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The classical approach to linking lattice dynamics properties to continuum equations of motion, the
“method of long waves,” is extended to include higher order terms. The additional terms account for
non-local and non-linear effects. In the first part of the article, the derivation is made within the
harmonic approximation for the perfect lattice response. Higher order terms are included in the
continuum equation of motion to account for non-linear dispersion effects. \Wave propagation
coefficients as well as fourth order dispersion coefficients are obtained. In the second part, the lattice
anharmonicity is considered and nonlinear macroscopic equations of motion are obtained within the
local approximation. Both continuum solutions are particularized to the one-dimensional case and
are compared with the lattice response in order to establish the accuracy of the approximation.
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1. Introduction

Discrete and continuum systems are described by significantly different mathematical
formulations. While the continuum behavior is typically represented by partial
differential equations, the response of discrete media to the same perturbation is
described by a set of discrete equations that represent the evolution of sets of degrees of
freedom of the system. In many modern applications linking the two representations is
crucial.

The discrete representation of ordered media such as crystal lattices, and that of
disordered amorphous materials is no different. One identifies the relevant degrees of
freedom and integrates the relevant equations of motion to trace the evolution of the
system. Similarly, in the continuum sense, crystalline and amorphous structures are
treated using the same formalism. However, when the discrete representation needs to be
linked with the continuum, specificity becomes important. In this article we focus on the
mechanical response of crystal lattices.

The discrete and periodic nature of the lattice imparts most of its outstanding
properties. The discreteness leads to an intrinsically non-local nature of stress (which
reflects in the equations of motion). The stress at given location is governed by the
deformation within a whole neighborhood of that location. The discreteness also leads to
a specific wave propagation behavior represented by a dispersion relationship leading to



zero group velocity at the boundary of the Brillouin zone, and to several optical modes.
Common local continuum models do not capture these features.

The periodic nature of the lattice determines other important properties. One of the
most important is the non-convexity of the total potential energy function. A translation
of a region of the crystal with respect to another by a multiple of the lattice vectors leads
to recovering the perfect crystal and therefore the energy does not change as a result of
this operation. Hence, the total energy function has multiple minima leading to many
possible equilibrium configurations of the crystal. The periodicity also leads to multiple
temporal scales, situation similar to that encountered in heterogeneous materials treated
in the continuum sense.? Such continuum problems are solved within the
homogenization theory using asymptotic analysis techniques. **°

The lattice response is determined by the law describing the interatomic interactions.
This function is non-parabolic and asymmetric with respect to the equilibrium position of
two neighboring atoms. This leads to non-linear material behavior. The anharmonicity
leads to notable macroscopic effects such as thermal expansion and finite lattice thermal
conductivity.

Here we focus on lattice vibrations and the linkage of lattice dynamics with the
continuum wave equation. The classical basis for this investigation is the work by Born
and Huang® and later advances summarized by Venkataraman et al.” In the “method of
long waves” detailed in® the lattice dynamics is treated within the harmonic
approximation for the interatomic interactions. In this reference it is shown how this
formulation for the discrete system converts into the classical wave equation in the
continuum sense, and how the constants entering the continuum equation are related to
the elastic constants of the lattice. Although the path to follow was sketched, in order to
preserve the simplicity of the formulation, higher order effects were not incorporated in
the classical solution .°

In this article we derive explicit expressions for the corrections to the continuum
wave equation that account, in the first order, for a) non-local lattice effects, and b) non-
linear material behavior. The derivation is made within the lattice dynamics theory and
the correction terms are expressed in terms of quantities that may be evaluated from the
discrete system.

2. Non-local Effects

2.1 The discrete system

A discrete system described by harmonic interatomic interactions is considered first. The
goal here is to derive higher order wave propagation coefficients that capture the
intrinsically non-local nature of these interactions.

The total potential energy of a deforming lattice, ®, may be expanded in series as a
function of the local displacements, u. Using the notation in [6], ® is expressed as:

D=0 +dY +d? +d? . (1a)
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where, ('] o denotes the derivatives with respect to equilibrium configuration, m, nand o
are Cartesian indices, and j (j° and j’’) denotes the jth (j’th and j’’th) atom in the Ith cell.

Il |

¢mn[ ... | denotes the force exerted on atom K in the mth direction due to a unit
|

displacement of atom | , | in the nth direction. In this section in which the harmonic

approximation is made, we neglect <I)(3).

The equation of motion for atom j in cell | reads

el e

for which a wavelike solution is sought in the form:

('Jj%u (Jexplilk)- ok K]} @

Upon substitution in (2) the following classical equation is obtained:



D, Y (K) = 0* (KU (k") (4)

Here U | (k) is the wave amplitude, which is a function of the wave vector k. U .

I
denotes the corresponding jth amplitude of um( j and Dmnjj‘ is the dynamic tensor
J

with expression:

ﬁz% Jelihd )l o

Following further the classical path and limiting attention to the first Brillouin zone,
eqgn (4) may be rewritten as

Dmnjj'(k)an'(k) = Amn (k)an (k) (6)
which should be valid for any j and j’. The dynamic matrix A, (k) includes the

information on the elastic properties and has the amplitude vectors Um(k) as its
eigenvectors.

In order to render the notation more compact, we drop the specification of the

atom and unit cell, ( j from all equations that follow. It is now useful to expand the

dynamic matrix A, (k) in a series of k as:

A, =C2 Kk k +C® Kk kk +C® kKKK, +.... @

mnpq "p g mnpgr""p"qr mnpgrs""p-""q r°°s
where the coefficients result by differentiation with respect to ky,, as usual:

o _ 1 0°A

_ mn

"9 2 ok 0k,

(4) 1 84Amn

TP 24 ok ok, oK, oK,
k=0

Similarly, the dynamic tensor Dy, and the amplitude matrix B, may also be
expanded in series with respect to k as:

3) — 1 a Amn
mear g ok 6k ok,

(8)

_ DO
Dmnii' - Drgwnu anJ K+ Dlmnu qupkq + DanJ pqupqur + DanJ pqrskpqurks RIS
(9)
(0) ) (2) ®3) (4)
B, (k)=BY +B{,k, + B Kk Kk, + Bk kK, + B K KKK, +......(10)

We note that all odd order terms in these expansions are |mag|nary.



Symmetry properties and identities

Each of the tensors on the right side of egns (7) and (9), C” and D, follow symmetry
relations which are described in [6]. Further details are provided in [8]. Furthermore, the

following relations hold:
Jm, DY = /m, DY) =0. (11a)

m,m,DY.., =0. (11b)

mnjj',w

[ @ _ @
mj Dmnjj',w - mj mejj‘,n' (110)

Several other equations result by requiring that the wave propagation is insensitive to
reversing the direction of the wave vector. Hence, the eigenvalues and eigenvectors of

A, (k) must have this symmetry property:

o, (-k)=o, (k). (12a)
U, (-k)=U, (k). (12b)

This reversal symmetry leads to the requirement that all odd order C“ tensors in the
right side of egn (7) must vanish. 8

Relations between higher order tensors C*) and D"

Substituting egns. (8), (9) and (10) into egn (6) and identifying the coefficients of
similar powers of k leads to a series of relations between tensors CY and DV. The
objective here is to establish a systematic procedure by which the higher order tensors C"
may be evaluated. These tensors enter the continuum equation of motion, as discussed in
the next Section. The results up to the second order tensors were derived in the classical
literature by a different procedure.® The contribution here consists in the method of
derivation, which allows even higher order tensors in egn (8) to be determined. For sake
of simplicity, we limit the discussion to the fourth order member of the family, C®. The
principal results are as follows:

a.a..
2 _ 171 @ @ (2)
Cmnpq - {Dmujv,pGunvj',q + Dmnjj',pq } (13&)
aWa'W
Cpar =0- (13b)

mnpqrs mupqg ™ jv

a.a.
4 _ 171 @ ©)) (2) (2) (2) (©)] @
C - {(Dmujv,sGuan', par )+ ([Dmujv,pq - C 5 unvj',rs )+ (Dmujv, pquuan',s )+
awaw
(13c)
where

GY _—_pO'pw

nuj'v,w nmj'j = mujv,w *

(14a)

D (4)

mnjj’, pars

}



G2, =-DO Y, 68  +[D?, . -cB.s. .

nuj'v, pq nmj'j mujv, p ul’lVJ q mujv, pq mupq
3) ) 1{ @ ) [ (2) (2) @ 3) }
GnUJV par — Dnmj j (Dmuw rGunVJ ) (Dmuw pq Cmupq5 unvj',r) (Dmnjj pqr)
(14c)

and a; =, /mj , with m; being the mass of atom j. The detailed derivation is presented
in Appendix A.

We note that although we restrict discussion to the fourth order term, the method
presented here may be applied to higher order terms in the expansions (7) and (10).
Certainly, retaining only the first terms leads to an approximation being introduced in the
solution, which is only valid in the limit of long wavelengths. Therefore, although the
present approach will improve upon the linear dispersion of the linear continuum (first
order term only), phenomena occurring close to the boundary of the first Brillouin zone
are not properly reproduced.

2.2 The continuum system

Let us now consider the continuum system. The Fourier transform of the macroscopic
displacement field u(x, t) may be written formally as:

pilke-on)

u(x, t) z—jF (k {e®ed Lk | (15)

e|(kx wst)

Here, F(k) is the 3x3 transform functions matrix, and k is the wavevector in three

dimensions. Unlike the discrete system case, integration is implemented here over the
whole wavevector domain. For each wavevector, there are three corresponding

frequencies, ®,,®,,®,. The equations that follow contain for simplicity only one

frequency, however, the total displacement should be the sum of all three components.
Then egn (15) can be rewritten in the index form as:

u,(xt)= % j F, (k' Ddk . (16)

From egn (16), the time derivatives and spatial derivatives can be obtained directly, for
example:

U, = i [io)F, (e k. (173)

U = = [k, (k) (arb)
T 2

while the strain and the strain gradients read



(up,q + uq,D):%Ti(Fpkq + Fqkp)ei(kwxwwodk- (17¢)

(up,q + uq,p),r - %T(_ kr)(Fpkq + Fqkp)ei(kwxwﬂm)dk. (17d)

(u pa T Uqp ),rst

1 i i(ky X, —ot
:Ejkrkskt(FpqurFqkp)e(ww k. ()

The crucial step is now to define the eigenfrequencies and the eigenvectors as
common variables between the atomistic discrete level and the continuum representation
[9]. This allows the incorporation of information from lattice dynamics into the
continuum equations of motion. Consequently, the discrete dispersion equation is
replaced in the continuum relationship to get:

1 T i(kx—
E[O{Amn (k)— o (k)5 }Fne (e dk =0 forany X,t, (18)

where F of the continuum formulation of eqn (16) is required to be identical to the
eigenvector U of A.

The dynamic matrix in eqn (18), A, (k) is expanded in series as in eqn (7) and
only terms up to the fourth order are preserved. After rearrangement, eqn (18) reads:

mnpq "p q mnpgr""p g r mnpgrs""p-"q r°°s

U =ij{c<2> Kok, +C9 K Kok, +C& K K.k k, JFe®dk (19)

Eqgn (19) may be simplified using the spatial derivatives of the displacement field as
in egn (17). The macroscopic equation of motion (up to the fourth order) becomes:

C®u =ic® u +CW yu (20)

lJm,tt ~ “~mnpg“n,pq mnpgr - n, par mnpqrs = n, pgrs *
which, considering that the reversal symmetry needs to be satisfied (and C® = 0),

simplifies to:

u,.—-C®uy =C% y (21)

m,tt mnpg - n, pq mnpgrs ' n, pars *
It is useful to rewrite egn (21) in terms of strain (small strain formulation). To this
end we use the procedure underlined in [6] to get

Un g = Lonpa€oan = Linnpars €

mnpq = pg,n mnpqrs ~ pg,nrs * (22)

where Lfnnpq is the second order elastic constants tensor. According to [6], the second

order L may be obtained from the second order tensor C with the relation



12 —Cc® Lc® _c®

mnpq mpnq pnmq pgmn "
and reads

This may be generalized to the fourth order tensors

L* =CcW 4CcW _cW (23)

mnpqrs mpnqrs pnmqrs pgmnrs
The additional fourth order term in eqn (22) represents the effect of the non-local
nature of the interactions in the lattice. The continuum wave equation captures the
dispersion effect due to non-locality only in an approximate way since only terms up to
the fourth order in the expansion are considered. The accuracy of this approximation is
evaluated in the next Section on a particular case.

2.3 The one-dimensional case

For the purpose of illustration, the 3D formulation presented above is reduced here to 1D.
We consider a one-dimensional atomic chain consisting of atoms with different masses,
m, and m,, being connected by linear springs with different stiffness, y; x,. The

mass points (atoms) are equally separated at a distance a. For this system, the dynamic
tensor D, eqn (5), reduces to:

(+2) e+ g™
m Jmm .
Duyj = ika ' —ika L 1, 1'=12. (29
& 8 (7(1+}(2)

Jmm, m,

Then, using eqgns (13) it results that the second and fourth order C tensors contain
only one nonzero component, namely

cld = aﬁ : (25a)
m

.- _
a’ y 6y m,m

4  _ 1112

C111111—_ =(1- ’

(25b)
_ 2
3l atze (m+m,)
where the equivalent stiffness and mass are given by the usual relations

- 2 — mg+m

7= Yive m= 1 2 26)

X1t X 2
With this, the corresponding macroscopic equation of motion, eqn (21), becomes:
2 4
Uy — Cl(ll)lu XX Cl(ll)llluxxxx : (27)

Within the local harmonic approximation, the right hand side term in eqn (27)
disappears and the one-dimensional wave equation is recovered.



In order to evaluate the improvement of the continuum solution obtained by the
addition of the higher order term, a numerical example was considered. A chain of 200
atoms of two species having a mass ratio of 10 and connected by harmonic springs of
different stiffnesses (stiffness ratio 100) is perturbed at time zero by a displacement

X —20

2
described by the Gaussian u(x) =0.01xexp —[ j . The system is evolved

in time a) by tracing the trajectory of each atom (the lattice dynamics solution), b) by
integrating the local wave equation (egn (27)) without the higher order term (Solution 1),
and c) by integrating the corrected egn (27) (Solution 2). The displacement profile at time
t=10 as predicted by the three methods is shown in Fig. 1. The wave has propagated from
the initial perturbation centered in the middle of the domain and has reflected on the left
and right boundaries of the model. The left boundary is fixed, while the right one is free.
It is seen that considering the non-local correction (Solution 2 in Fig. 1) improves upon
the local solution (Solution 1). Better agreement with the lattice dynamics result may be
obtained by considering higher order correction terms in egn. (27).

5 ¥ 10 . . . . . - .
4 __ Lattice dynamics: Reference 5

51 — Salution 1

5L - Solution 2

Displacement, u

= 1 I'1I I 1 1 1 1
0 & 10 15 20 25 30 35 40
Puosition, x

Figure 1. Comparison of solutions for the non-local harmonic one-dimensional problem. The reference solution
(continuous line) was obtained by lattice dynamics. Solution 1 results by integrating the continuum wave
equation (27) in its local approximation, without the fourth order term, while Solution 2 is the non-local result.



3. Anharmonic Effects

3.1 The discrete system

The approach described in Section 2 may be used unchanged to incorporate non-linear
effects that originate in the anharmonicity of the lattice in the continuum wave equation.
Although the result, including the role of the higher order elastic constants tensors, is
known,'®** we review it here based on the present formulation.

The anharmonic behavior of the lattice is an important detail of the physics; it leads
to coupling between vibration modes of the lattice, coupling that controls the phonon
mean free path and the reduction of the lattice thermal conductivity with temperature, as
well as certain absorption phenomena. In order to include anharmonic effects, the third
and higher order terms in the expansion of the lattice potential energy need to be

considered. For simplicity, the third term only (<1)(3)) is typically considered. The
equation of motion for atom j in lattice cell | (egn (2)) becomes:

ool e saely | R o

With the notation in [6], eqn (28) may be rewritten in the form

loglely Dol § MR

III_I III I

where, uw( - |= Ul L, | Uyl .| This expresses the fact that, due to the
| J J

periodicity of the lattice (invariance with respect to translations by multiples of lattice

vectors), the first order coefficients are independent of the cell index I, while higher order

coefficients must depend on the relative distance between cells only, or conversely, on

the relative cell index | — I””. Therefore, it is more natural to replace the relative

displacement uw[_ ] in egn (29) by the Lagrangian strain, &,, (assume small
;)

strains). The two quantities are related by

! ( ["—| j N [ "I j )
wl o | T Ew .|
it PP

The solution of egn (29) is sought in the form of a superposition of wavelike
functions of the form (3). After substitution in (29), the following system of equations
results:

DU =@ (KW, (31)

10



where DanJ is the dynamic tensor that includes anharmonic effects. This tensor may be

decomposed (due to the summation in the second terms in egn (28)) in a harmonic
component and a strain-dependent correction:

DA . =D"  +D! . (32a)

mnjj’ mnjj’ mnpajj’ Pq
The harmonic term is identical to that in egn (5). The correction tensor is given by

|

The derivation follows the path detailed in Section 2. The D tensors are expanded in
a series of k. Due to the linear superposition of the terms in the expansion, each
coefficient may be decomposed as in egn (32a):

Drvpu :m—\/lT,z; P IJ I-I' I Xq( jl.l.'_l jj explik[x(1’)-x(1)]f.320)

A(0) _ mH(0) T(0)
DanJ DanJ + Dmnrs“ (33&)
A1) H (1) T@)

Dmnjj w Dmnjj w Dmnrsu w™rs * (33b)
A(2) H(2) T(2)
Dmnj] Pqg Dmnjj Pq Dmnrs” Pq I'S (330)

G tensors follow the same rule. We note that only terms up to the second order are
considered here since non-local effects are neglected. The relevant tensors were derived
as follows:

A(2) _ ~H(2) T(2)
Cmnpq Cmnpq +Cmnpqrs rs " (343)
a a
H(2) _ H () H (D) H(2)
Cmnpq - {Dmujv pGuan q + Dmn” pq} (34b)
awaw
a a
Cr1r—1r(1§t)1rs = {Dr?u%/)pGJn(vlj)rs q Dr-rru(ul\)/rs pGui-r:\EJ)q + Dr1r—1r(1rs)u pq} (340)

wwW
Both the harmonic and the correction tensors G in these expressions are obtained as:

A1) H(1) T()
Gnuj v,W Gnuj 'V, W GnUJ Vrs,w rs (353)
H@D) HO) T HHQO
Gnt AA Dnmj j Dmu;v w (35b)
T(1) TO) ' HH HO) ' T@)
Gnu; rs,w {Dnmj jrs DmUJv w Dnmj j DmUerS w } (350)

3.2 The continuum system

The equation of motion for the continuum in the local approximation reads:

nt —Comu, o =0. (36)

11



where the tensor Cn/?r(];; includes non-linear effects as discussed above. The calibration of

the continuum model to the lattice response is performed by simply replacing eqn (34a)
in (36). The resulting equation may be written in term of strains (similar to the
transformation of eqn (21) in (22)) as:

Upe —(LH2 +L02 g Je 0, =0. (37)

mnpq mnpqrs < rs

L':mzpq and Lfnznpqrs are the second order and the third order elastic constants tensors,

respectively [11]. According to [6], the relation between the elastic constants and the
corresponding wave propagation coefficients is:

H2 _ ~H(@2 H(2) H(2)
Lmnpq - Cmpnq +C pnmq C pgmn (382)

for the harmonic component and

LT2 — CT(Z) + CT(Z) _CT(Z) (38b)

mnpqrs mpnars pnmgrs pgmnrs
for the third order elastic constants.

3.3 The one-dimensional case

The particularization of the 3D formulation described above to the 1D case is presented
next. For this purpose, we consider a chain of atoms of same mass, m, linked by nonlinear
springs. The spring stiffness is taken to be:

X=Xt XX (39)

X, and g, are elastic constants and x is the elongation. Substituting in eqns (5) and
(32b), and with egn (32a), the dynamic tensors in one dimension result in the form:

DA = % {2 -2cos(ka)} (40a)

D], = 2;(] 2 a{2 - 2cos(ka)} (40b)

The wave propagation coefficients tensors result from eqns (34b) and (34c):

2 X1 .2
Cl®=~La (41a)
m
2 X2 .3
C1T1(11)11 = Zﬁa (41b)

With the lattice response in the form (41), the corresponding continuum equation
may be directly written based on egn (36) as:

12



2
a
Uy —H(;(1+2;(2auvx)¢xx =0 (42)
This equation is identical to that derived in [12] for a chain of grains interacting by
Hertz law. The derivation in [12] is limited to one dimensional problems only.
4. Conclusions

Continuum equations of motion incorporating corrections terms that account for non-
local and non-linear effects (up to first order) have been derived. The new terms are
calibrated on the lattice response and derived from considerations related to the discrete
system.

13



Appendix A

In this Appendix, we present the derivation of the second order wave propagation
coefficients Cr%)pq and of the high order dispersion coefficients Crf::'])pqrs. Further detail

may be found in [8].

Zero order

By equating the coefficients of terms in the series expansion having zero power of k
yields:

0) p(0) _
Do B =0. (Ala)
0) p(0) _
Dmnjj‘ij =0. (Alb)
In light of eqgn (11a), eqn (Ala) has the following solution:
(0) _ —
By =a;U, a; =,m; . (A2)

where U is an arbitrary vector in space which is determined in the analysis of the second
order term. Equation (11a) shows that D,(n?])” does not have an inverse, however, its sub-
tensor can be inverted. This leads to

S(0) _ ()
Dmnjj' - Dmnjj" (A3a)
SO, SO _
Dini'i Dy = G0 - (A3b)
where S denotes a sub-tensor with j and j’ range from 1 to (N-1).
First order
By equating of coefficients at the first order of k yields:
0 p®» _— () (0)
Dmnjj'an',w - _Dmnjj',anj' . (Ada)
O p® _MHo (0)
Dm”jj'BmJ',W - Dmnjj',w ij : (A4b)
1 0 0
Dr(nrzjj‘,wBrEj') Br(nj) =0. (Adc)

Eqgns. (Ada) and (A4b) are solvable only if egn (A4c) is fulfilled. However, egn
(Adc) is satisfied due to the identity in eqn (11b) which shows that D)., is
antisymmetric. Then, egn (A4a) has a solution of the form:

1 1 0
B, = B +1, B, )
B W(p)

where N, is an arbitrary number. B’

denotes the particular solution of egn (A4a) and
can be determined from:

14



QM —c® (0)
Bi'w =GnywBu - (A6)

nj',w nuj'v,w

Since the tensor G, should satisfy:

nuj'v,w

{ © 0O, p }B

mnjj' = nuj'v,w mujv,w

© -0 (A7)

uv

G,Ellj v Can be determined from the following equations:

Do Cratvar = ~Dri (A82)
Gt = Dl D (A8b)
where, Drff:])“ Dnirsﬁ) J<N-land j)SN-1 (A8c)
D@ =0 j=Nor j=N (A8d)

Remark: It can be verified that these tensors have the following properties.
Dy =D, (A9)
Gomi = ~Gom (A10)

Second order

By equating of coefficients at the second order of k yields:

DO B® _ i(Da) B® +[D(2)... -c@ .5, ] (0)} (A11a)

mnjj* = nj’, pq mnjj’, p = nj’ q mnjj’, pq mnpq

(D(l) B® ) B‘°)+[D‘2) -c@ .5, ]B(_O)B(Q) ~0 (A11b)
nj' = 'mj

mnjj’,p = nj',q mnjj’, pq mnpq
where (e denotes an operator on (e) that insures that (®) is symmetric over
pq

underlinedzjbscripts. Equation (Allb) is the solvable condition for eqn (Alla). By
substitution of the solution of eqn (A5) into equation (Al1lb), changing the subscripts and
using equation (A4c) to eliminate the homogeneous solution part, we obtain:

@ @ (0) (0) (2) )] 0)Rp0) _
(b®, G ) BYB® +[D®,  -C® 5.[BOBO =0. (A129)

mujv, p ~unvj',q mnjj', pq mnpq
21 (oY) @
We denote Foniiog = Puiv. pCumvivg

22 (2) _C®
anu pq Dmnu Pq Cmnpq5 (Al12D)
and show the following symmetry properties for tensor F:
21 2 2
anu Pq anJ ipq anu ‘qp (AL3)

(2

The solution for B’

15



DO.B® ——{FA. +FZ. I1B®_n (DY, ) BY.  (A143)

mnjj* = nj’, pq mnjj’ pq mnjj’pqg mnjj’, p

By = BEE 41, (BEY ), +n, B (AL4)

nj',pq nj',pq
P _ @ (0)
BnJ o0 GnuJ - By - (Al4c)
(2) (* 21 (2) (2)
GnUJ v,pq _DnmJ j {quJqu [Dmujv [ CmUPq5 . (Al4d)

Substitution of the solution (A2) back into equation (A11lb) and after simplifying

using equation (A4c) the solution for the second order tensor C[f,])pq results as:
ce =58 “Ea +D@ (A15)
mnpg aa mnjj' pa mnjj', pq
W W

This result for the second order wave propagation coefficients is identical to that
obtained in [6] using the method of long waves.

Third order

Considering the coefficients of the third order in k leads to:

0 Rr®  _ @) ) ) ([ @ _~® @) ) ( 3) _~® ) (0)}
DanJ B”J par i(Dmnu anJ pq Dm”JJ pq Cman5 ]BnJ r par DanJ par Cmanré‘jj' an'
(Al6a)

(D(l) B® ) Br§f}>+([D(2)... —Cc@ .5, ]B(l’) B(°)+(D(3) _co® 51_],)35”9)5&(}):0

mnjj’,r =N’ pg mnjj’, pq mnpq n.r mnjj', par mnpqr

(A16b)

Egn (Al6b) is the condition for equation (Al6a) to be solvable. Substitution of the

solution of (A14b) into equations (Al6a) and (Al6b), and using equations (Al2a) and
(A4c) to eliminate the homogeneous parts results into:

(D(l) G® )pqun(f-)Bé?)Jr{[D(z)--v -c® 5,168, }pqu(O)B(O)+(D(3) _co 511-)B§jq)3,51?):0

mujv,r = unvj', pq mnjj', pq mnpq unvj',r mnjj', pgr mnpgr

(A17)
and

DO B®  _ i(D(l) G@. ) ([D(Z) —C(Z)é (1)..) +(D‘3).. ) © _
par

anJ nj., pgr mujv,r UrIVJ Pq mujv, pq mupq unvj,r mn]j', par nj
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@ (Y ©)] (2) 0) _ @ (0)
(D8 1 GRq + Dl ~ Cionady ) BY, — 12 (D, ), B (A18)

mujv, p = unvj',q mnjj', pq mnpq

Note that under the condition of reversal symmetry, Crf%)pqr equals 0 [8] and egn.

(A17) is automatically satisfied.
3 i
The solution for B’

B® _BA® | (B(zxm)pqr (Baxp))pqr nBY.  (AL9)

ny’, par ny’, par n,pq n.p
@M _c® (0)
an par Gnu; v, par Buv : (A19b)
(3 0 @ (2) (2) (2) @ ©)
GnuJ v,par _Dnmj j {Dmxjy eruyv pq )pqr + ([Dmxjy,pq - mepq5 Xuyv,r )p (Dmuw par )}

(A20)

Fourth order
Considering the coefficients of the fourth order in k leads to:

0) R4 Anpo ®) ) ([ @) (2) ] @) ) }%([ ®) 3) ] (1)) [
D B {Dmnjj I’an par /pgrs + D Cmnpq5 an,rs pars DanJ par Cmnqu§ BnJ S /pars +|C

mnjj’ Pnj', pars mnjj’, pg

(0B B (D808, 850 B8+ (05~ B ),,28

mnjj',r = nj', pqr mnjj’, pq mnpq nj',rs

(4) 4) 0)Rp((0) _
[Dmnjj pars Cmnpqrsgjj']an' ij =0 (A21b)

As shown above, the homogeneous part always vanishes. From now on, only the
particular solution will be considered and the odd C tensors should be 0. Substitution of

the solution of (A19b) into (A21a) and (A21b) and applying symmetric properties yields:

0 p@ @) ®) o) @ ()
Dmnjj an pars — {Dmujv sGunVJ par )pqrs + ([DmUJv pq Cmupq5 unvj',rs )% +}
® ® o) (4 )
KDmUJV pquunVJ )pqrs (Dmnu pars Cmnpqr55 ) nj' (A22)
c® {(D‘l) GO ) ([D(Z) _c® s, 0 ) (D ® GO ) DWW }
mnpqrs mujv,s = unvj', par mujv, pq mupq unvj',rs mujv, pgr =~ unvj',s mnjj', pars

wwW

(A23)
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