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Modeling and Simulation of Wrinkling in Compression Molding Process 

of Fiber Reinforced Composites1

J. Fish2, J. LeMonds3 and K.L.Shek2 

ABSTRACT

A model has been developed for the prediction of wrinkling during the compres
molding process for composites with thick cross-sections. The onset of wrinkling is m
eled as a localized bifurcation mode, which produces additional solutions in the form
wrinkles in a single layer or group of neighboring layers. Average mechanical, therm
and cure properties of the composite material needed for simulation of compression
ing process are developed.
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1. Introduction

Since 1909 when Baekeland first produced thermosetting raisins, composite fa
tion techniques such as compression and transfer molding of thermosetting plastics
evolved from early manual labor to fully automated system. 

In a typical compression or transfer molding process, a thermosetting fiber rein
forced molding compound is exposed to sufficient heat to soften or plasticize it suffi-
ciently to flow into the mold cavity. The material is then held under pressure for a 
sufficient length of time to cure. In the compression molding process the pressure is
duced by moving the top half of the mold against the part.

There are a number commercial codes for the simulation of compression mold
process of fiber-reinforced thermosets [1], [2]. These finite element based codes pre
the mold filing, distribution of fiber orientation, shrinkage and warpage of the final pa
To our knowledge none of the existing codes attempt to predict micromechanical fai
mode in the form of wrinkle, which often occurs in the manufacturing of thick compo
parts, nor there is any theoretical framework addressing this difficult issue. Thus the
mary objective of the current paper is to develop a simulation tool aimed at predictin
onset of wrinkling during the compression molding process. 

The paper is organized as follows. In Section 2, we present a wrinkling model in
form of localized instability mode. Section 3 deals with the overall thermal, mechanic
and cure properties of the composite which evolve in the compression molding proc
Implementation of the wrinkling model into ABAQUS via UMAT interface conclude th
manuscript. 

2. Wrinkling Modeling

In this section we model formation of wrinkles developed in compression mol
process. Wrinkling is a localized phenomenon involving one or more layers. This mo
failure typically occurs in thick-layered composites. 

Because of the localized nature of wrinkling failure we will attempt to model 
mode of instability as a sequence of kinks shown in Figure 1. In this section we dev
3D wrinkling model, which generalizes the previous work of Budiansky and Fleck [3]

2.1 Definitions and notation

We denote  and  as pre- and post- wrinkling quantities;  and

denote the unit vectors in the pre- and post- kinking coordinate system, such that 

 are pointing in the fiber direction as shown in Figure 1. 
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Figure 1: Wrinkling model and definition of coordinate systems

We assume that at the onset of wrinkling the rotation of  axis about  ca

defined by three small angles , where ;  is the rotat

about  and  is a corresponding rotation matrix, such that . S

larly,  is the rotation about the new axis  and  is a corresponding rot

matrix,  is the rotation about the new axis  obtained after the first two rotations

 is a corresponding rotation matrix. The relation between the pre- and post- 
kling coordinate system is given by:

(1)

where

(2)

We further assume that the shear angle  (shown in Figure 2) developed by ro

around the  axis is intifisimaly small at the onset of wrinkling, i.e., . F

thermore, by exploiting the kinematics of the deformation in the wrinkling band, gove

n2

e1

n3

o

e2
o

e3
o

n1

e3
1

e2
1

e1
1

kink planes

φ

β P

ei
1

ei
o

φ θ ψ, , O ε( )= 0 ε 1«< φ

e3
o

Q φ( ) e
o

Q φ( )e1
=

θ e1
o

Q θ( )

ψ e2
o

Q ψ( )

e
o

Q ψ( )Q θ( )Q φ( )e1

ε 0→
lim Q ψ( ) Q θ( ) Q φ( )+ +[ ]e1

Qe
1

= = =

Q
1 φ– ψ–
φ 1 θ–

ψ θ 1

=

γ

x1
1 γ O ε( )=
3



ar-

 

kink

ause

. Let

wise,

e the

that

s:
by  and , and assuming that the wrinkling band is very n

row, i.e.,  for any point in the band, we get that , and thus

can be neglected compared to  in subsequent derivations.

Figure 2: Kinematics of torsion around 

The unit vectors  defining the kink plane, such that  is the normal to the 

plane, can be related to the unit vectors  in terms of two rotations  (bec

 are two orthogonal unit vectors arbitrary located in the plane normal to )

 be the rotation angle about  and  the corresponding rotation matrix. Like

let  be the rotation angle about  obtained after the first rotation and  b

corresponding rotation matrix. The overall rotation matrix , defined such 

, is given by

(3)

2.2 Traction continuity

Continuity of tractions across the wrinkling interface can be expressed as follow

(4)
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Due to fiber inextension only, the traction continuity condition for  has to

satisfied. Combining equations (2)-(4) and assuming that 

 yields a system of two equations:

(5)

(6)

where  is defined as:

(7)

We next proceed to define the kinematics of the deformation in the wrinkling band.

2.3 Kinematics of wrinkling

Consider a material point  within a wrinkling band as shown in F

ure 3. The dotted lines show the fiber orientation.  denotes the distance of the po

from the kink plane measured along the fiber direction .

At the onset of wrinkling the displacement field within a wrinkling band 
assumed to be a small perturbation from the displacement field outside the wrinkling

, i.e.:

(8)

where the perturbed displacement field  is defined as follows:

(9)
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Figure 3: Wrinkling kinematics

This form of perturbation is chosen because of (i) the fiber inextension assum
and (ii) the small rotations assumption at the onset of wrinkling. It remains to expre

distance  in terms of the coordinates of the point . 

Let  be the equation of the kink plane passing through

origin, and let ,  represent the equation of a fiber in the wrinkl

band passing through the point . The intersection point between the fiber and th

plane is given by  and consequently, the value of  is given 

(10)

where 

(11)

Substituting (11) into (10) yields
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Let  be the perturbed strain field defined as , th

the perturbed strain components can be expressed as follows:

(13)

2.4 Constitutive equations

We assume that wrinkling occurs in the solid phase governed by linear elasticit
equations with eigenstrains:

(14)

where  is the eigenstrain consisting of thermal and cure effects. Equation (14) im

that the components of the constitutive tensor  are seen to be identical in th

and post- wrinkling coordinate systems. Furthermore, we assume that because o
coupling between mechanical thermal and cure fields, the eigenstrains on both sides

kink plane are identical, i.e., . Based on these assumptions equation (14

be recast into the following form:

(15)

For transverse isotropic material equation (15) reduces to:

(16)

2.5 Wrinkling condition in 3D
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Substituting equations (13), (15) and (16) into (5) and (6) and neglecting 
terms yields a homogeneous system of equations for  and :

(17)

where

(18)

Thus the condition for wrinkling may be stated as follows:

(19)

2.6 Wrinkling condition in 2D

Reduction to 2D case can be obtained by forcing the normal to the kink plane a

fiber orientation in the wrinkling band to be aligned in the  plane, i

. Furthermore, transverse shear stress components are assumed to b

gible, i.e., . In this case the wrinkling condition degenerates to:

(20)

It can be seen that in absence of stresses . As the thermomechanical l
increases, and the values of stresses approach those of the material constants, the

 may decrease and finally approach zero, which is an indication of the ons

wrinkling. In this process the critical value of  is the minimizer of :
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(21)

The minimal value of  is given by:

(22)

where

(23)

To measure the proximity to wrinkling failure it is convenient to define the wrinkl
parameter  as follows:

(24)

where  and  represent the forcing function and resistance to wrinkling, respec
Note that at the onset of wrinkling .

3. Simulation of the compression moulding process

In order to simulate the compression molding process it is necessary to find the
all properties of the preform material as a function of temperature and cure. For thi
pose we will first estimate the overall mechanical, thermal and cure properties of a 
layer, which we will subsequently refer to as micromechanical homogenization. In 
tice however, compression molding of thick composites often involves hundreds of la
and thus in the second stage we will compute the average material properties of su
nate, which we will refer to as mesomechanical homogenization.

3.1 Micromechanical homogenization with eigenstrains

To estimate the overall mechanical, thermal and cure properties of a single lay
will employ the mathematical homogenization theory with eigenstrains recently d
oped in [4]. We will briefly summarize the theory and extend its use to cure and the
strains, which will be collectively referred to as eigenstrains in an otherwise elastic 
Attention will be restricted to small deformations. 
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We assume that the microstructure of the composite is periodic so that the ho

nization process can be performed in a unit cell domain, denoted by . Thus

response functions, such as displacements and stresses, are also periodic. Let  be

dinate vector on the mesoscale, and  be a microscopic position vector wher
a small parameter representing the ratio between the scales. For any periodic fu

, the indirect microscopic spatial derivatives of  can be cal
lated by the chain rule as

(25)

where subscripts followed by a comma denote partial derivatives with respect to the

script variables (i.e., ).

In modeling a heterogeneous medium, micro-constituents are assumed to p
homogeneous properties and satisfy the set of continuum mechanics equations

(26)

and the appropriate boundary and interface conditions. In (26), the eigenstrain tenso

sists of thermal  and cure shrinkage  strains can be expressed by:

(27)

where  and  are temperature and cure fields, respectively. In the present wo

assume that evolution of thermal strains , cure shrinkage strains 

constitutive tensor  in a pure raisin material can be measured experimen

Furthermore, we assume that cure and thermal effects are negligible in the fiber. 

Both displacements and strains are approximated using a double scale asymp
expansion of the form:

(28)

The corresponding expansion for the strain and stress tensors can be obtai
combining the above expansions with the governing equations and by exploiting the
rect differentiation rule:
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(29)

Various order of stress and strain tensors are related by the constitutive equatio

(30)

Substituting equation (30) into the equilibrium equation, a set of equilibrium e

tions for various orders of  can be obtained. From the lower order  equilibr

we get a classical estimate: . Following reference [4]  the equ

rium equation provides two governing equations for the unit cell problem in :

(31)

where  is the Kronecker delta,  is related to the elastic strain concentr

factor  as shown in equation (32). The microscopic strain can be written in t

of the overall mesoscopic strain tensor  as follows:

(32)

In the following, we will adopt a matrix notation such that  is the matrix repre

tation of . The first part in equation (31) represents a classical linear unit ce

inclusion problem. Either finite element method or analytical solution of the inclu
problem can be used for calculation of stress/strain concentration factors. In the p
work Mori-Tanaka method [5], [6] is adopted for calculation of strain concentration 
tors.

 The elastic homogenized stiffness tensor  follows directly from the

equilibrium equation and is given as follows:
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(33)

where  is the unit cell volume.

Separation of variables for the eigenstrain field 

combined with the expression for  obtained from the second equation in (31) yie
closed form expression for the microstrain field in a unit cell domain expressed in ter

the overall strain field and the eigenstrain field :

(34)

where  is the eigenstrain influence function given in terms of strain concentr

function  as follows:

(35)

We now consider a two phase media, consisting of matrix and reinforcement,

respective volume fractions  and . For simplicity, we assume that eigenstrains 

resin are uniformly distributed, and negligible in the fiber phase. Consequently, equ
(34), (35) and (33) reduce to:

(36)

(37)

(38)

Finally, the overall stress  field in the two phase material is given by

(39)

where
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It is important to note that concentration factors  computed using Mori-Tan
scheme are functions of temperature and cure since resin properties depend on te
ture and cure. Equations (36)-(39) provide the overall stresses and strains in a lay
serve as basis for linearization aimed at computing the tangent stiffness matrix. 

Linearization of (39) yields:

(41)

where

(42)

3.2 Mesomechanical homogenization

Let  be the rate of stress, strain, temperature and cure field

well as instantaneous mechanical, thermal and cure properties of a single la
expressed in a fixed sublaminate coordinate system. These quantities are obtai
transforming the overall micromechanical fields computed in the previous section 
the fiber coordinate system into a fixed coordinate system attached to a sublaminate

Since each layer is assumed to be very thin, it is convenient to adopt a VFD (v
ing fiber diameter) averaging model, developed by Dvorak and Bahei-El-Din [7] in
context of micromechanical homogenization. In the following we generalize this mod
account for thermal and cure strains and apply it to evaluate the overall properties
sublaminate.

In this section our goal is to evaluate the instantaneous sublaminate (macros

mechanical, thermal and cure material properties, denoted as , which rep
the rate form of the sublaminate constitutive equation:

(43)

where  are the sublaminate rate of stress, strain, temperature and cure
Mesomechanical homogenization procedure is based on the following four assumpt

(i) Traction continuity between the layers in the sublaminate

 (44)
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where subscript  denotes the direction normal to the interface between the layers 
a sublaminate. 

(ii) Strain compatibility between the layers in the sublaminate

(45)

(iii) Temperature and cure continuity between the layers in the sublaminate

(46)

(iv) Application of the averaging rule for the remaining stress and strain components
included in equations (44) and (45):

(47)

where  is volume fraction of a layer calculated as a ratio of layer’s thickness to su

inate thickness. Note that the averaging rule (47) directly follows from  equilibr
equation [4].

For subsequent derivations we will define the following vectors:

(48)

To evaluate the instantaneous material properties  we devise a three step c
tational procedure:

Step   1: Given the constitutive equation of a layer ,
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Due to the arbitrariness of thermal, mechanical and cure fields, we first

,  and . Then, substituting the above expressio

into the constitutive equation (49) yields a set of six equations for  and . Assu

that  is nonsingular, it is feasible to express  in terms of , which in turn yield

expression for . Similarly, we substitute ,  an

 into equation (49), which yields six equations for  and , and u

mately the expression . Finally,  is found by inserting    

 and  into (49).

Step 2: Given the layer-wise properties , find the overall sublaminate pro
ties , such that

(51)

The sublaminate properties  can be obtained by inserting equations (47) an
into equation (51) which yields:

(52)

Step 3: Given the sublaminate properties , find  relating the quanti
 as shown in equation (43).

We first substitute ,    into (51), which yields six equations for  a

consequently the expression for . Similarly, inserting  and  into (5

yields , and likewise inserting    and  into (51) yields . 

Remark: The plane strain case can be obtained by substituting  into (43).

4. Implementation

Both the homogenization and wrinkling prediction procedures have been implem
within the UMAT interface of ABAQUS. Figure 4 schematically shows the computatio
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cycle consisting of five modules implemented within UMAT in addition to ABAQUS
analysis engine.

Figure 4: Compression molding process simulation with ABAQUS

The computational process starts by carrying out micromechanical homogeniz
of mechanical, thermal and cure properties based on mathematical homogenization
dure with eigenstrains described in Section 3.1. This module provides an overall p
ties for each ply. Since there would likely be numerous plies in a real part it is not fe
to represent the kinematics of each ply for a coupled thermomechanical analysis. 
the second module performs ply-by-ply homogenization (Section 3.2). Subsequen
typical representative cross-section is selected and an equivalent 2D properties are
ated. Once the instantaneous material properties have been evaluated, a single iter
the coupled thermo-mechanical analysis takes place. Results on the mesomechanic
(stresses and instantaneous material properties) are then post-processed for eac
point in a ply. A single computational cycle is completed by carrying out the wrink
analysis for each Gauss point within each ply (Section 2). The value of the current
kling parameter is stored in the ABAQUS database.

5. Conclusions

 A comprehensive model has been developed for the prediction of wrinkling in 
posite parts which have complex geometries and complex material behavior. The m
has been implemented in ABAQUS and applied to an experiment at the General E
company which is proprietary and cannot be presented here. The wrinkle prediction
nique presented here yielded the time of the onset of wrinkling which agreed well wi
experimental results and gave the location of the wrinkles in exact agreement wi
experiment.
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