear and nonlinear properties, localized behavior in critical regions of 
components and are used as a design tool for optimizing composite material design. 

The difficulties inherent in generating three-dimensional finite element meshes of geometrically complex 
domains may be greatly simplified by employing digital image based tinite element techniques, as in 120,211. 
This method has been shown to provide good results for the homogenized properties, in part because it can 
capture the correct volume fractions of the constituents, but the poor geometric representation of material 
interfaces does not directly permit reliable computation of local stresses near constituent boundaries. The 
approach described in this paper differs in that it maintains a complete representation of the geometric features 
allowing their influence to be explicitly considered as part of the design process. 

The thermal and thermo-mechanical properties of a woven composite were determined in [S] for a plain 
weave. The discretized model apparently was generated directly from parameters for symmetric/anti-symmetric 
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cases, but no detailed description was given for the modeling and discretization algorithms, especially with 
respect to their extension to more complicated weave patterns. Other previous work includes a unit cell model 
used to determine the local stresses in 2-D representations of a woven composite [40]. Geometric modeling 
capability developed for braids using circular bundles and various approaches for establishing unit cell cutting 
planes was explored in [32]. 

This paper is organized into sections reviewing computational models, the development of the RVE model, 
use of scanned micro-graphs, geometric and attribute model development, the automatic generation of matched 
meshes, a procedure for controlling the unit cell constituent volume fractions, and the determination of local 
stress values in the unit cell models. Solver features aimed at efficiently handling poorly conditioned linear 
systems subject to multiple right hand sides, and the calculation of homogenized stiffness parameters are given 
in [9]. 

2. Computational models 

In this section we briefly review various modeling approaches for woven composites. A typical shell structure 
made of multiple layers of woven composites can be modeled on (at least) three different scales: (i) the 
macroscale (the structural level); (ii) the mesoscale (the weave level); and (iii) the microscale (the level of 
microconstituents-fibers and matrix within a weave) as shown in Fig. 1. Additional scales can be introduced 
into the model. 

Macro scale - engine flap 

Micro scale - fibers within bundle 

Fig. I. Multiple scales to be modeled for woven composite components. 
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For example, the macroscopic scale can subdivided into two subscales since the thickness of the shell is 
typically much smaller than its in-plane dimension. Furthermore, the scale of material heterogeneity in each 
microphase, such as dislocations and grain boundaries could be considered as another scale, not to mention the 
atomic and electronic scales as the smallest spatial scales. 

Computational models can be either deterministic or stochastic. Here we focus on deterministic approaches 
whereas the insight into stochastic models for composites is given by Babuska and co-workers in this volume. 
Various deterministic approaches can be classified into the following three categories: (i) the classical uncoupled 
approached; (ii) the coupled approach assuming micro/mesa-structure periodicity; and (iii) the coupled 
approach free of periodicity assumptions. 

2.1. The uncoupled upproach 

The uncoupled approach employs representative volume elements at one level to produce averaged 
parameters for the use at the next level. Mathematical homogenization theory [2,5], provides a theoretical 
framework for the uncoupled approach. For three or more spatial scales mathematical homogenization theory 
has been employed by Mei and Auriault [ 271 and Tong and Mey [38 1. 

For woven composite structures, which are idealized as a periodic three-scale medium, a triple scale 
asymptotic expansion is employed to approximate the solution u as 

u(x, y,z) = uO(x, y,z) + &x, y,z) + E2U2(X, y,z) (1) 

where x, y = EX and z, = &y denote position vectors in the macro, meso and micro scales, respectively. The 
resulting uncoupled governing equations on the macro, meso and micro scales are obtained by inserting the 
asymptotic expansion (Eq. (1)) into the strong form of the governing equations. 

Due to the geometrical simplicity of the microscale problem it is feasible to obtain a microscale solution, 
consisting of the micro-scale localization tensor, H”‘lCr”, and the overall microscale constitutive tensor, L ‘“lCr”, 
by means of analytical methods, by exploiting the Eshelby solution of the inclusion problem [28]. The resulting 
fourth-order tensor, i m’cr”, provides homogenized material properties for the phases on the meso-scale (average 
bundle and matrix properties), whereas the third order tensor H “““” is utilized for postprocessing of local fields 
on the microscale. 

Numerical methods (FEM, BE, PUM) are typically employed for analyzing RVEs of complex woven 
composite mesostructures. The solution of the mesoscale problem, Hn’C”’ and ime”‘, is then used for both the 
postprocessing on the mesoscale and as an input in the form of homogenized material properties to the 
macroscale problem, respectively. Two examples of such mesoscale post-processing are presented in Fig. 2, 
where the distribution of maximum principal stresses in the weave are due to an applied load on the macro-scale 
structure. The macro scale structure was a gas turbine component analyzed with the derived properties, ime”‘. 
The model at the top of the figure shows the bundles of a single layer of a five harness satin weave fabric (the 
weave repeats after every five warp and five weft bundles), while the bottom three images are an exploded view 
of the stresses in the warp bundles, matrix, and weft bundles of a trial design which interlocks adjacent fabric 
layers. The distribution indicates the stress increases due to weave features, such as sharp bends, under linear 
elastic loadings. 

The computational complexity of solving nonlinear heterogeneous systems is much greater. While for linear 
problems an RVE problem has to be solved only once, for nonlinear history dependent systems it has to be 
solved at every increment and for each integration point. Moreover, history data has to be updated at a number 
of integration points equal to the product of integration points at all modeling scales considered. We refer to the 
paper by Fish and Shek in this volume [ 191 for presentation of various nonlinear approaches. 

2.2. The coupled upprouch ,for periodic microlmeso-structures 

Recent theoretical and numerical studies conducted at Rensselaer [ 161 have shown that in the areas of high 
gradients, primarily developed in the boundary layers at free edges and interfaces, the classical uncoupled 
approach may lead to poor predictions of local fields, since it assumes uniformity of macroscopic fields over the 
RVE domain. These findings motivated the development of the coupled multiscale approach. 
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Maximum Principal Stres 

Fig. 2. Computed maximum principal meso scale stresses on the meso scale due to an applied macro scale stress: (a) a five harness satin 
weave, (b) the warp direction bundles, (c) the matrix, (d) the weft direction bundles of a ply-interlocked weave. 

In [ 14,151 we have shown that the meso-scale model serves as an ideal mechanism for capturing the lower 
frequency response of the micro-scale model, whereas the lower frequency response of the meso-scale model is 
accurately represented by the macro-scale model. Therefore, the discrete version of postprocessing operators in 
the uncoupled approach, (Z + HmiCr” 0,) and (Z + H”‘“” V,), can serve as an interscale transfer (or prolongation) 
operator in the multilevel process [ 151, where V,v is a symmetric gradient operator. The rate of convergence of 
the resulting multilevel process has been studied in [14]. 

2.3. The coupled approach for nonperiodic microlmeso-structures 

For highly nonperiodic heterogeneous media the global interscale transfer operator, which is fixed in space, 
does not exist due to the spatial variability of the micro/mesa-structure. However, if the micro/mesa-structure is 
known (i.e. can be reconstructed from micrographs) it is possible to compute a local interscale transfer operator 
using the Generalized Aggregation Method (GAM) [17,18], or Homogenized Dirichlet Projection Method 
(HPDM) [30]. 

Using Generalized Aggregation Method the auxiliary piecewise-constant homogenized model can be 
constructed from the fine scale model by decomposing the whole set of nodes in the fine scale into 
non-intersecting blocks to be referred to as aggregates, and then for each aggregate assigning a reduced number 
of modes based on the local eigenvalue analysis. The resulting piecewise-constant homogenized model 
effectively captures the lower frequency response of the fine scale model. 
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For details on the Homogenized Dirichlet Projection Method, see the paper by Oden and co-workers in this 
volume. 

3. Development of a representative volume element model 

Three-dimensional weaves are complex assemblies of matrix and fiber bundles, and may also contain cracks 
and voids in the matrix material. Representative Volume Elements (RVEs) have been defined as the smallest 
possible volume or ‘building block’ of a composite material which has the same effective properties as would a 
homogeneous material model at a higher scale, usually that of the whole artifact [8,34]. The modeling process 
involves the selection of constituent phases and their significant features, the constitutive model(s) and 
associated property parameters of the solid phases, and the boundary conditions needed for the goals of the 
analysis. The constitutive model is chosen based upon the material constituents, the environment, loading and 
expected lifetime and the property parameters that have been measured. The smaller-scale modeling of the fibers 
within the bundles was supplied via the Mori-Tanaka (281 method for the bundles shown in this paper. Given a 
complex arrangement of fibers, interfaces coatings and cracks, such as in Fig. 3, a RVE could be developed for 
the bundles and its homogenized properties used instead. The boundary conditions depend on the formulation of 
the subsequent analysis. 

The constituent geometric features determine the dimensionality of the model and can be given either directly 
as basic design dimensions, or by scanned specimen data, subject to discretization, noise processing and 
interpretation parameters. The overall shape of the unit cell is a rectangular prism, although the modeling 
capability can be used with other shapes. The longest wavelength of a periodic feature controls the size of the 
unit cell in each direction, still leaving an infinite number of possible cells geometries based on the locations of 
the cell boundaries in the periodic pattern [32]. In practice, this may be determined by convenience, specifically 
where there are alternatives in the location of self-intersecting boundaries of periodic faces. 

The goal is to provide general modeling and analysis processes: not limited in dimensionality, number of 
scales, assumptions of symmetries or periodicity, type of weave or number and kinds of features, or analysis 
goal (property estimation, sensitivity analysis and optimization). The approach is based on development of a 
non-manifold geometric model, then automatic mesh generation to create a matched mesh with periodic 
boundary conditions ’ , as shown in Fig. 4. Efficient solvers and post-processing capabilities compute results, 
such as the homogenized stiffness or stress concentrations, which are either the ultimate goal of the analysis or 
used as input to an optimization. The geometric model provides the connection between design and 
manufacturing parameters, and the discretized model used by the solver. They enable optimization with respect 
to the desired set of design/manufacturing parameters. 

Fig. 3. Fiber scale image [25]. 

‘Alternative approaches for boundary condition specification have been used by others, but the homogenization analysis used here requires 
that displacement fields vary identically over opposing faces. Ensuring a matched meshes on selected faces of an RVE is considered to be 
the governing case in terms of automated modeling complexity. 
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Scan images + Develop FIVE Matched mesh 
geometric and -) Solve and 

Design/Optimize + attribute models 

Fig. 4. Schematic of modeling and analysis operations 

3.1. Model development from images 

In cases where the composite has been manufactured, model parameters can be obtained from micro-graphs of 
polished specimens with the aid of image processing software. The images are scanned as grey-scale pixel maps, 
from which both volume fractions and the centroidal locations of given features are measured. Image features 
are collections of pixels with similar light intensity, exposed by the polishing of fibers, coatings, bundles, cracks, 
voids and matrix material. The original pixmaps were produced from photographs scanned with the aid of 
PhotoshopTM [ 11, and then converted to a PGM format with X-Windows and the XVTM [7] software utilities. 
Once formatted, the software automatically performs the measurements on given regions of the micrograph, 
given a range of threshold grey-scale values. Calibration of the threshold ranges was aided by auxiliary 
software, which plots cumulative volume fraction as a function of increasing threshold ranges. A spreadsheet 
reads the processed data, organizes and serves the role of constraint propagator [l l] and manager weave 
parameters. 

Images at multiple scales are processed, at the weave scale to compute dimensions of a unit cell, bundle and 
crack/void sizes and positions, and at the fiber scale to find fiber volume fractions within the bundles. Image 
processing of 3D ‘voxels’ has been used earlier for directly creating discretized unit cell models of bone tissue 
using brick elements, where the element’s isotropic stiffness was inferred directly from the grey-scale value of 
the voxels [21]. The high temperature composite ceramic application described here has additional complica- 
tions, namely: 

l the structure consists of multiple distinct phases at each scale, and meso scale images also contain fiber 
scale features, 

l the material is manufactured, requiring the specification of geometry from a small set adjustable design 
parameters, 

l the analysis goals (stiffness and stress concentrations) have different discretization requirements, 
l image sources may be limited to 2D polished sections, due to the cost and resolution limitations of voxel 

imaging, 
l specimen preparation methods can add image features and bias the grey-scale values over the field of the 

image. 
An example of the last item is shown in Fig. 5, where polishing of the specimen often cracks and removes the 

feathered edges of fibers inclined to the polish plane. The resulting black half-ellipses are not voids in the 
as-processed microstructure. The chipped edge features may be used to infer the direction (0 < 90” or 0 > 90”) of 
the fibers and the bundle. In addition, if a statistical description of the fiber cross-sections is known, the 
elongation of the cross-section can be used to estimate the inclination angle 19. The effects of noise and multiple 
features sharing the same grey-scale value (first issue listed) can be seen in Fig. 6. The image on the right shows 
the specimen, while the larger image on the left is a magnified view showing the pixels used for a small portion 
of the specimen. Using only a range of grey-scale or density values to interpret a micro structure over the entire 
image is problematic because the crack, the cross fiber and imaging noise in the matrix, combined with 
non-uniform lighting over the image lead to overlapping value ranges. For these situations, automated image 
processing would require methods to recognize collections of pixels and classify them with respect to features 
based on size and shape. These types of problems has been researched for purposes of optical character 
recognition (OCR) [24,31] other applications such as medical image interpretation. 

The typical steps involved in OCR are thresholding and noise reduction, then recognition based upon thinning 
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Polish plana 

Fig. 5. Some fiber image features [25]. 

Fig. 6. Pixel map-effects of image noise, discretiLation, sample preparation [39] 

area, perimeter, direction coding, bounding box, thinned arc length, thinned topology, orientation and aspect 
ratios [3 1,291. 

The feature recognition problem for composite material specimens can be simpler than that of text 
recognition, since the features are not recognized based on orientation, the feature set is much smaller, and only 
statistical averages, rather than a series of successful classifications, are needed [6,24,3 11. Undesired smaller 
scale features, e.g. the crack in Fig. 6, are often resolved in the image and would require detection and 
classification according to size measures and shape measures, such as thinned thickness. Lowering the scanning 
resolution can eliminate this problem by averaging, but this can also effect the location of the boundary of the 
desired features. Methods combining both lower and higher resolutions may be useful. 
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Longitudinal 
saction of CKJaa- 

Fig. 7. A 2D weave section and some material features [39]. 

An example meso scale image is shown in Fig. 7, where the bundles oriented normal to the polish plane are 
ellipsoidal or flat oval shapes, and the bundles running parallel have chipped edges. Size and center-center 
spacing parameters were extracted for axial bundles and cracks. By discretizing the cross-bundles into segments 
(dashed boxes in Fig. 7) classifying the pixels into the matrix, axial and longitudinal fiber regions, and then 
computing the centroid of longitudinal fibers in each segment, a set of control points are obtained for typical 
bundle paths as they cross over each other. 

3.2. Geometry and attributes 

Models for woven composites may be generated from images of test specimens, as described earlier, or from 
conceptual design specifications. New 3D weave designs are strongly dependent on the capabilities of the 
particular perform fabricator and are created with a minimum of design data. 

An example hand-drawn weave schematic, which can be a typical means of communication for initial 
designs, is shown in Fig. 8. The schematic, a 2D section cut, depicts the inter-weaving of the bundles, where the 
bundles directed out of the page are shown as filled dots. The schematics and associated written descriptions 
must be assembled into a coherent 3D weave topology for the repeatable unit cell, or a suitable unit cell 
idealization*. The weave design specification often includes the ‘volume fraction’ in each direction for each type 
of bundle, where ‘volume fraction’ indicates the target percentage of fiber cross-sectional area to the total of all 
specified section areas. Some example bundles types are ‘warp’ and ‘weft’, ‘stitch’ and ‘binder’. The finished 
component dimensions, such as thickness, and some indirect measure of bundle size, such as ‘denier’ and 
‘picks’ per unit length are also usually given. Regions where a ‘stack’ of bundles will contact and be constrained 
by a component dimension, see Fig. 8, can be used to determine positions of bundle cross-sections within the 
cell. Development of a descriptive language permitted the variety of given specifications to be resolved into a 
standardized expression of the weave’s ‘features’ and parameters for subsequent automated modeling. 

Software tools assist the conversion of the specifications to the complete description, and automatically 
convert the description into a sequence of geometric and attribute modeling instructions. The term ‘feature’ is 
extended from a manufacturing sense to include a grouping of geometric entities for a common analysis purpose 
or design function [35]. Some examples are the opposite faces of a rectangular unit cell which are to have 
matching meshes, see Fig. 9, a solid region within the RVE which represents a bundle of fibers, the set of faces, 

‘Weave patterns may repeat within the relative scale size assumptions of the uncoupled approach or even within the confines of the 
component. 
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Bundle Paths 

Stack f 

Fig. 8. Part of a typical weave schematic. Fig. 9. Matching faces. 

edges and vertices in the RVE which are dependent on a design parameter, or the topology of the interacting 
bundle paths consistent with a type of weave. The feature based approach provides a declarative description of 
the RVE, i.e. one where the RVE is the combination of each of the set of constituent features. Features are 
defined by type, size and position parameters, examples of which are shown in Fig. 10. The bundle cross-section 
type and size parameters are defined as in Fig. 10(a), where the type can be a geometric primitive, such as the 
ellipse, or an assembly, such as an oval, or if necessary, the two-curve cross-section of Fig. 10(b). The bundle 
sections are generally idealized as smooth shapes to avoid artificial stress concentrations. Conversion of the 
feature description to sequential modeler operations can involve the shape and positioning of interacting 
features, such as the warp and weft woven bundles, and in general requires several modeler operations. The 
model construction operations are evaluated by a commercial modeler to produce a non-manifold boundary 
representation (B-rep), in which regions of a constituent are bounded by faces, faces by edges, etc. [26,42,42]. 

The boundary representation is comprised of both topology, which describes the relationships of the model 
entities, and geometry or shape, which describes the mapping of the point set of each topological entity onto the 
Cartesian or real image space of the model. The regions, faces, edges and vertices are each topological entities 
which encapsulate shape information, direction of outward normals, and the bounding and/or bounded by 
relationships of the topological entities with one another. The topological entities also provide the data structure 
on which attributes are attached [4,36]. 

Several modelers are available to support the underlying construction operations including primitive 
instantiations, curve fitting, extrude and sweep operations, and Boolean combinations. The commercial 
non-manifold modeler, SHAPESTM 1441 was used here. Example primitives are boxes, cylinders, ellipsoids, 
their lower dimensional equivalents such as lines and points, all of which are available to model straight fibers, 
voids, cross-sections or the unit cell domain. Sweep operations, such as extrude or tangent sweep, are also 

Fig. 10. Bundle sections, (a) ellipsoidal parameters, (b) volume swept from a distorted section. 
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supported and are typically used to define bundle regions. The modeler also provides constructive solid 
geometry (CSG) type operations, including the Boolean operators: union, intersection and subtraction, and affine 
transformations, such as translate, scale and rotate. The CSG operators are typically used to combine the 
constituents into the final model of the unit cell. 

RVEs for complex 3D weaves result in several thousand topological entities, and many times that have been 
instantiated during the construction operations, thus providing the motivation for efficient automatic attribute 
identification processes. Attributes include analysis attributes, such as the material properties, matching faces, 
and essential boundary conditions, as well as the design parameters associated with each topological entity. As 
described in [36], attributes used in analysis can be represented in the general case as tensors distributed over 
geometric entities, and organized into hierarchal groupings. For the purposes of automated construction of RVE 
models from declarations of included features, a method was developed which automatically propagates 
attributes identifiers, originally assigned to individual features, to the topological entities produced by their 
combination. 

An example of the process is illustrated in Fig. 1 1, where a CVD coated plain weave model is developed from 
regions representing the coating, the unit cell template, and the bundles of fibers, model entities A, B, C, 
respectively. The ancestor values (1, 2, 3) used to track matching faces are indicated for the unit cell template 
‘B’, and are propagated onto faces of both bundle and matrix regions, shown on the right of Fig. 11. As 
indicated in the lower right, the final configuration can be produced by more that one sequences of Boolean 
operations. The example illustrates some of the necessary characteristics of the attribute propagation process: 

l Support of multiple attribute identifiers per topological entity of arbitrary dimension. 
l Assignment of attribute identifiers based on topological relationships, e.g. assign a debond strength to the 

set of faces common to regions with dissimilar materials. 
l Consistency throughout arbitrary sequences of Boolean construction operations, satisfying standard set 

theoretic identities on the point sets of the topological entities: idempotency, commutivity, associativity, 
distributivity and absorption. 

l Control of propagation, such that attribute identifiers can have precedence. This feature avoids a 
combinatorial explosion of attribute-topological entity tuples. Fig. 11 shows results of the precedence 
function: The bundle material attribute identifier take precedence over those of the coating in the volume of 
overlap. 

l Relational recovery and organization of attributed topological entities for subsequent analysis, e.g. find the 
set of regions with a given material, list the set of faces associated with a given design parameter, etc. 

To implement automatic propagation of attribute identifiers, ‘ancestor tags’ are connected with each 

Casting 
MatrbCVD~SiC 

Unit cell with 
natching face sets 

BUMTISS 

latrbSiC,Bundle 

MatrkCVD-SIC ( --I .- 

MatrkSiC-Bundle 

(AnB)u(BnC) 
Fig. Il. Attribute propagation during model construction. 
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topological entity originally associated with a feature, and a set of precedence functions for the ancestor tags are 
installed with the basic operations underlying primitive creation, Boolean and sweep operations of the geometric 
modeler. The basic topological operations are: instantiate, copy, sweep, split, imbed and merge, as well as I/O 
for file storage. In the general case, basic operations can create a set of candidate topological entities whenever 
two topological entities are combined. An ancestor tag is propagated to newly constructed topological entities if 
it has precedence (a value less than) the tags of other topological candidates. The computational and memory 
cost rise linearly with model complexity. 

The ancestor values can be assigned directly to an entity, such as to the solid region of a bundle, to multiple 
adjacent regions by a ‘locally greedy’ map coloring algorithm, or to related topological entities, such as the nth 
dimensional boundaries of an object or the common boundaries shared by two or more objects. 

The unique identification of physical attributes are handled as a tuple: {geometric-entity, ancestor, 
attribute-type, attribute-label}. As the geometry of a new feature is processed, its corresponding attribute 
identification tuples are added to a database. When the model construction is completed, relational queries select 
tuples, evaluate them on the topology and return the set of matching topological entities, e.g. in Fig. 11 the set of 
faces on the RVE with attribute-type= ‘periodic-match’, and attribute-label= ‘3’. The matching entity set and 
other attribute data can be combined and formatted for later attribute processing. 

In cases where there are competing propagation streams which must remain independent throughout the 
modeling process, a vector of ancestor tags is needed for each topological entity. This is analogous to the 
problem of multiple design ‘viewpoints’ for the topology of a part as described in [23,44], where each ancestor 
component corresponds to a viewpoint and is propagated independently. 

Facilities for coordinating geometric information between the next lower and higher scales also makes use of 
the attribute propagation facilities. In the case homogenization of woven architectures, the linkage between 
scales is through non-isotropic material properties, and the modeling code provides inter-scale transformation 
topological entities to orient the properties of the lower scale along the length of the fiber bundles. The 
inter-scale transformation operator used by the automatic matched mesh generator is supplied the model, 
material region of interest, and location in space of an element integration point, and provides the corresponding 
orientation parallel to the bundle center line. Fig. 12 depicts the solid model of a weave (left) and the 
corresponding bundle path model (right), where the connection between entities of each model are by a common 
ancestor attribute. The path model in Fig. 12 is based on the partial design schematic of Fig. 8, the solid model 
has a meshed unit cell shown in Fig. 15(b), and the results are shown in Fig. 20. The same inter-scale 
transformation capabilities can be used to orient the mesoscale properties in a curved macroscale component, 
e.g. a mid-thickness surface can orient material properties in a shell component or delineate the extent of fabric 
layers. 

3.3. Automutic matched meshing 

The generation of valid finite element meshes [37,33] within the problem domain is critical to the success of 
these analyses. The topological and geometrical complexity of three-dimensional woven composite unit cells, 
and the need to analyze multiple unit cell models to optimize microstructure for a given application make the 

Fig. 12. Bundles and corresponding path model for fiber property orientation. 



284 R. Wentorf et al. I Comput. Methods Appl. Mech. Engrg. 172 (1999) 273-291 

ability to generate meshes without user intervention a practical necessity. Operations associated with mesh 
generation for unit cell models are depicted in Fig. 13, where the geometric model and associated attributes are 
shown as inputs and the output is a data set formatted for the FE solver. 

The schematic in Fig. 13 depicts the inputs and outputs (lines) for each function (boxes) used to implement 
the automated homogenization ‘Matched mesh model generation’ function of Fig. 4. The ‘Geometric Modeler’ 
provides a non-manifold boundary representation [26] of the composite weave geometry comprising the unit 
cell. 

The ‘Matched Mesher’ function uses the geometric model information and constraints dictated by the periodic 
boundary conditions to automatically create a three-dimensional mesh of the composite weave. A set of ‘Mesh 
Copy Operations’ is used to create matching surface mesh topology and geometry on opposing faces of the unit 
cell. The mesh matching requirements, ‘Unit Cell Template’, is information to be associated with the previously 
attributed unit cell faces and are independent of any particular composite weave geometric model. The unit cell 
template information is associated with the topology of the unit cell template by the ‘Classify on Unit Cell’ 
function. After the mesh has been generated, mesh queries and manipulations are performed via the ‘Generic 
Mesh Database Operations’ [3]. 

The unit cell template is also used to automatically ‘Identify Moveable Constituent Topology’, as indicated in 
the center of Fig. 13. This function determines the topological entities of the given ‘Target Constituents’ in the 
composite weave model for which the associated mesh may be altered to ‘Adjust Constituent Mesh Volumes’ to 
the given ‘Target Volume Fractions’ by the subsequent function shown. 

The ‘Material Property’ function of Fig. 13 produces the constitutive relations for each constituent in the 
composite. The necessary constituent material properties are selected /from a relational material property 
database indexed by compound, form, manufacturer, environment, or other factors. Alternatively, the properties 

Geometric 
Modeler 

Generic Modeler 

Matched Mesher 
*Surface Meshing 
*Mesh Copy Operations 
*Volume Meshing 
*Matching Vertex Data 

Generic Mesh Db 
Operations 

Phase Volume 
Adjustment 

-I Attribute I+ - - - - - ’ 

Associate and Kinematic B.C. Y 

Attribute * 
I 

I Material 
JI Inter&ale 

l- Transformation 
1 FE Solution I Entities 
1 I rmxi ““--e Material 

Prc raerties (Phase orientation) 
I--- -.-- 

Target 
- Phase 
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Fig. 13. Mesh related operations. 
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are computed from a lower scale analysis of the average properties of micro-constituents. Complete definition of 
material properties also requires the inter-scale transformation linkages described earlier to provide local 
coordinate systems orientation of non-isotropic material models. Data from the geometric modeler is used to 
associate the material properties (and other analysis attributes [4]) with the geometric model topology. 
Associating these properties with the geometric model makes them independent of the mesh, and the mesh can 
therefore be altered without requiring their re-specification. 

The ‘Kinematic B.C. Attributes’ function of Fig. 13 defines the appropriate boundary conditions for the 
homogenization analysis. These attributes and the constitutive relations are associated with the correct finite 
element mesh entities and formatted as necessary for the finite element solver by the ‘Associate and Format’. 
The resulting system of equations is provided to the finite element solver, and the solution data is supplied to 
appropriate post processing routines. 

3.4. Matched mesh generation 

Since the homogenization modeling is performed, via the finite element method, the necessary periodic 
boundary conditions are specified to the equation solver in terms of nodal displacement requirements 
(multi-point constraints). Since the displacement solution field is not constant over a cell face, the displacement 
of a given node, referred to as the subordinate node, on one face of the unit cell is defined as a function of the 
displacements of specific nodes, referred to as control nodes, on the opposing unit cell face. That is 

where gi denotes the displacements of the ith subordinate node, gj denotes the displacements of the jth control 
node, a/- are weighting values, and N,,, is the number of control nodes associated with the current subordinate 
node, see Fig. 14. The displacement function for a given node is written in terms of the shape functions of the 
element face which contains the projection of the given node on the opposing unit cell face. If it were 
implemented directly, this approach would require an expensive search process to determine within which 
element faces the projected node lies. The projected point must also be located in the parametric ([,, &, t3) 
space of the element face to express the displacement of the subordinate node in terms of the control nodes. The 
calculation is more complex with higher order polynomial element geometry interpolations. The computational 
penalty of the search also increases with high surface area to volume ratios of the unit cell, a condition found in 
many typical weaves, such as those shown in Fig. 15. 

Specification of the periodic boundary conditions is simplified if the finite element nodes on opposing unit 
cell faces match (NcOn = 1). Given a priori knowledge of the correspondence between nodes on opposing faces 
of the unit cell, no searching is required and it is not necessary to locate a projected point in real space within 
the parametric space of an element face. 

Fig. 14. Projection of a subordinate node onto its matching face and its surrounding control nodes. 
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Fig. 15. Example bundle and unit cells meshes of a 5-harness and angle interlock weave. 

Matched meshes are generated by discretizing the weave geometric model outer boundary entities which are 
defined as ‘control’ entities, and then copying the meshes to the matching ‘subordinate’ weave geometric model 
entities. To generate a matched mesh of the weave geometric model, it is necessary to identify the 
control-subordinate relationships of the weave geometric model outer boundary topological entities. For 
convenience, the outer boundary of the weave geometric model is denoted as SM, and the control-subordinate 
relationships are determined by associating the topological entities 6M with the unit cell template control and 
subordinate topology. 

One unit cell template face of each opposing pair of faces is specified as the control face, and the other is 
specified as the subordinate face. One of the three such pairs of faces is indicated on the unit cell template 
shown in Fig. 16(a). Periodicity in each direction normal to the faces of the unit cell requires that parallel edges 
of the box-shaped unit cell template undergo the same variations in displacement and must have identical 
meshes. One unit cell template edge in each group of four parallel edges is specified as the control edge, and the 
other three are designated as subordinate edges. One of the three such control-subordinate edge groups is shown 
in Fig. 16(a). All eight vertices of the unit cell undergo the same displacement, and (trivially) must have 
identical meshes. 

Each SM face associated with a control face of the unit cell template is identified as a control face, and the 
matching 6M face is identified as a subordinate face, as shown for a typical pair of weave geometric model faces 

Control Edg& Subordinate Face1 
L 

I2 

al 
I  

Control Edg> -. ._.- 
Sulmrdlnate Face - 

b) 
Fig. 16. Control-subordinate relationships of unit cell geometries. 
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in Fig. 16(b). If a &VI edge lies within a control face of the unit cell template, then it has one matching &VI edge 

lying within the opposing subordinate face of the unit cell template. If a SM edge lies on a control edge of the 
unit cell template, it has three matching edges lying on the parallel subordinate edges of the unit cell template, 
as shown for one group of SM edges in Fig. 16(b). The SM vertices similarly inherit control-subordinate 
designations. 

Generating meshes in a hierarchic manner, i.e. meshing vertices first, then edges, faces, and volumes, allows 
the periodicity requirements to be easily satisfied during the meshing process, since discretizing the weave 
geometric model face boundaries first ensures that the necessary matching meshes can be generated in their 
adjacent faces. 

The control &VI edges are meshed, as shown in Fig. 17(a). As described in [IO], the edge meshing is done 
such that the resulting discrete edges are of approximately the same size as initially requested. The meshes on 
the control edges are copied to the subordinate weave edges, after first creating a new subordinate mesh vertex 
as shown in Fig. 17(b). A new mesh edge is then created and classified on the subordinate weave edge, as shown 
in Fig. 17(c). 

The weave faces are then meshed by a surface meshing algorithm which discretizes the model faces in their 
parametric spaces ]lO]. The weave face boundary mesh is first copied into the parametric space, as shown in 
Fig. 18(a), and the surface mesh is then created using a Delaunay insertion method [lo], Fig. 18(b). After the 
surface mesh has been created in the parametric space it is copied back to the weave face in the real space by 
obtaining the corresponding xyz coordinates for each of the mesh vertex parameter values as shown in Fig. 
18(c). The matching mesh on the subordinate weave face is created by copying the temporary mesh to the 
corresponding subordinate weave face. 

The region meshing process is comprised of three steps [IO]. In the first step an underlying variable level 

Subordinate weave edges 

Control mesh edges 
\ Control weave edge 

a) W 
Fig. 17. Edge meshing procedure 
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Fig. 18. Face me\hmg procedure. 
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octree is created to reflect mesh size control information during the region meshing procedure. The octants 
residing far enough inside the model interior are then meshed using templates. Finally, a face removal procedure 
connects the surface triangulation to the interior elements. 

3.5. Control of constituent volume fractions 

Given knowledge of the desired goal of the analysis, the modeling process can be adjusted for greater 
efficiency. In finite element analyses the solution accuracy is affected by both discretization error and geometric 
approximation error. If discretization error dominates, then the discretization must be suitably refined to improve 
solution accuracy. Geometric approximation error is caused by the piecewise approximation of curved model 
geometry. Since the fiber bundles are convex in cross-section and are curved to form the weave, geometric 
approximation creates errors in the constituent volume fractions calculated from the finite element mesh. A 
comparison of the discretization and geometric approximation errors for the 5-harness satin weave of Fig. 7(a) 
are shown in Fig. 19, where the percent error on the first three diagonal stiffness terms (Gil, G22, G33) are 
plotted for the independent cases of increasing refinement and three volume fraction errors (O%, 5%, 19.5%). 
An order of magnitude increase in the number of unknowns accounts for only a 2% error, while an error in 
volume fraction of less than 20% causes approximately 8% error. 

The volume fraction errors are controlled by mesh modification, where the mesh vertices classified on the 
interior surfaces of the target constituents are relocated anisotropically, if necessary. In the current implementa- 
tion, the quality of the mesh is maintained with respect to the largest dihedral angle [22] and a constrained 
Laplacian smoothing [ 121 is employed to improve the shapes of the altered elements [9]. 

3.6. Post processing 

Stresses on the scale of the weave constituents aid in the design of composite microstructure by indicating 
areas of high stress which may lead to failure. Since the meshes generated here conform to the model geometry, 
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Fig. 19. Effect of discretization and geometric approximation error on homogenized stiffness. 
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Fig. 20. Maximum principal meso scale stresses due to a 100 ksi uniform macro scale stress 

they can provide reliable local stress evaluation. The local unit cell stresses corresponding to the strain field 2, 
existing at a given jth point in the macroscale model are given by V+ = B, ““““&, where g, are the stresses at the 
ith integration point in the unit cell model, and B “““’ is the stress concentration matrix relating the strain field at 
a given point in the macroscopic model to the stresses at the ith integration point in the unit cell model [ 131. 
Implementation involves access to both macro and microscale solutions, access and transformations w.r.t. 
bundle path orientations, and tensorial computations. Consideration of the data flow indicated a potential 
combinatorial explosion of macro/mesoscale data, since macro scale finite element models contained lo’-lo4 
locations when both surface and thickness integration points are considered, and meso scale models contained 
104-10’ locations. The implementation was structured to minimize computations and also allowed unlikely 
combinations to be filtered out in the search for worst case values. Post processing capability was also extended 
to compute spectral norms of B”‘C”) of the mesoscale model, allowing comparison of alternative weave designs 
without macro scale analysis. 

The following example of local stress calculation uses the angle interlock composite unit cell of Fig. 15. The 
homogenized material stiffness parameters were used to calculate 2 corresponding to a 100 ksi uniaxial stress in 
the x (warp) direction. The results of applying the above procedure to every integration point in the coarse mesh 
are shown in Fig. 20. 

This figure represents an exploded view of the unit cell, with the groups of elements comprising the matrix 
(top center), warp bundles (left), and weft bundles (right) separated for clarity. Linear elements were used for 
the homogenization analysis of this example, and are colored according to the values of the maximum principal 
stress calculated at their single integration points. The correspondence between the colors and the stress values is 
shown by the grey scale at the top of the figure. 

The stresses in the warp bundles show concentration ‘bands’ near the crossovers where the warp and weft 
bundles are woven together. This is due to the load carrying capacity of bundles being reduced when their axes 
do not align with the loading direction, and the load therefore being transferred to the neighboring bundles 
which are aligned in the loading direction. The matrix material shows bands of stress values due to additional 
reinforcement by the transverse stiffness of the weft bundles. 

4. Conclusions 

This paper presented tools used for efficient three-dimensional modeling and homogenization analyses of 
complex composite materials. The tools and techniques were presented to extract available material data from 
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test micrographs, compute non-manifold geometric models from a description of its features and known weave 
schematics and parameters, and facilities to assign and maintain attributes associated with topological entities for 
subsequent analysis. The ability to track attributes throughout the model construction process and to link 
geometry representing different scales are useful capabilities for automatic modeling in this application. A 
matched meshing algorithm was also presented, which simplifies the specification of periodic boundary 
conditions. An algorithm developed to correct the mesh volume fraction was used to study the effect of the mesh 
volume fraction error on the values of homogenized material stiffness parameters, and these errors were shown 
to be greater than that of the discretization error alone. Acceptable homogenization results may therefore be 
obtained with coarse discretization if the mesh volume fraction is controlled. The reliable calculation of local 
stresses due to loading on a macroscale domain was also demonstrated as a post-processing step for problems 
which are within the assumptions for uncoupled (homogenization) analysis. Such capability requires a mesoscale 
mesh which conforms to the model geometry and efficient processing of the woven solution data. 
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