Modeling and Simulation of Wrinkling in Compression Molding Process
of Fiber Reinforced Composite$

J. FisK, J. LeMonds and K.L.Shek

ABSTRACT

A model has been developed for the prediction of wrinkling during the compression
molding process for composites with thick cross-sections. The onset of wrinkling is mod-
eled as a localized bifurcation mode, which produces additional solutions in the form of
wrinkles in a single layer or group of neighboring layers. Average mechanical, thermal
and cure properties of the composite material needed for simulation of compression mold-

ing process are developed.
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1. Introduction

Since 1909 when Baekeland first produced thermosetting raisins, composite fabrica-
tion techniques such as compression and transfer molding of thermosetting plastics have
evolved from early manual labor to fully automated system.

In a typical compression or transfer molding process, a thermosetting fiber rein-
forced molding compound is exposed to sufficient heat to soften or plasticize it suffi-
ciently to flow into the mold cavity. The material is then held under pressure for a
sufficient length of time to cure. In the compression molding process the pressure is intro-
duced by moving the top half of the mold against the part.

There are a number commercial codes for the simulation of compression molding
process of fiber-reinforced thermosets [1], [2]. These finite element based codes predict
the mold filing, distribution of fiber orientation, shrinkage and warpage of the final part.
To our knowledge none of the existing codes attempt to predict micromechanical failure
mode in the form of wrinkle, which often occurs in the manufacturing of thick composite
parts, nor there is any theoretical framework addressing this difficult issue. Thus the pri-
mary objective of the current paper is to develop a simulation tool aimed at predicting the
onset of wrinkling during the compression molding process.

The paper is organized as follows. In Section 2, we present a wrinkling model in the
form of localized instability mode. Section 3 deals with the overall thermal, mechanical
and cure properties of the composite which evolve in the compression molding process.
Implementation of the wrinkling model into ABAQUS via UMAT interface conclude the
manuscript.

2. Wrinkling Modeling

In this section we model formation of wrinkles developed in compression molding
process. Wrinkling is a localized phenomenon involving one or more layers. This mode of
failure typically occurs in thick-layered composites.

Because of the localized nature of wrinkling failure we will attempt to model this
mode of instability as a sequence of kinks shown in Figure 1. In this section we develop a
3D wrinkling model, which generalizes the previous work of Budiansky and Fleck [3].

2.1 Definitions and notation

We denote ( )0 and( )1 as pre- and post- wrinkling quanti@ps; e%nd
denote the unit vectors in the pre- and post- kinking coordinate system, sueﬁ that and

€, are pointing in the fiber direction as shown in Figure 1.
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Figure 1: Wrinkling model and definition of coordinate systems

. 1 .0
We assume that at the onset of wrinkling the rotatloeiof axis aiout can be

defined by three small angleg, 8, = O(e) ,whdle<€«l1l ¢@; is the rotation

0 : . : . 1 -
aboute3 andQ(@) is a corresponding rotation matrix, sucheﬁa‘F Q(p)e . Simi-
. . 0 . . .
larly, © is the rotation about the new a>€l!i afido) is a corresponding rotation

matrix, { is the rotation about the new agis obtained after the first two rotations, and

Q(Y) is a corresponding rotation matrix. The relation between the pre- and post- wrin-
kling coordinate system is given by:

)

e = slimoQ(llJ)Q(G)Q(tp)el = [Q(Y) +Q(8) +Q()]e" = Qe ()

where

1oy
Q=1lp 1 -6 @)
we 1

We further assume that the shear angle (shown in Figure 2) developed by rotation

around thex; axis is intifisimaly small at the onset of wrinkling, e= O(¢) . Fur-

thermore, by exploiting the kinematics of the deformation in the wrinkling band, governed
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by o _ y and G(Xi = 0) = 0 , and assuming that the wrinkling band is very nar-

1
dxy
. 1 . 2
row, i.e., X; = O(g) for any point in the band, we get that= O(€") , and thus

can be neglected comparedyip ¢ in subsequent derivations.

kink plane

Figure 2: Kinematics of torsion aroumi’
The unit vectoran;  defining the kink plane, such Ilhgt is the normal to the kink

. 0 . .
plane, can be related to the unit vectes in terms of two rotatiQrf$ (because

N,, N5 are two orthogonal unit vectors arbitrary located in the plane nornﬂ’la:JL to ). Let

. Y . . . . .
B be the rotation angle abogg ~ aR{3)  the corresponding rotation matrix. Likewise,
let o be the rotation angle aboat,  obtained after the first rotationRA{et) be the
corresponding rotation matrix. The overall rotation matf , defined such that

T
n =R eo,is given by

cos0 cos3 —cosa sinP —sina
R = R(@)R(B) = | sinp cosB 0 )
sina cosP —sinasin3 cosa

2.2 Traction continuity

Continuity of tractions across the wrinkling interface can be expressed as follows:

e&(olnl—oonl) =0 k=123 (4)




Due to fiber inextension only, the traction continuity condition ko~ 2, 3 has to be
satisfied. Combining equations (2)-(4) and assuming trabya) « /2 :
abg(3) « T/ 2 yields a system of two equations:

tan@ [

coso
(5)

tan
Aczl% + CPES% + thanaE+ AO’23(— y + tana) + AGZZE_ 0+

0 0 0 tan@ 0 [ 0 0

U tanp [ tanB
A031%l + Ptana + (p—ﬁco D+ Ac33(— Y + tana) + A032D_ @+ EQD
(6)

_ 0 0 tanfB[ 0 0 tanB ]
= — Oy —==+ 0 tana + 0,,—0O 20 tana
932 31505y 0] Yoy 33021y ~ 203112M0
WhereAGij is defined as:

ANO.. = 0. —0O.. 7)

We next proceed to define the kinematics of the deformation in the wrinkling band.

2.3 Kinematics of wrinkling

1. 1.1
Consider a material poirl?()(l, X2 )(3) within a wrinkling band as shown in Fig-

ure 3. The dotted lines show the fiber orientatibn.  denotes the distance of thP point

from the kink plane measured along the fiber direc&én

At the onset of wrinkling the displacement field within a wrinkling ban%l is
assumed to be a small perturbation from the displacement field outside the wrinkling band
0 .
u ,ie.:
1 0
u =u +Au ©)
where the perturbed displacement fidid is defined as follows:

Au = (pLe;—LIJLeé 9)




&
kink plane \

Figure 3: Wrinkling kinematics

This form of perturbation is chosen because of (i) the fiber inextension assumption,
and (ii) the small rotations assumption at the onset of wrinkling. It remains to express the

distancel in terms of the coordinates of the pBint

Let axi + bX% + CX% = 0 be the equation of the kink plane passing through the

- 1 1 1 1 . , : i
origin, and IetX2 = Xo X3 = X3 represent the equation of a fiber in the wrinkling

band passing through the poiRt . The intersection point between the fiber and the kink

plane is given b;b(i = (—bxé—cxé)/a and consequently, the valuk of s given by:

1 b1 c.1
L =x1+ axz + 5X3 (10)

where
a= nlei [Jcosa cosf3
b = nle% = sinf — @coso cosB (11)
c = nleé = sina cos — Y cosa cos3

Substituting (11) into (10) yields

1 1 1
L = X1t %—@%)(2+(tana—w)xg (12)
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Let Asij be the perturbed strain field defined As;; Au; + iAu-D , then

I QEEXJ. ox; id
the perturbed strain components can be expressed as follows:
JAY = Dtﬂﬁ —
22 = Yo (p%
Ay, = 20e,, = @ (13)

Ayy, = 20e4, = -4
Ayz, = 20e4, = UJBI) —%E+ @(tana — )

2.4 Constitutive equations

We assume that wrinkling occurs in the solid phase governed by linear elasticity
equations with eigenstrains:

m m m
Oij = Lijk 1)  m=01 (14)

m
Whereukl is the eigenstrain consisting of thermal and cure effects. Equation (14) implies

that the components of the constitutive tenhﬂrm are seen to be identical in the pre-

and post- wrinkling coordinate systems. Furthermore, we assume that because of weak
coupling between mechanical thermal and cure fields, the eigenstrains on both sides of the

. . . .0 1 : .
kink plane are identical, Lef = My - Based on these assumptions equation (14) can

be recast into the following form:

For transverse isotropic material equation (15) reduces to:
AC,, = D Ag,,+ DiAES, AC45 = DiAg,,+ D Ao, "
AOy3 = GAYyz  A0y3 = GAy 3 A0p, = GaAyy,

2.5 Wrinkling condition in 3D




Substituting equations (13), (15) and (16) into (5) and (6) and negle@(r&gz)
terms yields a homogeneous system of equationg for Yiand

col s

A=G,+G (tanO()2 +D, K—Eﬁ +011—022+2021ﬂﬁ +031tana

where

(cosu cosa
cosa 18)
_ (D +G cosa) anatan@ 032+0g1 tanf
cost
_ (tanB)2 0 0 tanf 0
Thus the condition for wrinkling may be stated as follows:
F(a,B) = ALD-BOC =0 (19)

2.6 Wrinkling condition in 2D

Reduction to 2D case can be obtained by forcing the normal to the kink plane and the
fiber orientation in the wrinkling band to be aligned in tti(g—x2 plane, i.e.,

o = Y = 0. Furthermore, transverse shear stress components are assumed to be negli-
gible, i.e., 013 = O0p3 = O . In this case the wrinkling condition degenerates to:

0

A(B) = G, +D_(tanBf +03,— 0y, + 205, tanB = 0 (20)

It can be seen that in absence of stregses0 . As the thermomechanical loading
increases, and the values of stresses approach those of the material constants, the value of

A(B) may decrease and finally approach zero, which is an indication of the onset of
wrinkling. In this process the critical value Bf  is the minimizeA43)




0

0A 921
— =00 tan = — —
0P P D,
5 0 (21)
O O, D
a_AZEtanB=—D2]D= a_>00 min
U a  (cosp)
The minimal value oA(B) is given by:
0
Amin = G4—F(0) (22)
where
2
0
0 o o (039
F(07) = 055—044% él (23)
a

To measure the proximity to wrinkling failure it is convenient to define the wrinkling
parametef] as follows:

00 —00 (00 )2
0=F/G, = 22" "11, 721 (24)
Ga DaGa

whereF andG_ represent the forcing function and resistance to wrinkling, respectively.
Note that at the onset of wrinkling = 1

3. Simulation of the compression moulding process

In order to simulate the compression molding process it is necessary to find the over-
all properties of the preform material as a function of temperature and cure. For this pur-
pose we will first estimate the overall mechanical, thermal and cure properties of a single
layer, which we will subsequently refer to as micromechanical homogenization. In prac-
tice however, compression molding of thick composites often involves hundreds of layers,
and thus in the second stage we will compute the average material properties of sublami-
nate, which we will refer to as mesomechanical homogenization.

3.1 Micromechanical homogenization with eigenstrains

To estimate the overall mechanical, thermal and cure properties of a single layer we
will employ the mathematical homogenization theory with eigenstrains recently devel-
oped in [4]. We will briefly summarize the theory and extend its use to cure and thermal
strains, which will be collectively referred to as eigenstrains in an otherwise elastic body.
Attention will be restricted to small deformations.




We assume that the microstructure of the composite is periodic so that the homoge-
nization process can be performed in a unit cell domain, denote@ by . Thus, the
response functions, such as displacements and stresses, are also peri®dic. Let be a coor-
dinate vector on the mesoscale, 3@ X/ G be a microscopic position vectorqvhere s
a small parameter representing the ratio between the scales. For any periodic function

fc(x) = f(X, Y(X)) , the indirect microscopic spatial derivativesfof  can be calcu-
lated by the chain rule as

S _ 1
00 = F () + ¢y (6 9) @
where subscripts followed by a comma denote partial derivatives with respect to the sub-
q
: : LS of
script variables (i.e. =— )

In modeling a heterogeneous medium, micro-constituents are assumed to possess
homogeneous properties and satisfy the set of continuum mechanics equations

Q

N
+
(o}
1

C _ C C ¢ _ g ¢ 0O
i t0i =0 0 = Lijg (g —mg) & = gl —Ux72 @9
and the appropriate boundary and interface conditions. In (26), the eigenstrain tensor con-

_ th : CS ,
sists of thermal and cure shrinkajge strains can be expressed by:

th
M6y, T8) = W' (6 Y, T) + i (%, Y, T, ) @

where T andB are temperature and cure fields, respectively. In the present work we

assume that evolution of thermal stral.m-tl?h(T) , cure shrinkage spl%isr(sT, 0) , and

constitutive tensoLuk' (T, 8) ina pure raisin material can be measured experimentally.

Furthermore, we assume that cure and thermal effects are negligible in the fiber.

Both displacements and strains are approximated using a double scale asymptotic
expansion of the form:

0 1 0 1
U= U6 y) + QU6 y) + s = B 06 Y) + QR (% y) + o (28)

The corresponding expansion for the strain and stress tensors can be obtained by
combining the above expansions with the governing equations and by exploiting the indi-
rect differentiation rule:
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1
g (% y) = Eeij (% y) + &; (% y) + Cg;; (%, y) + ...
(29)

1
0 (X y) = Eoij (% ¥) +05;(% ) + 605 (x%, y) + ...

Various order of stress and strain tensors are related by the constitutive equation:

oﬁl = Lijklsgll, oirj = Lijkl(srkl—prkl) r=0,1.. (30)

Substituting equation (30) into the equilibrium equation, a set of equilibrium equa-
tions for various orders af can be obtained. From the lower @(ﬂer_z) equilibrium,
we get a classical estimatH? = u?(x) . Following referenceq‘ﬁ;_l) the equilib-

rium equation provides two governing equations for the unit cell problém in

ikt Oy + Pramn)ly, = 0
' 0 (31)
(Lijki Primn)y, Gmn— (Liji i)y, = 0

where 6km is the Kronecker deItH,Jk|mn is related to the elastic strain concentration

factor Aklmn as shown in equation (32). The microscopic strain can be written in terms

of the overall mesoscopic strain tené%n as follows:

_ = _1
€l = Aklmr'gmr Aklmr - é(ékmélr + 6kr6Im) + quImr (32)

In the following, we will adopt a matrix notation such téat  is the matrix represen-
tation of Aklmn . The first part in equation (31) represents a classical linear unit cell or

inclusion problem. Either finite element method or analytical solution of the inclusion
problem can be used for calculation of stress/strain concentration factors. In the present
work Mori-Tanaka method [5], [6] is adopted for calculation of strain concentration fac-
tors.

: : , Y . 0
The elastic homogenized stiffness tenkor  follows directly fromQ{g )
equilibrium equation and is given as follows:

11



J'LAdoo = J'A LAdw (33)

le [

where|w)| is the unit cell volume.
Separation of variables for the eigenstrain fim(% (X, y) = Z l].lrl (y) u(r)l (X)

combined with the expression foi}1 obtained from the second equation in (31) yields a
closed form expression for the microstrain field in a unit cell domain expressed in terms of

the overall strain field and the eigenstrain fiq.l(?(x)

£(x ¥) = AYEX) + S Dy (Vi () @

where Dn(y) is the eigenstrain influence function given in terms of strain concentration

function W(y) as follows:

I P .
D, (y) = muJ(L—L) Iw Ly, doo (35)

We now consider a two phase media, consisting of matrix and reinforcement, with
respective volume fractiorrsm amfi . For simplicity, we assume that eigenstrains in the

resin are uniformly distributed, and negligible in the fiber phase. Consequently, equations
(34), (35) and (33) reduce to:

€ = A&+ D Hpyyeeeeen e r=m,f (36)

D AL —L)7L = m, f
rm = (U DL —=Lg) Lo r=m, (37)
L = ¢ L Apt LA (38)

Finally, the overall stres® field in the two phase material is given by

G = Cp Oyt Ci0f = L.§+Vmurn (39)

where

Vi = Sk m(Pmm="1) + L Dsy (40)
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It is important to note that concentration factér§ computed using Mori-Tanaka
scheme are functions of temperature and cure since resin properties depend on tempera-
ture and cure. Equations (36)-(39) provide the overall stresses and strains in a layer and
serve as basis for linearization aimed at computing the tangent stiffness matrix.

Linearization of (39) yields:
o = L(T,0)e+G(T,0)T+K(T,0)0 (41)

where

- = _ [0 0 = _ [0 0
L=C G-= DTTL%+_T(vmpm) K = %L%+%(Vmpm) 42)

3.2 Mesomechanical homogenization

[ B I R I B |
Let 6,¢,T,0,L,G,K bethe rate of stress, strain, temperature and cure fields, as

well as instantaneous mechanical, thermal and cure properties of a singlel layer
expressed in a fixed sublaminate coordinate system. These quantities are obtained by
transforming the overall micromechanical fields computed in the previous section from
the fiber coordinate system into a fixed coordinate system attached to a sublaminate.

Since each layer is assumed to be very thin, it is convenient to adopt a VFD (vanish-
ing fiber diameter) averaging model, developed by Dvorak and Bahei-EI-Din [7] in the
context of micromechanical homogenization. In the following we generalize this model to
account for thermal and cure strains and apply it to evaluate the overall properties of the
sublaminate.

In this section our goal is to evaluate the instantaneous sublaminate (macroscopic)

mechanical, thermal and cure material properties, denotdd @s K , Which represent
the rate form of the sublaminate constitutive equation:

S=LE+GT+KO (43)

where S E, T, ©® are the sublaminate rate of stress, strain, temperature and cure fields.
Mesomechanical homogenization procedure is based on the following four assumptions:

(i) Traction continuity between the layers in the sublaminate

Gik3 = S3..e - i =1,23 (44)
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where subscripB denotes the direction normal to the interface between the layers within
a sublaminate.

(i) Strain compatibility between the layers in the sublaminate

k
80([3 = EaB ...... a,B =12 (45)

(iif) Temperature and cure continuity between the layers in the sublaminate

Tk =T Gk =0 (46)

(iv) Application of the averaging rule for the remaining stress and strain components not
included in equations (44) and (45):

SaBz ZCKGEB ...... a,B=1,2 Eiz = Zc Eik3 ...... i=1,2 3 @47

K . . : .
whereC is volume fraction of a layer calculated as a ratio of layer’s thickness to sublam-

inate thickness. Note that the averaging rule (47) directly follows @{rh) equilibrium
equation [4].

For subsequent derivations we will define the following vectors:

k k

& = [9ap o = %3] =] 93| = 4 us)
Eis tg) (Fop
To evaluate the instantaneous material propeltties, K we devise a three step compu-
tational procedure:
Step _1Given the constitutive equation of a layer
of = LKMo+ G+ kK" (@9)

k k  k -k
find the relation betwee@ ¢ T, ,afd ,i.e., deternftieH , P such that

k k
ek = ngk+ HkT + Pke (50)
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Due to the arbitrariness of thermal, mechanical and cure fields, we first set
k k k

T =T=0,0 =0 =0andg = g .Then, substituting the above expressions

into the constitutive equation (49) yields a set of six equationg for €and . Assuming

k k
thatL  is nonsingular, it is feasible to expréss in tern@ of , which in turn yields the

k Kk k
expression for R . Similarly, we substitutel =T 6 =0© =0 and

gk = g = 0 into equation (49), which yields six equations &)kr and , and ulti-

Kk
mately the expressionHk : Finall;]?k is found by inserting T =T =0 :
Kk
6 =0 andgk = g = 0 into (49).

k  k -k
Step 2:Given the layer-wise propertids , H , P , find the overall sublaminate proper-
ties R, H, P, such that

e = Rg+HT +PO (51)

The sublaminate propertids, H, P can be obtained by inserting equations (47) and (48)
into equation (51) which yields:

(R H, P) = ch(Rk, H¥ PY) (52)

Step 3:Given the sublaminate propertie§ H, P, fihd G, K relating the quantities
S E, T, © as shown in equation (43).

We first substitutel = 0 © = 0 into (51), which yields six equationsSpE and
consequently the expression for . Similarly, insertg= 0 Eng O into (51),
yields G , and likewise insertingT = O afd = O into (51) yields

Remark:The plane strain case can be obtained by substitEqug: 0 into (43).

4. Implementation

Both the homogenization and wrinkling prediction procedures have been implemented
within the UMAT interface of ABAQUS. Figure 4 schematically shows the computational
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cycle consisting of five modules implemented within UMAT in addition to ABAQUS as
analysis engine.

= W - Wrinkling Parameter

e o —e—

= o
iy -
T

Figure 4: Compression molding process simulation with ABAQUS

The computational process starts by carrying out micromechanical homogenization
of mechanical, thermal and cure properties based on mathematical homogenization proce-
dure with eigenstrains described in Section 3.1. This module provides an overall proper-
ties for each ply. Since there would likely be numerous plies in a real part it is not feasible
to represent the kinematics of each ply for a coupled thermomechanical analysis. Hence
the second module performs ply-by-ply homogenization (Section 3.2). Subsequently, a
typical representative cross-section is selected and an equivalent 2D properties are evalu-
ated. Once the instantaneous material properties have been evaluated, a single iteration of
the coupled thermo-mechanical analysis takes place. Results on the mesomechanical level
(stresses and instantaneous material properties) are then post-processed for each Gauss
point in a ply. A single computational cycle is completed by carrying out the wrinkling
analysis for each Gauss point within each ply (Section 2). The value of the current wrin-
kling parameter is stored in the ABAQUS database.

5. Conclusions

A comprehensive model has been developed for the prediction of wrinkling in com-
posite parts which have complex geometries and complex material behavior. The method
has been implemented in ABAQUS and applied to an experiment at the General Electric
company which is proprietary and cannot be presented here. The wrinkle prediction tech-
nique presented here yielded the time of the onset of wrinkling which agreed well with the
experimental results and gave the location of the wrinkles in exact agreement with the
experiment.
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