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The classical approach to linking lattice dynamics properties to continuum equations of motion, the 
“method of long waves,” is extended to include higher order terms. The additional terms account for 
non-local and non-linear effects. In the first part of the article, the derivation is made within the 
harmonic approximation for the perfect lattice response. Higher order terms are included in the 
continuum equation of motion to account for non-linear dispersion effects.  Wave propagation 
coefficients as well as fourth order dispersion coefficients are obtained. In the second part, the lattice 
anharmonicity is considered and nonlinear macroscopic equations of motion are obtained within the 
local approximation. Both continuum solutions are particularized to the one-dimensional case and 
are compared with the lattice response in order to establish the accuracy of the approximation. 
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1. Introduction 
 

Discrete and continuum systems are described by significantly different mathematical 
formulations. While the continuum behavior is typically represented by partial 
differential equations, the response of discrete media to the same perturbation is 
described by a set of discrete equations that represent the evolution of sets of degrees of 
freedom of the system. In many modern applications linking the two representations is 
crucial.  

The discrete representation of ordered media such as crystal lattices, and that of 
disordered amorphous materials is no different. One identifies the relevant degrees of 
freedom and integrates the relevant equations of motion to trace the evolution of the 
system. Similarly, in the continuum sense, crystalline and amorphous structures are 
treated using the same formalism. However, when the discrete representation needs to be 
linked with the continuum, specificity becomes important. In this article we focus on the 
mechanical response of crystal lattices. 

The discrete and periodic nature of the lattice imparts most of its outstanding 
properties. The discreteness leads to an intrinsically non-local nature of stress (which 
reflects in the equations of motion). The stress at given location is governed by the 
deformation within a whole neighborhood of that location. The discreteness also leads to 
a specific wave propagation behavior represented by a dispersion relationship leading to 
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zero group velocity at the boundary of the Brillouin zone, and to several optical modes. 
Common local continuum models do not capture these features. 

The periodic nature of the lattice determines other important properties. One of the 
most important is the non-convexity of the total potential energy function. A translation 
of a region of the crystal with respect to another by a multiple of the lattice vectors leads 
to recovering the perfect crystal and therefore the energy does not change as a result of 
this operation. Hence, the total energy function has multiple minima leading to many 
possible equilibrium configurations of the crystal. The periodicity also leads to multiple 
temporal scales, situation similar to that encountered in heterogeneous materials treated 
in the continuum sense.1,2 Such continuum problems are solved within the 
homogenization theory using asymptotic analysis techniques. 3,4,5 

The lattice response is determined by the law describing the interatomic interactions. 
This function is non-parabolic and asymmetric with respect to the equilibrium position of 
two neighboring atoms. This leads to non-linear material behavior. The anharmonicity 
leads to notable macroscopic effects such as thermal expansion and finite lattice thermal 
conductivity.  

Here we focus on lattice vibrations and the linkage of lattice dynamics with the 
continuum wave equation. The classical basis for this investigation is the work by Born 
and Huang6 and later advances summarized by Venkataraman et al.7 In the “method of 
long waves” detailed in6, the lattice dynamics is treated within the harmonic 
approximation for the interatomic interactions. In this reference it is shown how this 
formulation for the discrete system converts into the classical wave equation in the 
continuum sense, and how the constants entering the continuum equation are related to 
the elastic constants of the lattice. Although the path to follow was sketched, in order to 
preserve the simplicity of the formulation, higher order effects were not incorporated in 
the classical solution .6  

In this article we derive explicit expressions for the corrections to the continuum 
wave equation that account, in the first order, for a) non-local lattice effects, and b) non-
linear material behavior. The derivation is made within the lattice dynamics theory and 
the correction terms are expressed in terms of quantities that may be evaluated from the 
discrete system.  

2. Non-local Effects 

2.1 The discrete system 

A discrete system described by harmonic interatomic interactions is considered first. The 
goal here is to derive higher order wave propagation coefficients that capture the 
intrinsically non-local nature of these interactions.  

The total potential energy of a deforming lattice, Φ, may be expanded in series as a 
function of the local displacements, u. Using the notation in [6], Φ is expressed as: 

 ...)3()2()1()0( Φ+Φ+Φ+Φ=Φ    (1a) 
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where, ( ) 0• denotes the derivatives with respect to equilibrium configuration, m, n and o 
are Cartesian indices, and j (j’ and j’’) denotes the jth (j’th and j’’th) atom in the lth cell.  
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 in the nth direction. In this section in which the harmonic 

approximation is made, we neglect ( )3Φ .  

The equation of motion for atom j in cell l reads 

 0
'

'

'

'..

''

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ∑ j
l

u
jj
ll

j
l

um n
njl

mnmj φ . (2) 

for which a wavelike solution is sought in the form: 
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Upon substitution in (2) the following classical equation is obtained: 
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Following further the classical path and limiting attention to the first Brillouin zone, 
eqn (4) may be rewritten as 

 ( ) ( ) ( ) ( )kkkk njmnnjmnjj BABD ='' . (6) 

which should be valid for any j and j’. The dynamic matrix ( )kmnA  includes the 

information on the elastic properties and has the amplitude vectors ( )kmU  as its 
eigenvectors. 

 In order to render the notation more compact, we drop the specification of the 

atom and unit cell, ⎟⎟
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, from all equations that follow. It is now useful to expand the 

dynamic matrix ( )kmnA  in a series of k as: 
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 Similarly, the dynamic tensor Dmnjj’ and the amplitude matrix Bnj may also be 
expanded in series with respect to k as: 
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We note that all odd order terms in these expansions are imaginary. 
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Symmetry properties and identities  

Each of the tensors on the right side of eqns (7) and (9), C(.) and D(.), follow symmetry 
relations which are described in [6]. Further details are provided in [8]. Furthermore, the 
following relations hold: 

 ( ) ( ) 00
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0
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 ( ) 01
,'' =wmnjjjj Dmm . (11b) 
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,'

1
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Several other equations result by requiring that the wave propagation is insensitive to 
reversing the direction of the wave vector. Hence, the eigenvalues and eigenvectors of 

( )kmnA  must have this symmetry property: 

 ( ) ( )kk mm ωω =− . (12a) 

 ( ) ( )kk mm UU =− . (12b) 
This reversal symmetry leads to the requirement that all odd order C(.) tensors in the 

right side of eqn (7) must vanish. 8 

Relations between higher order tensors C(.) and D(.)   

Substituting eqns. (8), (9) and (10) into eqn (6) and identifying the coefficients of 
similar powers of k leads to a series of relations between tensors C(.) and D(.). The 
objective here is to establish a systematic procedure by which the higher order tensors C(.)  
may be evaluated. These tensors enter the continuum equation of motion, as discussed in 
the next Section. The results up to the second order tensors were derived in the classical 
literature by a different procedure.6 The contribution here consists in the method of 
derivation, which allows even higher order tensors in eqn (8) to be determined. For sake 
of simplicity, we limit the discussion to the fourth order member of the family, C(4). The 
principal results are as follows: 
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and jj ma = , with mj being the mass of atom j. The detailed derivation is presented 

in Appendix A. 

 We note that although we restrict discussion to the fourth order term, the method 
presented here may be applied to higher order terms in the expansions (7) and (10). 
Certainly, retaining only the first terms leads to an approximation being introduced in the 
solution, which is only valid in the limit of long wavelengths. Therefore, although the 
present approach will improve upon the linear dispersion of the linear continuum (first 
order term only), phenomena occurring close to the boundary of the first Brillouin zone 
are not properly reproduced.  

2.2 The continuum system  

Let us now consider the continuum system. The Fourier transform of the macroscopic 
displacement field ( )t,xu  may be written formally as: 
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Here, ( )kF  is the 33×  transform functions matrix, and k is the wavevector in three 
dimensions. Unlike the discrete system case, integration is implemented here over the 
whole wavevector domain. For each wavevector, there are three corresponding 
frequencies, 321 ,, ωωω . The equations that follow contain for simplicity only one 
frequency, however, the total displacement should be the sum of all three components. 
Then eqn (15) can be rewritten in the index form as: 
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From eqn (16), the time derivatives and spatial derivatives can be obtained directly, for 
example: 
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The crucial step is now to define the eigenfrequencies and the eigenvectors as 
common variables between the atomistic discrete level and the continuum representation 
[9]. This allows the incorporation of information from lattice dynamics into the 
continuum equations of motion. Consequently, the discrete dispersion equation is 
replaced in the continuum relationship to get: 
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where F  of the continuum formulation of eqn (16) is required to be identical to the 
eigenvector U  of A.  

The dynamic matrix in eqn (18), ( )kmnA , is expanded in series as in eqn (7) and 
only terms up to the fourth order are preserved. After rearrangement, eqn (18) reads: 
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Eqn (19) may be simplified using the spatial derivatives of the displacement field as 
in eqn (17). The macroscopic equation of motion (up to the fourth order) becomes: 
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which, considering that the reversal symmetry needs to be satisfied (and C(3) = 0), 
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It is useful to rewrite eqn (21) in terms of strain (small strain formulation). To this 

end we use the procedure underlined in [6] to get 
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where 2
mnpqL  is the second order elastic constants tensor. According to [6], the second 

order L may be obtained from the second order tensor C with the relation 
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)2()2()2(2
pqmnpnmqmpnqmnpq CCCL −+= . This may be generalized to the fourth order tensors 

and reads 
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The additional fourth order term in eqn (22) represents the effect of the non-local 
nature of the interactions in the lattice. The continuum wave equation captures the 
dispersion effect due to non-locality only in an approximate way since only terms up to 
the fourth order in the expansion are considered. The accuracy of this approximation is 
evaluated in the next Section on a particular case. 

2.3 The one-dimensional case  

For the purpose of illustration, the 3D formulation presented above is reduced here to 1D. 
We consider a one-dimensional atomic chain consisting of atoms with different masses, 

1m  and 2m , being connected by linear springs with different stiffness, 1χ  2χ . The 
mass points (atoms) are equally separated at a distance a. For this system, the dynamic 
tensor D, eqn (5),  reduces to: 
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Then, using eqns (13) it results that the second and fourth order C tensors contain 
only one nonzero component, namely 
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where the equivalent stiffness and mass are given by the usual relations 
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With this, the corresponding macroscopic equation of motion, eqn (21), becomes: 

 xxxxxxtt uCuCu )4(
111111

)2(
1111 =− . (27) 

Within the local harmonic approximation, the right hand side term in eqn (27) 
disappears and the one-dimensional wave equation is recovered.  
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In order to evaluate the improvement of the continuum solution obtained by the 
addition of the higher order term, a numerical example was considered. A chain of 200 
atoms of two species having a mass ratio of 10 and connected by harmonic springs of 
different stiffnesses (stiffness ratio 100) is perturbed at time zero by a displacement 

described by the Gaussian ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −

−×=
2

2.1
20xexp01.0xu .  The system is evolved 

in time a) by tracing the trajectory of each atom (the lattice dynamics solution), b) by 
integrating the local wave equation (eqn (27)) without the higher order term (Solution 1), 
and c) by integrating the corrected eqn (27) (Solution 2). The displacement profile at time 
t=10 as predicted by the three methods is shown in Fig. 1. The wave has propagated from 
the initial perturbation centered in the middle of the domain and has reflected on the left 
and right boundaries of the model. The left boundary is fixed, while the right one is free. 
It is seen that considering the non-local correction (Solution 2 in Fig. 1) improves upon 
the local solution (Solution 1). Better agreement with the lattice dynamics result may be 
obtained by considering higher order correction terms in eqn. (27). 

 

Figure 1. Comparison of solutions for the non-local harmonic one-dimensional problem. The reference solution 
(continuous line) was obtained by lattice dynamics. Solution 1 results by integrating the continuum wave 

equation (27) in its local approximation, without the fourth order term, while Solution 2 is the non-local result. 
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3. Anharmonic Effects 

3.1 The discrete system 

The approach described in Section 2 may be used unchanged to incorporate non-linear 
effects that originate in the anharmonicity of the lattice in the continuum wave equation. 
Although the result, including the role of the higher order elastic constants tensors, is 
known,10,11  we review it here based on the present formulation.  

The anharmonic behavior of the lattice is an important detail of the physics; it leads 
to coupling between vibration modes of the lattice, coupling that controls the phonon 
mean free path and the reduction of the lattice thermal conductivity with temperature, as 
well as certain absorption phenomena. In order to include anharmonic effects, the third 
and higher order terms in the expansion of the lattice potential energy need to be 
considered. For simplicity, the third term only ( ( )3Φ ) is typically considered. The 
equation of motion for atom j in lattice cell l (eqn (2)) becomes: 
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With the notation in [6], eqn (28) may be rewritten in the form 
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um n
njl wjl

wmnwmnmj φφ .(29) 

where,  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
j
l

u
j
l

u
jj

ll
u www "

"
"
"

. This expresses the fact that, due to the 

periodicity of the lattice (invariance with respect to translations by multiples of lattice 
vectors), the first order coefficients are independent of the cell index l, while higher order 
coefficients must depend on the relative distance between cells only, or conversely, on 
the relative cell index l – l”. Therefore, it is more natural to replace the relative 

displacement ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
jj

ll
uw "

"
 in eqn (29) by the Lagrangian strain, wpε  (assume small 

strains). The two quantities are related by 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
jj

ll
x

jj
ll

u pwpw "
"

"
"

ε . (30) 

The solution of eqn (29) is sought in the form of a superposition of wavelike 
functions of the form (3). After substitution in (29), the following system of equations 
results:  

 ( ) '
2

'' njmj
A
mnjj UUD kω= . (31) 
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where A
mnjjD '  is the dynamic tensor that includes anharmonic effects. This tensor may be 

decomposed (due to the summation in the second terms in eqn (28)) in a harmonic 
component and a strain-dependent correction: 

 pq
T
mnpqjj

H
mnjj

A
mnjj DDD ε⋅+= ''' . (32a) 

The harmonic term is identical to that in eqn (5). The correction tensor is given by  

 ( ) ( )[ ]{ }lli
jj

ll
x

jjj
lll

mm
D

l jl
qmnp

jj

T
mnpqjj xxk −

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑∑ '

""
'''

'''

' exp
"
"1

''

φ .(32b)
 

The derivation follows the path detailed in Section 2. The D tensors are expanded in 
a series of k. Due to the linear superposition of the terms in the expansion, each 
coefficient may be decomposed as in eqn (32a): 

 rs
T
mnrsjj

H
mnjj

A
mnjj DDD ε)0(

'
)0(
'

)0(
' += . (33a) 

 rs
T

wmnrsjj
H

wmnjj
A

wmnjj DDD ε)1(
,'

)1(
,'

)1(
,' += . (33b) 

 rs
T

pqmnrsjj
H

pqmnjj
A

pqmnjj DDD ε)2(
,'

)2(
,'

)2(
,' += . (33c) 

G tensors follow the same rule. We note that only terms up to the second order are 
considered here since non-local effects are neglected. The relevant tensors were derived 
as follows:  

 rs
T
mnpqrs

H
mnpq

A
mnpq CCC ε)2()2()2( += . (34a) 

 { })2(
,'

)1(
,'

)1(
,

')2( H
pqmnjj

H
qunvj

H
pmujv

ww

jjH
mnpq DGD

aa
aa

C += . (34b) 

 ( ) ( ){ }2
,'

1
,'

)1(
,

)1(
,'

)1(
,

')2( T
pqmnrsjj

H
qunvj

T
pmujvrs

T
qrsunvj

H
pmujv

ww

jjT
mnpqrs DGDGD

aa
aa

C ++= . (34c) 

Both the harmonic and the correction tensors G in these expressions are obtained as: 

 rs
T

wvrsnuj
H

wvnuj
A

wvnuj GGG ε)1(
,'

)1(
,'

)1(
,' +=  (35a) 

 )1(
,

)0(
'

)1(
,'

1 H
wmujv

H
jnmj

H
wvnuj DDG

−

−=  (35b) 

 { })1(
,

)0(
'

)1(
,

)0(
'

)1(
,'

11 T
wmujvrs

H
jnmj

H
wmujv

T
jrsnmj

T
wvrsnuj DDDDG

−−

+−=  (35c) 

3.2 The continuum system 

The equation of motion for the continuum in the local approximation reads: 

 0,
)2(

, =− pqn
A
mnpqttm uCu . (36) 
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where the tensor )2(A
mnpqC  includes non-linear effects as discussed above. The calibration of 

the continuum model to the lattice response is performed by simply replacing eqn (34a) 
in (36). The resulting equation may be written in term of strains (similar to the 
transformation of eqn (21) in (22)) as: 

 ( ) 0,
22

, =+− npqrs
T
mnpqrs

H
mnpqttm LLu εε . (37) 

2H
mnpqL  and 2T

mnpqrsL  are the second order and the third order elastic constants tensors, 
respectively [11]. According to [6], the relation between the elastic constants and the 
corresponding wave propagation coefficients is: 

 )2()2()2(2 H
pqmn

H
pnmq

H
mpnq

H
mnpq CCCL −+=  (38a) 

for the harmonic component and   

 )2()2()2(2 T
pqmnrs

T
pnmqrs

T
mpnqrs

T
mnpqrs CCCL −+=  (38b) 

for the third order elastic constants.  

3.3 The one-dimensional case 

The particularization of the 3D formulation described above to the 1D case is presented 
next. For this purpose, we consider a chain of atoms of same mass, m, linked by nonlinear 
springs. The spring stiffness is taken to be: 

 x21 χχχ +=  (39) 

1χ  and 2χ  are elastic constants and x is the elongation. Substituting in eqns (5) and 
(32b), and with eqn (32a), the dynamic tensors in one dimension result in the form: 

 ( ) ( ){ }ka
m

D H cos2210
1111 −=

χ
 (40a) 

 ( ) ( ){ }kaa
m

DT cos222 20
111111 −=

χ
 (40b) 

The wave propagation coefficients tensors result from eqns (34b) and (34c): 

 21)2(
1111 a

m
C H χ

=  (41a) 

 32)2(
111111 2 a

m
C T χ

=  (41b) 

With the lattice response in the form (41), the corresponding continuum equation 
may be directly written based on eqn (36) as: 
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 ( ) 02 ,,21

2

=+− xxxtt uau
m
au χχ  (42) 

This equation is identical to that derived in [12] for a chain of grains interacting by 
Hertz law. The derivation in [12] is limited to one dimensional problems only. 

4. Conclusions 

Continuum equations of motion incorporating corrections terms that account for non-
local and non-linear effects (up to first order) have been derived. The new terms are 
calibrated on the lattice response and derived from considerations related to the discrete 
system.  
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Appendix A 

In this Appendix, we present the derivation of the second order wave propagation 
coefficients )2(

mnpqC  and of the high order dispersion coefficients )4(
mnpqrsC . Further detail 

may be found in [8]. 

Zero order 

 By equating the coefficients of terms in the series expansion having zero power of k 
yields:  

 0)0(
'

)0(
' =njmnjj BD .   (A1a) 

 0)0()0(
' =mjmnjj BD . (A1b) 

In light of eqn (11a), eqn (A1a) has the following solution: 

 '''
)0(
' jjnjnj maUaB ==  . (A2) 

where U is an arbitrary vector in space which is determined in the analysis of the second 
order term. Equation (11a) shows that )0(

'mnjjD  does not have an inverse, however, its sub-
tensor can be inverted. This leads to  

 )0(
'

)0(
' mnjj

S
mnjj DD = . (A3a)  

    vjnu
S
mujv

S
jnmj DD '

)0()0(
'

1

δδ=⋅
−

. (A3b) 
where S denotes a sub-tensor with j and j’ range from 1 to (N-1). 

First order   

By equating of coefficients at the first order of k yields:  

 )0(
'

)1(
,'

)1(
,'

)0(
' njwmnjjwnjmnjj BDBD −=  . (A4a) 

 )0()1(
,'

)1(
,

)0(
' mjwmnjjwmjmnjj BDBD =  . (A4b) 

 0)0()0(
'

)1(
,' =mjnjwmnjj BBD . (A4c) 

Eqns. (A4a) and (A4b) are solvable only if eqn (A4c) is fulfilled. However, eqn 
(A4c) is satisfied due to the identity in eqn (11b) which shows that )1(

,' wmnjjD  is 
antisymmetric. Then, eqn (A4a) has a solution of the form: 

 )0(
'1

))(1(
,'

)1(
,' nj

p
wnjwnj BnBB ⋅+= . (A5) 

where 1n  is an arbitrary number. ))(1(
,'

p
wnjB denotes the particular solution of eqn (A4a) and 

can be determined from:  
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 )0()1(
,'

))(1(
,' uvwvnuj

p
wnj BGB = . (A6) 

Since the tensor )1(
,' wvnujG  should satisfy: 

 { } 0)0()1(
,

)1(
,'

)0(
' =+ uvwmujvwvnujmnjj BDGD  (A7) 

)1(
,' wvnujG  can be determined from the following equations: 

 )1(
,

)1(
,'

)0(
' wmujvwvnujmnjj DGD −=  (A8a) 

 )1(
,

)0(
'

)1(
,'

1

wmujvjnmjwvnuj DDG
−

−=   (A8b) 

where,  
11 )0(

'
)0(

'
−−

= S
mnjjmnjj DD  1−≤ Nj  and 1' −≤ Nj  (A8c) 

 0
1)0(
' =

−

mnjjD  Nj =  or Nj ='  (A8d) 
Remark: It can be verified that these tensors have the following properties. 

 
11 )0(

'
)0(

'

−−

= jnmjmnjj DD  (A9) 

 )1(
'

)1(
' jnmjmnjj GG −=  (A10) 

Second order  

By equating of coefficients at the second order of k yields: 

 ( ) [ ]{ })0(
''

)2()2(
,'

)1(
,'

)1(
,'

)2(
,'

)0(
' njjjmnpqpqmnjjpqqnjpmnjjpqnjmnjj BCDBDBD δ−+−=  (A11a) 

 ( ) [ ] 0)0()0(
''

)2()2(
,'

)0()1(
,'

)1(
,' =−+ mjnjjjmnpqpqmnjjmjpqqnjpmnjj BBCDBBD δ  (A11b) 

where ( ) pq•  denotes an operator on ( )•  that insures that ( )•  is symmetric over 

underlined subscripts. Equation (A11b) is the solvable condition for eqn (A11a). By 
substitution of the solution of eqn (A5) into equation (A11b), changing the subscripts and 
using equation (A4c) to eliminate the homogeneous solution part, we obtain: 

 ( ) [ ] 0)0()0(
''

)2()2(
,'

)0()0(
'

)1(
,'

)1(
, =−+ mjnjjjmnpqpqmnjjmjnjpqqunvjpmujv BBCDBBGD δ . (A12a) 

We denote                             )1(
,'

)1(
,

21
' qunvjpmujvpqmnjj GDF =    

'
)2()2(

,'
22

' jjmnpqpqmnjjpqmnjj CDF δ−= .    (A12b) 
and show the following symmetry properties for tensor F: 

 21
'

21
'

21
' qpmnjjjpqnmjpqmnjj FFF == . (A13) 

The solution for )2(
,' pqnjB  is: 
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 { } ( ) )0(
'

)1(
,'1

)0(
'

22
'

21
'

)2(
,'

)0(
' njpqpmnjjnjpqmnjjpqmnjjpqnjmnjj BDnBFFBD −+−= . (A14a) 

 ( ) )0(
'2

))(1(
,'1

))(2(
,'

)2(
,' njpq

p
pnj

p
pqnjpqnj BnBnBB ++=  .(A14b) 

 )0()2(
,'

))(2(
,' uvpqvnuj

p
pqnj BGB = . (A14c) 

 [ ]{ }jvmupqpqmujvmujvpqjnmjpqvnuj CDFDG δ)2()2(
,

21)0(
'

)2(
,'

1

−+−=
−

 . (A14d) 
Substitution of the solution (A2) back into equation (A11b) and after simplifying 

using equation (A4c) the solution for the second order tensor )2(
mnpqC  results as: 

 { })2(
,'

21
'

')2(
pqmnjjpqmnjj

ww

jj
mnpq DF

aa
aa

C += . (A15) 

This result for the second order wave propagation coefficients is identical to that 
obtained in [6] using the method of long waves.  

 

Third order 

Considering the coefficients of the third order in k leads to: 

 
( ) [ ]( ) ( ){ })0(

''
)3()3(

,'
)1(
,''

)2()2(
,'

)2(
,'

)1(
,'

)3(
,'

)0(
' njjjmnpqrpqrmnjjpqrrnjjjmnpqpqmnjjpqrpqnjrmnjjpqrnjmnjj BCDBCDBDBD δδ −+−+−=

 
  (A16a) 

 
( ) [ ]( ) ( ) 0)0()0(

''
)3()3(

,'
)0()1(

,''
)2()2(

,'
)0()2(

,'
)1(

,' =−+−+ mjnjjjmnpqrpqrmnjjmjpqrrnjjjmnpqpqmnjjmjpqrpqnjrmnjj BBCDBBCDBBD δδ

    
  (A16b) 

Eqn (A16b) is the condition for equation (A16a) to be solvable. Substitution of the 
solution of (A14b) into equations (A16a) and (A16b), and using equations (A12a) and 
(A4c) to eliminate the homogeneous parts results into: 

( ) [ ]{ } ( ) 0)0()0(
''

)3()3(
,'

)0()0(
'

)1(
,''

)2()2(
,'

)0()0(
'

)2(
,'

)1(
, =−+−+ mjnjjjmnpqrpqrmnjjmjnjpqrrunvjjjmnpqpqmnjjmjnjpqrpqunvjrmujv BBCDBBGCDBBGD δδ

  (A17)  
and 

 
( ) [ ]( ) ( ){ } −+−+−= )0(

'
)3(

,'
)1(

,'
)2()2(

,
)2(

,'
)1(

,
)3(
,'

)0(
' njpqrmnjjpqrrunvjjvmupqpqmujvpqrpqunvjrmujvpqrnjmnjj BDGCDGDBD δ
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 ( ) ( ) )0(
'

)1(
,'2

)0(
''

)2()2(
,'

)1(
,'

)1(
,1 njpqrrmnjjnjpqrjjmnpqpqmnjjqunvjpmujv BDnBCDGDn −−+ δ   (A18) 

Note that under the condition of reversal symmetry, )3(
mnpqrC  equals 0 [8] and eqn. 

(A17) is automatically satisfied. 

The solution for )3(
,' pqnjB  is: 

 ( ) ( ) )0(
'3

))(1(
,'2

))(2(
,'1

))(3(
,'

)3(
,' njpqr

p
pnjpqr

p
pqnj

p
pqrnjpqrnj BnBnBnBB +++= .  (A19a) 

 )0()3(
,'

))(3(
,' uvpqrvnuj

p
pqrnj BGB = . (A19b) 

 

( ) [ ]( ) ( ){ })3(
,

)1(
,

)2()2(
,

)2(
,

)1(
,

)0(
'

)3(
,'

1

pqrmujvpqrrxuyvjymxpqpqmxjypqrpqxuyvrmxjyjnmjpqrvnuj DGCDGDDG +−+−=
−

δ

  (A20) 
 

Fourth order 

Considering the coefficients of the fourth order in k leads to: 

( ) [ ]( ){ }+−+−=
pqrsrsnjjjmnpqpqmnjjpqrspqrnjrmnjjpqrsnjmnjj BCDBDBD )2(

,''
)2()2(

,'
)3(
,'

)1(
,'

)4(
,'

)0(
' δ [ ]( ) [{ )1(

,''
)3()3(

,' pqrssnjjjmnpqrpqrmnjj DBCD δ +−+

 
( ) [ ]( ) [ ]( ) +−+−+ )0()1(

,''
)3()3(

,'
)0()2(

,''
)2()2(

,'
)0()3(

,'
)1(

,' mjpqrssnjjjmnpqrpqrmnjjmjpqrsrsnjjjmnpqpqmnjjmjpqrspqrnjrmnjj BBCDBBCDBBD δδ

 
 [ ] 0)0()0(

''
)4()4(

,' =− mjnjjjmnpqrspqrsmnjj BBCD δ   (A21b) 
As shown above, the homogeneous part always vanishes. From now on, only the 

particular solution will be considered and the odd C tensors should be 0. Substitution of 
the solution of (A19b) into (A21a) and (A21b) and applying symmetric properties yields: 

 ( ) [ ]( ){ }+−+−=
pqrsrsunvjjvmupqpqmujvpqrspqrunvjsmujvpqrsnjmnjj GCDGDBD )2(

,'
)2()2(

,
)3(

,'
)1(

,
)4(
,'

)0(
' δ   

 ( ) ( ){ } )0(
''

)4()4(
,'

)1(
,'

)3(
, njjjmnpqrspqrsmnjjpqrssunvjpqrmujv BCDGD δ−+   (A22) 

 

( ) [ ]( ) ( ){ })4(
,'

)1(
,'

)3(
,

)2(
,'

)2()2(
,

)3(
,'

)1(
,

')4(
pqrsmnjjsunvjpqrmujvrsunvjjvmupqpqmujvpqrunvjsmujv

ww

jj
mnpqrs DGDGCDGD

aa
aa

C ++−+= δ

 (A23)  
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