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ABSTRACT. This study proposes a mathematical model which characterizes the effects of 

various influential parameters on the pessimum size effect of ASR and predict the development of 

ASR expansion.  The model emphasizes the chemomechanical coupling of the ASR expansion 

process, the size distribution of aggregates, and microstructural features of cement paste.   The 

mechanical part of the model is developed based on a modified version of the generalized self-

consistent theory.  The chemical part of the model includes two opposing diffusion processes.  

One is the diffusion of chemical ions from pore solution into aggregate, and the other one is the 

permeation of ASR gel from the aggregate surface into the surrounding porous cement matrix.  

The total ASR gel is divided into two parts: the gel directly deposited in the interface pores 

which does not cause expansion, and the gel permeated into the surrounding pores in cement 

paste which generates the interface pressure and is responsible for the expansion.  The amount 

of the first type of gel and the rate of the permeation of the second type of gel depends on the size 

of the aggregate and the porosity of the cement paste.  The balance between the two opposing 

diffusion processes determines the pessimum size of the aggregate and maximum expansion of 

the concrete.   

 
 
 
 
1. Introduction 
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Alkali-Silica reaction (ASR) in concrete is a reaction that involves the hydroxide ions in pore 

solution in cement paste and the reactive silica in aggregate.  The main reaction product of ASR 

is called ASR gel and is located mainly in the interface zone between the aggregate and 

surrounding cement paste.  In the presence of moisture, the ASR gel expands and generates 

significant interface pressure that may cause micro-cracks in concrete. 

The mechanisms of ASR have been studied extensively.  Research results for regular 

concrete showed that the maximum expansion due to ASR (referred to as pessimum expansion) 

depends on many parameters, such as the volume fraction, the type and size distribution of 

reactive aggregate, the composition and alkali content of the cement, the rate of strength 

development, and the mixture proportion of the concrete such as water-cement ratio (Diamond 

and Thaulow, 1974; Hobbs, 1988; Diamond, 1989; Johansen et al. 1993; Prezzi et al., 1997).  

Among the influential parameters, the size of aggregate plays an important role.  The size of the 

aggregate that causes the pessimum expansion is called the pessimum size.   

Several experimental methods have been developed for testing ASR behavior of concrete.  

Measuring directly the long-term expansion of concrete specimens has been considered to be the 

most reliable way to evaluate the reactivity of aggregate, but this is quite time consuming.  

Therefore, a number of accelerated test procedures have been devised that are now used with 

some confidence.  Among the standard methods now available is the mortar bar test (ASTM C-

227), the rock cylinder test (ASTM C-586), and the tests of ASTM C-289 and ASTM C-295.  

The most recently developed accelerated mortar bar test method is ASTM C-1260, which 

requires only 14 days of testing.  The performances of some of the standard test methods were 

compared by Alasali et al. (1991).  

Parallel to the extensive efforts to establish standard testing methods, much attention has also 

been paid to the development of theoretical models for characterizing ASR behavior.  Groves 

and Zhang (1990) developed a dilatation theory based on the observation of the microstructure of 

an expanded mortar composed of silica glass particles in ordinary Portland cement paste.  In the 

dilatation model, it was assumed that the main ASR product is formed on the surface of silica 

glass particles. The formed gel causes a dilatation of the matrix.  The overall expansion of the 

mortar was obtained using the elasticity theory of a misfitting sphere in the matrix.   

The dilatation model was combined with various diffusion theories to characterize ASR-

induced expansion (Svensson 1991; Furusawa et al., 1994; and Goltermann 1994). The 
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expansion process of the concrete is divided into two stages: (1) the diffusion of the hydroxide 

and alkali ions into aggregate, followed by the reaction of these ions with the reactive silica in 

the aggregate; and (2) the development of the ASR induced expansion, which is similar to the 

dilatation theory.  In the second stage of the expansion process, Furusawa et al. (1994) further 

assumed that there exists a porous zone around the aggregates and that the expansion is initiated 

only when the volume of the reaction products exceeds the available volume of the porous zone. 

A fracture mechanics theory was recently developed by Bazant et al. (2000), in which the 

stress intensity factor at the preexisting flaws near the surface of the reactive particles is used to 

evaluate the crack propagation due to the pressure generated by the ASR gel.  Ulm et al. (2000) 

established a detailed model of ASR kinetics and included ASR heat diffusion and analyzed the 

effect of ASR on different sizes of structures. 

The purpose of the present paper is to develop a theoretical model for predicting the 

pessimum expansion of concrete and the pessimum size of aggregate.  The significance of the 

pessimum size in engineering practice has been pointed out in recent experimental studies at 

Columbia University, New York, by Meyer and Baxter (1998), Jin (1998), and Meyer and Xi 

(1999).  Using waste glass particles of various sizes in concrete and the accelerated mortar bar 

test (ASTM C-1260), they demonstrated that a decrease of particle size causes an increase of 

volume expansion and damage due to ASR up to a specific particle size (pessimum). However, 

when the particle size is reduced further, smaller ASR induced expansions were observed, 

together with an increase in compressive strength of the concrete.  This result is significant 

particularly if highly reactive aggregate such as crushed waste glass is used.  Basically, if such 

aggregate is crushed to a size smaller than the pessimum value, then, instead of causing the 

deleterious expansion in concrete, the problem of ASR can be controlled.       

Relatively little research effort has focussed on predicting the pessimum expansion of 

concrete and the pessimum size of aggregate.  The basic idea and a brief outline of the present 

model were presented in two recent conferences (Jin et al. 1998; Xi et al. 1999), however, the 

main part of the model and its numerical implementation have been completed only recently.  

Another recent paper on this topic was published by Bazant and Steffen (2000), in which the 

ASR kinetics was characterized in detail and the pessimum size of aggregate given in terms of 

the effect of internal pore relative humidity on ASR expansion.  
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The present theoretical model is divided into two parts. The first part is the application of a 

composite theory to characterize the expansion and internal pressure generated by ASR with 

reactive aggregate of different sizes.  The second part is the application of diffusion theories to 

simulate the dominant diffusion processes during ASR in concrete.  The pessimum size of 

aggregate is obtained by combining the composite and diffusion models with the micro-structural 

features of concrete such as cement paste porosity and aggregate gradation.  The composite 

model in the first part is general and can be used for various situations, while the diffusion 

related model in the second part is developed particularly for simulating the testing environment 

of ASTM C-1260.  

 

2.  The Composite Model for ASR Expansion 
 

In general, the expansion caused by ASR can be simulated by the thermal expansion of an 

inclusion in a composite. Thus, the total expansive strain of concrete can be determined using the 

models developed for effective thermal expansion of composites.  In this study, the model used 

to evaluate the effective ASR-induced expansion of concrete is based on the multiphase 

generalized self-consistent method developed by Xi and Jennings (1997), in which the basic 

material element is a composite spherical system with one constituent phase associated with 

another.  The center sphere is the aggregate and the outside layer is the cement paste matrix as 

shown in Fig. 1.  

 

2.1 Configuration of the Microstructure 
 

For two-phase composite materials, the typical configuration of microstructure is shown in 

Fig. 2. The structure of the material can be divided into many regions or elements such that the 

volume fraction of each phase in each region (or element) is the same. The partition may be 

made so that the elements approach the spherical surfaces. Therefore, Fig. 2 is assumed to be 

equivalent to Fig. 3.  In theory, the shape of the element could vary, for example cubic, but 

spherical elements have the advantage of being three-dimensional, while at the same time 

reducing the problem to one dimension.  The basic element of the microstructure in Fig. 3 is then 

a composite sphere composed of two different phases in which the ratio of radii R1/R2 is a 
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constant.  As a result of the constant volume fraction, the basic element is independent of the 

absolute size of the spheres. For the material under consideration, i.e. concrete, phase 1 is the 

aggregate and phase 2 is the matrix. 

The configuration of the basic element shown in Fig. 3 can also be used to model 

heterogeneous multiphase composite materials, which means that there could be multiple layers 

outside of the center sphere.  The total number of phases in a composite depends on the 

composite material to be characterized.  For the problem of ASR-induced expansion, we decided 

to use the two-phase composite model with the ASR gel included as part of the aggregate. The 

ASR gel is not considered a distinct phase mainly because each phase is assumed to have a fixed 

volume fraction in each basic element (the ratio of radii R1/R2 is a constant).  The thickness of 

the gel layer formed at the aggregate surface at a certain time is constant and not proportional to 

the size of aggregate.  This means, if we were to consider the gel as a distinct phase, we would 

have different volume fractions of the gel phase for different sizes of aggregate.   

The configuration of the system in Fig. 3 requires a specific gradation of element sizes such 

that each composite sphere has the same internal structure, while the smaller elements fill the 

gaps between adjacent spheres. Obviously, such a particle size distribution requires a broad 

range of particle sizes.  The aggregates used in concrete have such a broad range of size 

distribution, from the micrometer to the centimeter.  The size of typical fine aggregate (i.e. sand) 

ranges from 100 micrometer (and less) to 4.75 mm, and the size of coarse aggregate (i.e. gravel) 

ranges from 4.75 mm to several centimeters (or larger).    

Considering the micro-structural configuration shown in Fig. 3, one can equivalently obtain 

Fig. 4, where the phase 3 is the effective homogenous medium equivalent to the heterogeneous 

medium in Fig. 2. 

  

2.2 ASR-induced Expansion of Concrete with Different Aggregate Sizes 
 

The three-phase model shown in Fig. 3 was used by Christensen (1979) and Christensen and 

Lo (1979) to determine the effective elastic properties of two-phase composites, such as bulk 

modulus and shear modulus.  Based on this idea, Xi and Jennings (1997) used the generalized 

self-consistent method to determine the effective shrinkage in homogenous media.  To model 

ASR-induced expansion due to aggregates with different sizes, we will modify the effective 
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shrinkage model and derive the effective expansion coefficient for the two-phase composite.  

The interface pressure between the aggregate and cement paste matrix, which plays an important 

role in the expansion process of ASR, will also be derived.   

Applying elasticity theory to the element of Fig. 4, for any single phase that expands, say 

phase i, the equilibrium equation in spherical coordinates is 
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where Ui is the displacement of the phase i in the radial direction; r is the radial location 

coordinate; Ui,r and Ui,rr are the first and second derivative of Ui with respect to r; and νi and 

iα are Poisson’s ratio and linear expansion of phase i, respectively. Since the expansion due to 

ASR in the linear elastic range is very small, the term associated with the differential linear 

expansion, ri,α , can be neglected.  Thus Eq. (1) can be simplified as 
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Eq. (2) is the basic differential equation that applies to any phase shown in Fig. 4.  When all 

phases expand, but each with its own coefficient of expansion, the solution of Eq. (2) is 
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where σi is the stress of phase i in the radial direction; Ki and Gi are the bulk modulus and shear 

modulus of phase i, respectively; and Ci and Di are constants, with Di = 0 to avoid the singularity 

at r = 0.  

Eq. (3) is the general solution and valid for all phases, only the integration constants Ci and 

Di are different for each phase and can be determined using continuity conditions at r = R1 and 

the boundary condition at r = R2. The continuity conditions at r = R1 are 
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and the boundary condition at r = R2 is 
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in which δ is a radial displacement due to the expansion of the element at r = R2.  Applying the 

continuity conditions of Eq. (4) to Eq. (3) we have 
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Imposing the boundary condition, Eq. (5), on Eq. (3) gives 
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The three constants C1, C2, and D2 can be solved using Eqs. (6), (7), and (8) in terms of the 

displacement δ.  

To determine an effective expansion coefficient, effα , we need to consider the continuity 

condition at r = R2, for the composite sphere and an effective homogenous sphere of the same 

volume, in which the displacement and the stress should be the same as in the composite sphere. 

The displacement continuity leads to 
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and the stress continuity to 
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where the subscript “eff” stands for effective homogenous medium. Substituting C2 and D2 into 

Eq. (10) and taking ,1α  ,2α  and effα as zero, we can determine the effective bulk modulus Keff as 
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in which V1 = ,/ 3
2

3
1 RR  the volume fraction of the phase 1. By substituting Eq. (11) into Eq. (10), 

the effective expansion coefficient for homogenous media is obtained 
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In the case of concrete, the aggregate is the constituent phase that expands during ASR, and the 

cement paste matrix does not expand. Therefore, Eq. (12) can be simplified by taking α2 as zero, 

that is 
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The final step in the derivation is to find an expression for the interface pressure, Pint, 

between the aggregate and the matrix.  By using the stress equation, Eq. (3), the interface 

pressure is obtained as 
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It should be noted that the composite model used in the present study assumes that the 

concrete and all its constituents can be treated as elastic materials.  This means that the model of 

ASR-induced expansion developed in this paper is applicable only for predicting concrete 

behavior with initial and moderate expansion due to ASR.  For situations that lead to severe map 

cracking, more sophisticated models need to be developed to account for the damage due to 

inelastic and fracture behavior of the cement paste around each individual aggregate. 

The unknown parameter in Eq. (13) is the expansion coefficient of aggregate due to ASR, α1.  

In contrast to the thermal expansion of conventional composites, the ASR induced expansion of 

aggregate is size dependent.  In other words, two aggregate particles of the same mineralogical 

makeup but with different sizes expand differently.  This is why ASR causes the special 

phenomenon known as the pessimum expansion.  As a result, the overall ASR expansion of the 

concrete must be determined not simply by Eq. (13), but as the volumetric average of ASR 

expansions of the basic elements with different sizes. 

 

∑= Ri
effieff αφα               (15) 

 

in which φi is the volume fraction of aggregate with size Ri and Ri
effα the ASR expansion of the 

basic element of concrete with the size of aggregate, Ri.  It is important to note that the volume 

fraction V1 in Eq. (13) is different from φi in Eq. (15).  V1 is the volume fraction of the total 

amount of aggregate based on the total volume of concrete.  φi is the volume fraction of the 

aggregate of size Ri based on the total amount of aggregate and is given by the aggregate grading 

curve.  

 

3. Mechanisms for Pessimum Effect of ASTM C-1260 Specimens  
 

In the ASTM C-1260 test, a mortar bar (2.54 cm by 2.54 cm by 25.4 cm) is made with a 

specified water-cement ratio, aggregate volume and five different aggregate sizes.  The mortar 

bars are moisture cured for one day prior to demolding and then immersed in a sodium-

hydroxide solution for 14 days.  The short curing period of one day is to ensure that no 
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significant ASR occurs before the test, and that the pore relative humidity does not drop 

significantly due to the hydration reaction.  During the testing period, the samples are taken out 

of the solution daily for measuring the length change, which takes only a few minutes.  

Therefore, the internal pores of the specimens are almost always fully saturated, and the moisture 

diffusion is insignificant.  In fact, the test was designed this way so that there is enough supply of 

water for the expansion of ASR gel to occur at an accelerated rate.  The test is further accelerated 

by the solution’s elevated temperature of 80°C and high alkali concentration (1 N NaOH).     

Two transport processes govern the behavior of specimens during the ASTM C-1260 test.  

First, there is the penetration of alkali ions into the specimen, which can be further divided as the 

penetration of the ions from the specimen boundary into the specimen, called macro-diffusion, 

and the penetration from the surface of each aggregate particle into the aggregate, called micro-

diffusion.  Once the concentration of alkalis within a reactive aggregate reaches a certain level, 

ASR gel forms.  Because of the porous interface zone surrounding the aggregate, the ASR gel 

formed during the initial stage deposits directly inside the interfacial pores, and thus, there is no 

expansion of the concrete.  When the volume of the gel exceeds the capacity of the interfacial 

pores, an interface pressure is generated and the second transport process takes place, which is 

the permeation of the ASR gel into the pores of the cement paste and which is responsible for the 

expansion. The total ASR gel can thus be divided into two parts, one that is deposited directly in 

the interfacial pores, and one which permeates into the surrounding cement paste. 

Apparently, the ASR expansion of ASTM C-1260 specimens is a combined result of these 

two opposing transport processes.  Depending on which process dominates, there are two 

possible outcomes. If the volume of ASR gel formed is much larger than the volume of the 

interface porous zone, the gel pressure builds up and causes severe expansion.  This is the case 

dominated by the diffusion of alkali ions and the reaction of alkali and silica and is defined as the 

reaction dominant case. On the other hand, if the interfacial porous space is sufficient to 

accommodate all ASR gel, then there is only minor or no expansion. This is the case dominated 

by the permeation of ASR gel and is defined as the permeation dominant case. 

To study the pessimum effect of ASR, let us consider aggregate particles with size R.  The 

amount of ASR gel formed at a certain time during the test depends on the total volume and 

surface area of the aggregate.  For a fixed aggregate volume, the surface area is a function of the 

size R.  The smaller R is, the larger the surface area, and the higher the rate of ASR. Therefore, 
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as a general rule, a decrease of R should result in an increase of ASR expansion if only the 

reaction dominant case were considered, as characterized by the ascending curve of Fig. 6. 

Reducing the size R below a certain size (the pessimum size) leads to the permeation dominant 

case. Here the aggregate particles are small enough that the amount of the gel formed around 

each particle is comparable to the pore space available in the surrounding cement paste.  

Therefore, the gel pressure is released and the ASR expansion reduced.  Since the porosity of 

cement paste is independent of aggregate size, any further decrease of R reduces the amount of 

ASR gel formed around each particle and thus reduces the ASR expansion.  This is characterized 

in Fig. 6 by the descending branch of the curve.  In the limiting case that R is so small that the 

interfacial pore space can hold all ASR gel even if the entire aggregate particle turns into gel, 

there will be no ASR expansion at all.  The peak separating the ascending and descending curve 

branches in Fig. 6 corresponds to the pessimum aggregate size. 

The above analysis explains why the pessimum size depends on the pore space in the 

interfacial zone and the porosity of cement paste. The higher the porosity, the larger the 

pessimum size.  This general conclusion has been verified experimentally by using an air-

entraining agent to increase the concrete porosity (Jin 1998). Larger dosages of air-entraining 

agent generate more air bubbles in the cement paste as well as in the interface zone, thereby 

increasing the pessimum size of the aggregate.        

Below, a mathematical description of this basic mechanism shall be outlined. It should be 

pointed out that it applies only to the special case in which the concrete is fully saturated.  It does 

not describe the ASR process in realistic situations, in which the pore structure of the concrete is 

partially saturated and thus moisture diffusion must be taken into consideration in addition to the 

other two governing transport processes, namely alkali ion diffusion and ASR gel permeation. 

The effect of moisture diffusion on pessimum size was analyzed in detail by Bazant and Steffens 

(2000). 

 

4. Mathematical Model for Diffusion of Alkali Ions 
 

As described above, alkali ions penetrate from the specimen boundary into the concrete 

(macro-diffusion), and then into the aggregate (micro-diffusion). The macro-diffusion of alkali 

ions is similar to other macro-diffusion processes in concrete (such as moisture diffusion and 



 12

chloride penetration), which have been studied extensively (Xi et al., 1995a, 1995b; Xi and 

Bazant 1999).  In the present study, we focus on the process of micro-diffusion, which may be 

described by Fick's law 
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in which Cion is the free ion concentration of the pore solution inside the aggregate, which could 

be hydroxide ions, calcium ions, sodium ions, etc.  Bion and Dion are the binding capacity and ion 

permeability of the aggregate, respectively. Bion and Dion may not be simple constants but depend 

on the microstructure of the aggregate as well as the type of ions under consideration. After a 

layer of ASR gel has formed on the aggregate surface, Bion and Dion represent not only the 

binding capacity and the permeability of the aggregate but also of the ASR gel, because the 

alkali ions must penetrate the ASR gel first and then diffuse into the aggregate. 

When the angularity of aggregate is low (round shaped aggregate such as river sand), the 

aggregate may be simulated as a sphere, and the diffusion equation may be formulated in a polar 

coordinate system and solved analytically.  The initial condition is Cion = 0 for t = 0 in the 

aggregate.  The boundary condition on the aggregate surface is Cb = C0 (a constant ion 

concentration), and the boundary condition at the center of the aggregate particle is Cion = 0.  The 

solution of Eq. (16) in a polar coordinates is 
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in which κ = Dion / Bion. 

It should be pointed out that at the initial stage of the mortar bar test, not all aggregate 

particles have the same boundary condition Cb, because the alkali ions penetrate from the 

boundary into the mortar bar.  So, for a particle located at a certain distance from that boundary, 

the boundary condition is not constant but a function of time.  With a time dependent boundary 

condition, Cb = C0(t), Eq. (16) can still be solved analytically, but the solution will not be given 

here. C0(t) can be obtained from macroscopic diffusion analysis of the mortar bar.  Here, we 
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assume that the macro-diffusion affects the boundary conditions of some aggregate particles only 

during the initial stage. Because of the small mortar bar size (1.27 cm from the surface to the 

center of the bar), the macro-diffusion reaches equilibrium very soon and the boundary condition 

for all aggregates equals the concentration of the solution, which is constant.     

The ASR process takes place within the surface layer of each aggregate particle, where Cion 

reaches a certain concentration level.  Eq. (17) can be solved inversely to determine the thickness 

of the ASR layer, r. The volume of the reacted portion of the aggregate particle of size Ri, VRi, 

can then be calculated  
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This volume can be converted into the volume of ASR gel, Ri
gelV , which is 
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where η is the volume ratio of the ASR gel to the reacted aggregate. Apparently, η must be 

greater than 1 for ASR expansion to occur. η can be determined approximately from the reaction 

kinetics of ASR (Groves and Zhang, 1990; Furusawa et al., 1994).   
    

5. Mathematical Model for Permeation of ASR Gel 
 

It was observed that there exists a porous zone between the aggregate and the surrounding 

cement paste matrix (Ping et al. 1991; Bentz and Garboczi 1991).  The ASR gel formed at the 

outside of the aggregate fills this porous zone immediately and once it has filled it completely, it 

starts to generate interfacial pressure, which pushes the gel to further permeate the pore structure 

of the cement paste. Mathematically, this process can be described as 
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where Ri
effgelV , is the effective volume of the gel generating the interfacial pressure and further 

permeating into the porous cement paste; Vgel
Ri  is the total volume of the gel formed by aggregate 

particles of size Ri (Eq. 19); Ri
poreV is the total volume of pores in the surrounding interface zone. 

Ri
poreV can be calculated using 

 
Ri
aggunit

Ri
pore AVV =                                                                                                                       (21) 

 

where unitV is a material constant (a length scale) representing the capacity of the porous zone to 

absorb ASR gel per unit area, and Ri
aggA is the surface area of an aggregate particle of size Ri. 

In the process described above, a part of the ASR gel directly deposits within Ri
poreV , and there 

is no diffusion analysis needed. If ASR gel permeates through porous cement paste, a diffusion 

analysis must be conducted, which can be characterized by Darcy's law for a viscous flow as 
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in which Cgel and ηgel are the concentration and viscosity of the gel, respectively; κgel is the gel 

permeability of the porous cement paste; and Pgel is the pressure distribution in the gel, which 

depends on the degree of saturation of the pores.  At the boundary, the interface pressure, Pint, is 

applied. 

The stress distribution, Pgel, may be determined by solving the boundary value problem for a 

thick-walled sphere with an internal pressure Pint applied on the internal boundary. Then, the 

concentration profile of the ASR gel may be determined by solving the permeation equation with 

a state equation.  However, the interfacial pressure Pint is unknown and a function of time and 

needs to be evaluated simultaneously from the equilibrium of the composite system, the diffusion 

of ions, and the permeation of the gel. One can see that this is a chemo-mechanical coupled 

problem (Jin, 1998). 

In order to solve the coupled equations, a state equation must be introduced, which relates the 

concentration of ASR gel in the pores, Cgel, the gel pressure Pgel, and the temperature, T.  
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Unfortunately, there has been a lack of experimental data and theoretical models for the state 

equation of ASR gel in porous cement paste matrix.  As a first approximation, a simplified state 

equation can be developed by taking the temperature as a constant (T = 80 °C in ASTM C-1260), 

so, the state equation may be written as  

 

C Pgel gel= β           (23) 

 

in which β is the state function for cement paste, which may be determined by the state of 

saturation.  When the pores in the cement paste are saturated with ASR gel, Cgel = Cp, where Cp 

is the porosity of the cement paste.  At the same time, the pressure Pgel reaches the saturation 

pressure, which can be taken approximately as the tensile strength of the cement paste, ft
’.  

Therefore, β = Cp/ft
’.  With the state equation Eq. (23), the permeation equation, Eq. (22), can be 

expressed in terms of Cgel (or Pgel).  The initial condition is Cgel(r,0) = 0.  The boundary condition 

at the interface is Cgel (Ri,t) = βPint(t); and the boundary condition at the far field is Cgel (Rif,t) = 0; 

where Rif is the far field distance of the aggregate with size Ri, which can be taken as half the 

average spacing between two aggregate particles.  Eq. (22) with the boundary and initial 

conditions can then be solved analytically 
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in which ν = κgel / ηgel.  Eq. (24) is used as the solution of the permeation equation for each size 

Ri of the aggregate. 

Eq. (24) is not a closed-form solution because Pint(t) as the boundary condition at the 

interface is unknown and must be solved together with the coupled mechanics problem. A 

piecewise time step numerical procedure was developed to solve the chemo-mechanically 

coupled problem as described in the next section.       
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The gel volume in the porous cement paste surrounding an aggregate particle with size Ri at 

time t, Vpg
Ri may be evaluated by integrating the gel concentration over the surrounding cement 

paste, 

 

∫= if

i

R

R gel
Ri

pg drCrV 24π          (25) 

 

The volume change due to ASR of aggregate with size Ri is Ri
pg

Ri
effgel

Ri
gel VVV −=∆ , .  It should be 

emphasized that ∆Vgel
Ri  is not the increment of the total ASR gel, but the volume of the ASR gel 

beyond the accommodating capacity of interfacial pores, Ri
poreV , and the pores in the bulk cement 

paste.  By assuming the isotropic behavior for concrete, the coefficient of expansion for the 

aggregate with size Ri due to ASR is 

 

Ri
a

Ri
pg

Ri
effgel

Ri
a

Ri
gelRi

V
VV

V
V −

=
∆

= ,
1α =

− −V V V
V

gel
Ri

pore
Ri

pg
Ri

a
Ri       (26) 

 

The volume change Ri
gelV∆  at a certain time generates a pressure Pint(t) between the aggregate 

and the matrix. With the given Ri
gelV∆ , Pint(t) can also be solved from the equilibrium of the 

composite system. The Pint(t) thus solved must be equal to the Pint(t) in the state equation, which 

was used to solve Eq. (22).    

 

 

6. Numerical Procedure 
 

Equations (13, 14, 15, 19, 20, 24 and 25) form a complete model for ASR expansion. It is 

impossible to solve the problem analytically because the diffusion and the permeation of the gel 

are coupled with the interface pressure. Instead, a detailed numerical procedure shall be 

presented. 
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An important detail of the solution procedure is how to handle Eq. (24), in which the 

interface pressure, Pint(t), appears inside the integral.  This interface pressure is assumed to vary 

linearly within each time step. This assumption does not lead to a significant loss of accuracy 

provided that the time steps are small enough. Using this approach, the analytical solution of Eq. 

(24) can be used to determine the gel distribution in the porous zone of the cement paste. 

The step by step procedure employed in the numerical analysis is as follows: 

1. Provide input data for the analysis, such as the number of different aggregate sizes, the 

different sizes and volume fractions, etc. 

2. For the aggregate of size Ri, conduct the piecewise time step integration through the time 

domain of specified duration. 

3. Calculate the depth of ion penetration into the aggregate, r. 

4. Compute the ASR gel layer formed at the surface of the aggregate adjusted for the 

presence of pores in the interface zone. 

5. Assume an interface pressure, Pint. 

6. Compute the gel permeation distribution and calculate the volume of gel which permeates 

into the matrix. 

7. Calculate the volume change of gel, Ri
gelV∆ , and the expansion of the aggregate, Ri

1α . 

8. Calculate the interface pressure using the model of composite mechanics, Eq. (14). 

9. Compare the two interface pressures obtained in step (8) and (5). If their difference is 

within the prescribed tolerance level, continue to the next step, otherwise go back to step 

(5) and iterate until the convergence criterion is satisfied. 

10. Calculate the expansion coefficient of ASR for the aggregate of size Ri. 

11. Repeat steps (2) to (10), calculating expansion coefficients for all aggregate sizes, then 

determine the overall coefficient of expansion of concrete as the volumetric average of 

Eq. (15). 

 

7. Numerical Results 
 

There are many material parameters involved in the two transport models and the composite 

model which need to be determined to reflect the physical, chemical, and micro-structural 

features of both cement paste and aggregate.  Table 2 lists the material parameters used to obtain 



 18

the numerical results of the model presented in Figures 7-11. Fig. 7 shows the ion concentration 

profile in an aggregate particle of size 0.6 mm. The concentration profile of ASR gel in the pores 

of the cement paste surrounding the aggregate is given in Fig. 8. The coordinate for the radius 

starts at 0.6 mm, which is the surface of the aggregate.  Fig. 9 shows the development of the 

interface pressure build-up with time up to 14 days, simulating the ASTM C-1260 test.  As one 

can see, the interfacial pressure is sufficiently high to cause fracture of the material. The fact that 

in many tests the specimens do not crack can be explained with any one of the important factors 

that were disregarded here, such as the release of the stress concentration by micro-cracking and 

by the high creep of the cement paste at early ages (only 14 days old).  Moreover, the strength of 

the cement paste in small specimens is much higher than in large concrete members, because of 

the reduced probability of defects (Grooves and Zhang 1990). 

The curve identified in Fig. 10 as “Xi” shows the increase of ASR expansion with time, in 

which Eq. (12) and Eq. (15) are used to evaluate the coefficient of expansion. The curve marked 

as “Hashin” represents Hashin’s bound (Hashin 1962; Christensen 1979), which was used 

together with Eq. (15) to calculate the coefficient of expansion. One can see that the results of 

the two models agree very well. 

Fig. 11 compares the numerical ASR expansions for different aggregate sizes with the 

experimental results obtained by Jin (1998). For the material parameters listed in Table 2, it is 

evident that the pessimum size of the aggregate is #200, which is about 0.075 mm.  This 

pessimum size agrees with the one obtained by Jin (1998) and Meyer and Baxter (1998). 

 

8. Summary and Conclusions 
 

1. A mathematical model was developed which characterizes the effects of various influential 

parameters on the pessimum effect of ASR and can predict ASR expansion. The model 

encompasses the chemo-mechanical coupling of the ASR expansion process, the size 

distribution of aggregates, and micro-structural features of the cement paste. 

2. The mechanical part of the model is developed based on a modified version of the 

generalized self-consistent theory.  The chemical part of the model includes two opposing 

diffusion processes.  One is the diffusion of chemical ions from pore solution into aggregate, 
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and the other one is the permeation of ASR gel from the surface of aggregate out to the 

surrounding porous cement paste matrix. 

3. The total ASR gel formed is divided into two parts: the gel directly deposited in the interface 

pores which is not governed by diffusion and does not cause expansion; and the gel 

permeated into the surrounding pores in cement paste which generates interface pressure and 

is responsible for the expansion. The amount of the first type of gel and the rate of the 

permeation of the second type of gel depend on the aggregate size and the porosity of the 

cement paste. 

4. For a fixed volume of aggregate, a decrease of aggregate size results in an increase of ASR 

expansion (due to increased surface area), which is the diffusion dominant process.  When 

the aggregates are small enough that the amount of ASR gel formed around each aggregate is 

comparable to the pore space available in the surrounding cement paste, the gel pressure is 

released and the ASR expansion is reduced, which is the permeation dominant process.  In 

the limiting case that the aggregate size is so small that the interfacial pore space can hold all 

ASR gel even if the entire aggregate turns into the gel, there will be no ASR expansion at all.  

The size for which the two diffusion processes are balanced is the pessimum aggregate size. 

5. The pessimum size depends on the pore space in the interfacial zone and the cement paste 

porosity. The higher the porosity the larger the pessimum size. 

6. The model presented here is capable of simulating the development of ASR expansion and 

predicting the pessimum size of reactive aggregates. The model provides a general 

framework, and further research is needed for experimentally determining the various 

material parameters and to validate the model with more test data. 
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Tabel 1. US Standard Sieve Series 

ASTM Specified sieve opening 
Sieve number Micrometer Inch 

4 4760 0.187 
8 2360 0.0937 
16 1180 0.0469 
30 600 0.0232 
50 300 0.0117 
100 150 0.0059 
200 75 0.0029 
325 45 0.0017 
400 38 0.0015 

 

 

 

Table 2. Material Parameters Used in the Analysis 

Parameter Value 

Max. Time (days) 14 

Volume Fraction of Aggregate 0.65 

Volume Fraction of Matrix 0.35 

κion 1x10-10 

κgel 1.0x10-10 

Critical ion concentration, Ccrt 0.005 

Constant ion concentration, C0 0.1 

Volume ratio, η 1.75 
Elastic modulus of matrix at age 28 
days, Em(28) (GPa)* 12 

Elastic modulus of aggregate, Ea 
(GPa) 80 

Vunit (mm3/mm2) 0.002 

Porosity, Cp (%) 40 
Tensile strength of concrete, ft' 

(MPa) 3 

Poisson’s ratio of matrix and 
aggregate 0.2 

*Em(t) = t
t
85.04+  
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Ion Concentration vs. Radius
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Figure 7.  The Profile of ion concentration in the aggregate 
 

 

Gel Concentration vs. Radius
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Figure 8. The profile of gel distribution in concrete matrix 
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Interfacial Pressure vs. Time
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Figure 9.  The development of the interface pressure with time 
 

 

Relative Expansion vs. Time
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Figure 10.  The increase of ASR expansion with time 
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Agg. Fineness vs. Eff. Coefficient of Expansion
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Figure 11.  Expansion vs. Aggregate fineness 


