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A multi-scale constitutive model that simulates the shrinkage of
hardening cement paste is developed based on the theories of
poromechanics and mechanics of composites. Capillary stress is
considered the driving force of autogenous shrinkage. The applied
pressure, which can be another driving force of shrinkage for some
applications, is also considered in the model. A multi-scale and
micromechanical model for the elastic properties of hardening
cement paste is first formulated; the nonlinearity and creep behaviors
of calcium-silicate-hydrate (C-S-H), which are of great importance
for the shrinkage of cement paste, are then considered in the
model. The time-dependent properties of C-S-H are back-calibrated
against the experimental results for autogenous shrinkage of cement
paste. The model is finally verified by reproducing the elastic
properties as well as the autogenous shrinkage of different cement
pastes, and the results are compared with other experimental data.

Keywords: cement paste; composites; creep; elastic moduli; micromechanical
model; poromechanics; shrinkage.

INTRODUCTION
The importance of shrinkage calls for concerted research

efforts in modeling shrinkage of portland cement paste.
Limited models with different levels of complexity and
applicability can be found in the literature of the past several
decades. From a material property point of view, they can be
categorized in two families: 1) the macro or phenomenological
models, which regard cement paste as one macromaterial and
assign it a single set of material properties such as elastic
moduli1-5; and the micromechanical ones, which consider
the microstructure and/or the constituent components of
cement paste.6-11 The first group of models is relatively
simple, but the material constants required for such models
usually do not have clear physical meanings and are difficult
to obtain. The second group of models, although more
logical in their formulation, are usually very sophisticated
and their degrees of validity depend on the clear understanding
and reasonable assumptions of the microstructure and
constituent components of cement paste. Numerical analysis
such as the finite element method was used in some of these
models to obtain the shrinkage6,8 or the effective elastic
moduli12 of hardening cement paste. Therefore, it is likely to
be too involved for practical applications. Mabrouk et al.10

employed the solidification theory proposed by Bažant and
Prasannan13 to analyze the shrinkage of young concrete
considering the time-dependent properties of the cement
matrix. The solidification theory,13 however, is not
adequately accurate for modeling cement paste due to the
very complex components and microstructure at the scale of
cement matrix.14 Some models are based on the mechanics
of composite materials,7,9,11 which could address the
composite characteristics of cement paste yet remain simple
enough for practical applications. The available micro-
mechanical models, however, usually do not adequately take
into account the fact that cement paste is fundamentally a
porous medium.14 Its time-dependent properties are not

properly considered either. Moreover, the identification
of model parameters for most of these models is not
straightforward, making them difficult to apply.

A multi-scale, micromechanics-based constitutive model
was developed in this study that aimed at describing the
average shrinkage properties of a representative volume of
portland cement paste and could be embedded in numerical
analysis frameworks for practical problems, such as the
finite element analysis. The shrinkage model assumed that the
relative humidity (RH) was high (that is, RH > 70%), which
is relevant for cement pastes under sealed curing condition,
or with small amount of moisture loss due to external drying.
With high relative humidity, capillary stress could be
considered to be the principal driving force of autogeneous
shrinkage. The mechanical framework of this constitutive
model, however, was such that it could be used to simulate
shrinkage of cement paste at low relative humidity as well.

RESEARCH SIGNIFICANCE
Modern concrete materials science has been maturing

slowly to the point where it is now possible to compute
various properties of cement composites using only basic
principles and the material properties of the constituent
components. Most models used for these purposes, however,
generally require vast computational efforts. The study
presented herein points a way to avoid such extensive
computations by effectively combining the theories of
poromechanics and mechanics of composites.

DRIVING FORCES OF SHRINKAGE
To determine the volume changes of cement paste (a

porous medium), the driving forces need to be identified.
These can be divided into two categories: the applied
pressure that is easy to quantify, and the internal load—the
driving force of autogenous shrinkage and/or drying
shrinkage—which is more difficult to identify. 

Accompanying the reduction of water in capillary pores
due to chemical shrinkage and drying or desiccation of
cement paste, solid surface tension, disjoining pressure, and
capillary stress may take effect, resulting in the shrinkage of
cement paste as a function of the internal relative humidity
in the capillary pores. Surface tension,3 capillary stress,2,4,5,8

and empirical relations9,10 have all been used as the internal
load to calculate autogenous shrinkage of cement-based
materials. Solid surface tension is relevant for shrinkage of
cement paste at low relative humidity (that is, RH < 40%),
whereas disjoining pressure and capillary stress play major
roles at high relative humidity, which is the main concern of
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the present study.2 The quantification of disjoining pressure,
however, is difficult, and how it induces shrinkage of cement
paste is not clearly understood. Therefore, capillary stress,
which γ can be conveniently determined with relative
humidity, is assumed to be the main driving force of
shrinkage in the model presented herein.

Capillary stress pc can be related to the pore size of cement
paste through the Young-Laplace equation, pc = 4γ/ϕpore-water,
in which γ is the surface tension of water, which equals
0.07197 N/m (4.109 × 10–4 lb/in.); and ϕpore-water is the
diameter of the largest water-filled capillary pore, which is
related to the degree of hydration, the water-cement ratio
(w/c), and the fineness of cement. An equation was
proposed by Lin15 to predict ϕpore-water .

MODEL FORMULATION
A rational constitutive model of autogenous shrinkage of

hardening cement paste should take into account the thermo-
chemo-mechanical reactions, relations, and properties of its
constituent components. At the same time, the model should
be relatively simple so that it can be applied to analyze
practical problems. In particular, the material constants of
the model should have clear physical meaning and be easy to
calibrate. Cement paste can be regarded as a composite
medium because of its constituent components, and it is
fundamentally a porous medium as well14; therefore,
mechanics of composites and poromechanics16 can serve as the
theoretical bases for the constitutive model. Bernard et al.17 and
Ulm et al.14 demonstrated that the salient elastic properties of
hardened cement paste could be captured by combining the two
theories. There is still a long way to go, however, before their
theory can be used to develop a rational autogenous shrinkage
model for hardening cement paste. First, anhydrous cement
was excluded, which can be an important constituent of
hardened cement paste; second, the time-dependent material
properties were not taken into account; and third, the
poromechanics issue of Biot’s coefficient for early-aged
cement paste was not resolved. Biot’s coefficient is defined
as b = 1 – (Kd/Ks), in which Kd and Ks are the bulk moduli of
the porous medium and the solid phase of porous medium,
respectively. For hydrating cement paste, because the
capillary porosity and the bulk moduli of both the porous
medium and the solid phase are changing constantly, b
should also change accordingly, and it is affected by the
time-dependent properties of C-S-H as well.

In the present study, a new constitutive model is presented
in two steps. First, considering the aging effects on hardening
cement paste, its elastic properties are modeled using a
concept similar to the solidification theory,13 then a
shrinkage model for cement paste is presented that considers
the time-dependent properties of C-S-H.

Modeling effective elastic properties 
of cement paste

Elastic properties of constituent components of cement
paste—The constituent components of cement paste include
hydration products (mainly C-S-H and CH), pores of
different sizes, pore water, and anhydrous cement. Based on
the available experimental observations, the anhydrous
cement is surrounded by hydration products, that is, the
anhydrous cement forms the core of the solid phase of
cement paste and the hydration products form the shell
around it.8 The hydration products may also include calcium
sulfoaluminate hydrate (mainly ettringite C6AS3H32 and/or
monosulfoaluminate C4ASH12) and others, but their elastic
moduli are close to those of C-S-H.12 Therefore, C-S-H and
CH are considered herein to be the only hydration products.
Nielsen proposed a mesomechanical constitutive model.18,19

The elastic properties of the four major clinker phases
(namely, C3S, C2S, C3A, and C4AF) of anhydrous cement
have been investigated extensively,20-22 for example, by
nanoindentation. The average values obtained by Acker21

and Velez et al.22 are used herein as the mean effective
elastic moduli of anhydrous cement. Other investigators
have also determined the elastic moduli of C-S-H using
nanoindentation.23-25 The two types of C-S-H, namely, low-
density and high-density C-S-H, have Young’s moduli that
are quite similar (21.7 and 29.4 GPa [3147 and 4264 ksi],
respectively25). Therefore, single values of elastic moduli
are assigned to C-S-H in this study, adopting the values
calculated by Constantinides and Ulm25 for a cement paste
with a w/c of 0.5. It should be noted that the elastic moduli
measured by nanoindentation are the so-called drained
ones,14 indicating that the elastic moduli can be obtained in
an isothermal test with the pore fluid free to flow. In contrast,
if the pore fluid is not allowed to flow, the elastic moduli
should be considered undrained. The relation between the
drained bulk modulus and the undrained one can be derived
by poromechanics.16 The undrained elastic moduli calculated
by Ulm et al.14 for the aforementioned cement paste are
adopted herein, and the bulk modulus of pore water is set to
2.2 GPa (319 ksi).26 For the elastic moduli of CH, the values
measured by Monteiro and Chang27 are used. The aforemen-
tioned elastic properties of the constituent components of
cement paste are listed in Table 1. Although different
investigations may determine different specific values, those
of Table 1 are considered the intrinsic properties of the
constituent components of cement paste, independent of
the cement type, w/c, and curing conditions.

Micromechanical model for effective elastic properties of
cement paste—Cement paste can be considered a composite
medium, for which the characteristics of the different
constituent components should be investigated at different
length scales.14 Anhydrous cement should be included
because it is also an important constituent component.
Thus, using different length scales, four levels of composite
media can be identified for cement paste. Starting from the
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Table 1—Elastic properties of constituent 
components of cement paste

Elastic
moduli Clinker

C-S-H

CH Pore waterDrained Undrained

Bulk
modulus K

113.0 GPa
(16,389 ksi)

15.2 GPa
(2205 ksi)

18.3 GPa
(2654 ksi)

40.0 GPa
(5802 ksi)

2.2 GPa
(319 ksi)

Shear
modulus G

53.6 GPa
(7774 ksi)

9.6 GPa
(1392 ksi)

16.0 GPa
(2321 ksi) —
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smallest scale, they are C-S-H matrix (Level 0), hydration
products (Level I), solid phase of cement paste (Level II),
and cement paste (Level III). The C-S-H matrix (Level 0)
is treated similarly herein as CH and the anhydrous cement,
but with drained or undrained elastic moduli. Hydration
products (Level I) are assumed to consist of the C-S-H
matrix and the CH inclusions. Solid phase of cement paste
(Level II) consists of hydration products and anhydrous
cement. Finally, cement paste (Level III) consists of the solid
phase of cement paste and capillary pores. Therefore, only
three levels of composite media are considered herein. The
effective elastic moduli of a specific level are used as the
input for the next higher level, treating the lower level
composite as one effective medium, which is called the up-
scale approach. The three levels of composites are now
discussed in some detail.

Hydration products (Level I) are assumed to consist of the
C-S-H matrix and the CH inclusions. The volume ratios of
C-S-H and CH in hydration products can be calculated from
the chemical composition of cement.14,28 The volume
fraction of CH is generally much smaller than that of C-S-H.
Therefore, CH can be treated as randomly distributed
inclusions with a small volume fraction embedded in the
C-S-H matrix. The effective medium theory of Mori and
Tanaka29 is ideal for such a composite. The shape of the CH
inclusions and the way they are distributed in the C-S-H
matrix are difficult to define, but because their volume
fraction is small, it is further assumed that the CH inclusions
are spherical and dispersed isotropically within the C-S-H
matrix. With these assumptions, the effective bulk and
shear moduli of hydration products, Khp and Ghp, can be
obtained as30

(1)

(2)

.

Based on stoichiometry of the hydration reactions of the
two calcium silicates, C3S and C2S, given the gram molecular
weight (GMW) and density ρ of each reactant and

Khp KCSH
fCH KCH KCSH–( )KCSH

1 fCH–( ) KCH KCSH–( )α1 KCSH+
----------------------------------------------------------------------------------+=

Ghp GCSH
fCH GCH GCSH–( )GCSH

1 fCH–( ) GCH GCSH–( )α2 GCSH+
-----------------------------------------------------------------------------------+=

with α1
3KCSH

3KCSH 4GCSH+
--------------------------------------- and α2

6 KCSH 2GCSH+( )
5 3KCSH 4GCSH+( )
-----------------------------------------------==

product,24,31 the volume fraction of CH inclusions in the
hydration products, fCH, can be estimated as

(3)

where pC3S and pC2S are the Bogue mass fractions of C3S
and C2S, respectively; Vothers is the volume of the hydration
products other than C-S-H and CH, such as C6AS3H32 and
C4ASH12.

If the degree of hydration is less than 1.0, anhydrous
cement will also exist. As shown in Fig. 1, an anhydrous
cement particle is assumed to be spherical in shape
surrounded by a shell consisting of hydration products, and
they together form the solid phase of cement paste (Level II).
According to Powers and Brownyard,32 the volume fraction
of the anhydrous cement inclusions in the solid phase of
cement paste is

(4)

where α equals the degree of hydration. The composite
sphere can now be considered as being surrounded by some
isotropic effective medium containing macropores, pore
water, and the solid phases similar to the composite sphere,
as shown in Fig. 1, which is identical to the three-phase (or
the generalized self-consistent scheme) model33,34 if the
hydration products are considered to be one effective
medium. According to Christensen,34 the effective bulk
modulus of the solid phase of cement paste (Level II) can be
expressed as

(5)

in which Kace is the bulk modulus of the anhydrous cement
clinker given in Table 1. The effective shear modulus can be
obtained by solving the following quadratic equation34

(6)

where the coefficients A1, A2, and A3 are functions of the
elastic properties of the hydration products and the anhydrous
cement as well as the volume fraction of the anhydrous
cement.34 The solution of Eq. (6) yields two values of Gces.
The correct value of Gces, however, can be identified by
observing that it cannot be negative and is usually smaller
than the effective bulk modulus. The second condition assumes
that Poisson’s ratio of the solid phase is larger than 1/8, the
validity of which still needs to be verified by experiments.

Finally, the effective drained bulk modulus and shear
modulus of cement paste (Level III) are obtained using the
self-consistent scheme by solving the following nonlinear
equations30,33

(7)

fCH

0.19pC3S 0.06pC2S+

0.69pC3S 0.72pC2S Vothers+ +
-----------------------------------------------------------------------=

face
0.32 1 α–( )

0.32 1 α–( ) 2.2 0.32α×+
--------------------------------------------------------------- 1 α–

1 1.2α+
---------------------= =

Kces Khp
face Kace Khp–( ) 3Khp 4Ghp+( )

3Kace 4Ghp 3face Kace Khp–( )–+
---------------------------------------------------------------------------------+=

A1
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Ghp

----------⎝ ⎠
⎛ ⎞ 2

2A2
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Ghp

----------⎝ ⎠
⎛ ⎞ A3 0=++

Kcep
d Kces φKces

3Kcep
d 4Gcep+

4Gcep

-------------------------------------–=
Fig. 1—Micromechanical model for hardened cement paste.
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(8)

where ν d
cep is the effective drained Poisson’s ratio of cement

paste, and φ is the capillary porosity. If the external
shrinkage can be neglected, for example, for a cement paste
cured under a saturated condition, according to Powers and
Brownyard32

(9)

Gel pores are not considered on this level. They are
assumed to be integral components of the C-S-H matrix. The
effective elastic moduli of C-S-H given in Table 1 already
account for the effects of gel pores.

The self-consistent scheme, however, encounters problems
when the capillary porosity is very large, in which case the
effective shear modulus of a composite medium with void
inclusions and incompressible matrix can be obtained
directly as33

(10)

with fvoid being the volume fraction of voids. It can be seen
from Eq. (10) that when fvoid ≥ 0.5, the self-consistent
scheme predicts a zero or even negative shear modulus. The
same problem exists for an effective medium with a
compressible matrix, such as the cement paste at early age.
This is reasonable because stiffness of cement paste can only
develop at a certain degree of hydration when the originally
separated cement particles form a solid skeleton of hydration
products.8 This process is known as percolation and the
degree of hydration at which the cement paste is percolated
(set) depends on the w/c, or the void ratio of cement
paste.35,36 Therefore, the time when the stiffness simulated
via the self-consistent scheme becomes positive is assumed
to be the time of setting.

Consideration of aging effect on mechanical 
properties of hydration products

During cement hydration, the hydration products exhibit
considerable inelastic behavior under large and/or sustained
loading, and the mechanical properties, especially the time-
dependent ones, are likely to change with age. Therefore, an
approach that is more logical than Eq. (4) to (6) should be
followed to model the mechanical properties of hardening
cement paste. In this study, an approach that is similar to the
solidification theory13 is employed considering the
following case: at time t, the degree of hydration is α; after a
certain time step Δt, the degree of hydration becomes α +
Δα. The volume of the anhydrous cement consumed during
Δt is ΔV. If Δt is sufficiently small, the newly formed hydration
products can be assumed to exhibit the same mechanical
properties as the previously formed ones. Using the
aforementioned model for Level II, the newly formed
hydration products may exist either inside or outside of the
previously formed hydration products, or both. Because the

Gcep Gces φGces
15 1 νcep

d–( )

7 5νcep
d–

--------------------------------–=

φ 0.0625α

0.32 w
c
----+

--------------------- 1.0

0.32 w
c
----+

---------------------+ w
c
---- 0.4α–⎝ ⎠
⎛ ⎞

w
c
---- 0.3375α–

0.32 w
c
----+

------------------------------==

G
3 1 2fvoid–( )

3 fvoid–
------------------------------Gm=

volume of the newly formed hydration products is
approximately 2.2 times larger than the consumed anhydrous
cement, that is, 2.2ΔV, they should be created both inside
and outside of the previously formed hydration products,
as shown in Fig. 2. It is assumed that the fraction ΔV is
formed inside and the remaining fraction 1.2ΔV outside.
It is also noted that a similar mechanism was discussed
by Brunauer et al.37

The effective mechanical properties of the solid phase at
time t + Δt can now be obtained via the following three steps
(Fig. 3): first, the effective mechanical properties of the
anhydrous cement core and the inner layer of the newly formed
hydration products are determined using the three-phase
model; in the second step, the previously formed hydration
products serve as the matrix medium in the three-phase
model, and the effective mechanical properties obtained
from the previous step are taken as those of a new core
consisting of anhydrous cement and the inner layer of the
newly formed hydration products; finally, the three-phase
model is used again to obtain the effective mechanical

Fig. 2—Micromechanical model for hardening cement paste.

Fig. 3—Illustrated procedure of simulating effective
mechanical properties of solid phase of hardening cement
paste at time t + Δt.



306 ACI Materials Journal/May-June 2008

properties of the solid phase at time t + Δt, treating the outer
layer of the newly formed hydration products as the matrix
medium and the effective medium enclosed by it as the
inclusion. For example, similar to Eq. (5), the effective bulk
modulus of the solid phase at time t + Δt can be obtained via
the following expressions

(11)

(12)

(13)

with the subscripts fh denoting the previously formed hydration
products; ih and oh denoting the inner and outer layer of the
newly formed hydration products, respectively; ace-ih
denoting the core formed by anhydrous cement and the inner
layer of the newly formed hydration products; nc1-fh
denoting the core formed by anhydrous cement, the inner
layer of the newly formed hydration products and the previously
formed hydration products; and nc2-oh denoting the solid
phase of cement paste. The corresponding effective shear
moduli can be obtained using equations similar to Eq. (6),
with the parameters changed correspondingly.

The aforementioned procedure can be repeated when more
layers of hydration products are formed. Using this
approach, the aging effect on the mechanical properties of
hydration products can also be considered. The linear elastic
properties predicted by this procedure are the same as those
calculated using Eq. (4) to (6).

Kace ih– Kih
face ih– Kace Kih–( ) 3Kih 4Gih+( )

3Kace 4Gih 3–+ face ih– Kace Kih–( )
---------------------------------------------------------------------------------------+=

Knc1 fh– K=
fh

fnc1 fh– Kace ih– Kfh–( ) 3Kfh 4Gfh+( )

3Kace ih– 4Gfh 3–+ fnc1 fh– Kace ih– Kfh–( )
--------------------------------------------------------------------------------------------------------------------+

Knc2 oh– K=
oh

fnc2 oh– Knc1 fh– Koh–( ) 3Koh 4Goh+( )

3Knc1 fh– 4Goh 3–+ fnc2 oh– Knc1 fh– Koh–( )
------------------------------------------------------------------------------------------------------------------------+

Modeling shrinkage of hardening cement paste
To model the shrinkage of hardening cement paste, it is

assumed that the multi-scale and micromechanical framework
used to simulate the effective elastic properties of cement
paste is still valid when nonlinearity and creep are taken into
account. The following equation for the differential volumetric
strain of nonlinear elastic porous media can be used to calculate
the volume change of cement paste16

(14)

where εv is the volumetric strain, σb is the bulk stress of the
porous medium, b is the Biot’s coefficient, Sw is the saturation
ratio of pores, pc is the capillary stress, and Kd is the drained
bulk modulus.

Consideration of nonlinearity and stress 
redistribution in micromechanical model

Herve and Zaoui38 used the three-phase model to describe
the nonlinearity of matrix-inclusion composites by replacing
the constant elastic moduli of the constituent components
with the tangent moduli. This approach is applied to the
modeling schemes at different levels of composites, that is,
the Mori-Tanaka scheme at Level I, the three-phase model
scheme at Level II, and the self-consistent scheme at Level III,
by replacing the constant moduli in Eq. (1) to (2), (11) to
(13), and (7) to (9) with the corresponding tangent moduli.
Here, only the C-S-H matrix is considered to be nonlinear,
whereas the anhydrous cement and CH are still assumed to
behave linear elastically, which means that their elastic
moduli are constant.

Because the stress level of the C-S-H matrix at different
ages certainly influences its nonlinear and creep behavior,
the stress redistribution during cement hydration must be
determined. Even if the externally applied loads on the solid
phase are constant during the time step Δt, the stresses in
different layers of hydration products (and hence, in
different layers of the C-S-H matrixes) and the anhydrous
cement core vary during this time period due to cement
hydration. The stress redistribution can be determined by
considering both stress equilibrium and deformation
compatibility for the composites. According to the model of
Fig. 2, an inner and an outer layer of hydration products are
formed during Δt. The applied stress on the original anhydrous
cement core, which is now the effective stress of the inner
layer of the newly formed hydration products and the
reduced anhydrous cement core will change due to cement
hydration and in turn affect the stress and strain of the previously
formed hydration products. The change in the total effective
volume of the previously formed hydration products, the
inner layer of the newly formed hydration products, and the
reduced anhydrous cement core must remain compatible
with the deformation of the outer layer of the newly formed
hydration products. The resulting stress redistribution in the
various layers of hydration products can then be calculated.
Because the main concern is the shrinkage of cement paste,
only the bulk deformation is considered herein. As shown in
Fig. 4, at time t, the effective bulk stresses of the solid phase
and the anhydrous cement core are denoted as σout and σin,
respectively. At time t + Δ t, the applied stress on the solid
phase is assumed to be the same as that at time t, and the
effective stress of the original volume of solid phase becomes

dεv
dσb bSwdpc+

Kd
---------------------------------=

Fig. 4—Illustration of stress redistribution in solid phase of
cement paste.
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σout + Δσout due to stress redistribution. The effective stress of
the inner layer of the newly formed hydration products and
the reduced anhydrous cement core (compared with the original
anhydrous cement core) becomes σin + Δσin. The change in
the effective bulk strain of the inner layer of the newly
formed hydration products and the reduced anhydrous
cement core, Δεin, causes the variation in strain of the solid
phase, which can be calculated using the three-phase model30

(15)

(16)

in which Kt
hp  and G t

hp are the tangent bulk and shear moduli
of the previously formed hydration products, respectively.
K t

in, the tangent bulk modulus of the composite volume that
was originally the anhydrous cement, can be obtained as

(17)

and

(18)

where Vac and Vhp are the volume of the original anhydrous
cement core and the previously formed hydration products,
respectively. The change in strain, Δεin, can be obtained
using the stress σin + Δσin and the effective bulk modulus of
the composite shown in Fig. 4(c)) as well as the original
stress σin and the bulk modulus of the anhydrous cement.
With Δεin and Δσin known, K t

in  is readily obtained from
Eq. (17). Because the previously formed hydration products
contain layers of different ages, the aforementioned procedure
usually has to be completed using iteration.

At the same time, the effective volume change should remain
compatible with the deformation of the outer layer of the newly
formed hydration products, which can be assumed as a spherical
shell subject to both an inner pressure σout + Δσout and an outer
pressure σout. The volume change of such a spherical shell,
according to solid mechanics, can be calculated via

(19)

where Kt
oh and Gt

oh are the tangent bulk and shear moduli of
the outer layer of the newly formed hydration products,
respectively. Because Δσin is unknown in advance, the
aforementioned calculation procedure should be accomplished
iteratively, with the convergence criterion being

(20)

After the changes in stress of different constituent
components due to stress redistribution are obtained, they
can be combined with the stress variation due to any change
in the external loads during Δ t to calculate the corresponding
effective strain variations of cement paste. It should be noted
that the strain calculated using the aforementioned procedure
must be the same as that calculated using the micromechanical
model of the previous section if the mechanical properties of all
the constituent components of cement paste are linear elastic.

Modeling time-dependent behavior of C-S-H matrix
It is assumed that the bulk strain rate of the C-S-H matrix

can be expressed as

(21)

where  is the creep bulk strain rate, and  is the
instant elastic bulk strain rate defined by

(22)

where dσCSH is the bulk stress increment during time interval
dt, which may result from stress redistribution as well as any
change in the external loads, and can be calculated via the
previously discussed procedure. The stress-averaging scheme in
mechanics of composite materials is used in calculating dσCSH
with the ratios of different fractions.34 The undrained bulk
modulus of the C-S-H matrix, Ku

CSH , should be used to calculate
the instant strain increment since the corresponding response of
the saturated porous C-S-H matrix is conceptually undrained.
The time-dependent properties of C-S-H depend on the stress
level, deformation history, and loading rate. Because the stress of
a certain layer of the C-S-H matrix varies continuously, the
frequently used empirical creep equations are not suitable herein
because they usually require storing the entire stress history. In
this model, the over-stress viscoplasticity theory proposed by
Perzyna39 is applied. It has the advantage that only the present
stress and strain levels are required, which considerably
simplifies the model formulation. The creep strain rate thus can
be defined as

(23)

where η and n1 are the viscous model parameters, and σst
denotes a threshold stress level for the viscous behavior
of C-S-H to occur. When σCSH approaches σst, the creep strain
rate  tends to vanish; and for σCSH < σst,  = 0; σst
is assumed to be a function of strain, which is expressed as

(24)
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Δεin fin g 1–( ) 1+[ ]
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where Kst and b1 are model parameters. The slope of the
curve relating σst and εCSH defined by Eq. (24) increases or
decreases, depending on the sign of parameter b1. The strain
increment in the C-S-H matrix during dt can be expressed as

(25)

and the tangent bulk modulus of C-S-H at time t as

(26)

in which Kcr
CSH  is the tangent creep bulk modulus of C-S-H

at time t that reads

(27)

The tangent shear modulus can be obtained by assuming
constant Poisson’s ratio for the C-S-H matrix, meaning that

(28)
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MODEL CALIBRATION
The input parameters for the model include the elastic

moduli of the constituent components of Table 1; the capillary
porosity φ, which may be obtained from Eq. (9) and using the
data of external shrinkage of cement paste during its hydration;
the volume fraction of CH in the hydration products, fCH, which
can be estimated with Eq. (3); the degree of hydration α,
which can be obtained through experiments; and the four
time-dependent parameters, η, n1, Kst, and b1, which should
be intrinsic properties of the C-S-H matrix that do not vary
for different cements. Because the creep deformation of
cement paste is assumed to arise from the time-dependent
deformation of C-S-H only, it is possible to back-calibrate
these time-dependent parameters against the experimental
data on the volume change of cement paste. Furthermore,
for the obtained material parameters to represent the
intrinsic properties of C-S-H as well as possible, details of
the hydration kinetics and capillary stress developments
must also be provided for a specific cement paste tested.
Unfortunately, very few available experimental data provide
such comprehensive information. Three useful sets of
experimental data are identified and used to calibrate the
parameters.5,8,40 The changes in relative humidity (RH)
reported by Horita and Nawa40 and Lura et al.5 can be
converted to capillary stresses pc via the Kelvin Equation

(29)

where T is the absolute temperature; Vm is the molar volume of
the pore solution, which in the case of this study equals 18 ×
10–6 m3/mol (1.1 in.3/mol); and R is the universal gas
constant that is 8.314 J/(mol·K) [73.585 in.·lb/(mol·K)]. Due
to salt solution in the pore liquid, however, the measured RH
is lower than that representing the meniscus radius in cement
paste. Therefore, the reported changes in RH are corrected
using the method of Lura et al.5 The drop of RH is corrected
to start at 100%. The difference between the measured RH at
the moment of RH dropping and 100% is assumed to be
constant throughout the RH development. The hydration
kinetics of the experiments by Horita and Nawa40 is obtained
from the reported ratios of combined water according to
Powers’ theory.32

At the beginning of hydration, cement paste may exhibit
expansion due to the formation of ettringite and other
mechanisms,41 which is not considered herein. The volume
change before set is not taken into account either, because
such behavior cannot be described within the framework of
solid mechanics. As a matter of fact, any chemical shrinkage
or expansion during that period would appear as external
volume change and require no constitutive model for
quantification. Therefore, any measured autogenous
shrinkage is set to zero at the time when cement paste
shrinks, or sets, or RH drops—whatever occurs last. The
comparisons between the simulated and the measured
shrinkage also start at that moment. The predictions of
shrinkage presented in the next section follow this principle
as well. Comparisons of the simulated autogenous shrinkage
with experimental data are shown in Fig. 5 to 7 for the three
sets of tests. The single set of time-dependent material
constants of C-S-H given in Table 2 is used for all these
cement pastes. The volume ratios of CH in the hydration
products obtained by Eq. (3) and the provided chemical

ln RH( )
pcVm–

RT
---------------=

Fig. 5—Simulated and measured autogenous shrinkage of
hardening cement paste (experimental data from Hua et al.8).

Fig. 6—Simulated and measured autogenous shrinkage of
hardening cement pastes (experimental data from Horita
and Nawa40).
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external shrinkage of cement paste of Eq. (9), the capillary
porosity simulated by the CEMHYD3D program36 is
adopted to calculate the effective drained elastic moduli in
Eq. (7) to (8).

The model is then used to reproduce the elastic moduli of
two hardening cement pastes.20 The comparison of the
model reproductions with the experimental data shown in
Fig. 9 to 10 is good for the cement paste with w/c = 0.4; while
for the one with w/c = 0.35, the model overestimates the
elastic moduli at very early age to some extent, but the
results are still acceptable. The discrepancies may partially
be attributable to the difficulties of obtaining experimental
measurements at very early age of hydration,12 or to the
parameters used for the simulation. In this model, a single set
of elastic properties was assigned to the four different clinker
phases (for example, C3S, C2S, C3A, and C4AF), while
according to the available experimental results, the specific
values of the elastic properties of anhydrous cement may
vary with different chemical compositions. This may explain
the fact that the model overestimates the experimental results

cement composition are all approximately 0.2 for the three
cements. The shrinkage presented herein refers to the volumetric
shrinkage instead of the linear shrinkage reported in some
references. They are related by a factor of 3. Also, for
autogenous shrinkage, capillary stress pc is the only driving
force according to Eq. (14), with the applied stress σb being 0. It
should be pointed out that the time-dependent parameters of
Table 2 are based on rather limited experimental data and
need to be further verified against more test results.

MODEL VERIFICATION
Verifying model for effective elastic properties
of cement paste

The model reproductions of elastic moduli of the D
cement pastes at an age of 56 days with different w/c are
compared with the experimental data of Haecker et al.12 in
Fig. 8. The elastic moduli of Table 1 are used as inputs for
the different cement pastes. The elastic moduli reported by
Haecker et al.12 were measured using elastic resonance tests,
which should be considered undrained. Therefore, the
undrained bulk modulus for C-S-H matrix of Table 1 is used
in Eq. (1) to (2) to calculate the effective elastic moduli of
hydration products. The measured degree of hydration is
treated as an input for the D cement pastes.12 The volume
fraction of CH provided in the same reference is also
used. To avoid the error introduced by ignoring the

Table 2—Time-dependent material 
constants of C-S-H

Material
constant n1 η Kst b1

Value 1.05 7 × 105 (GPa)n1

(1.30 × 108 (ksi)n1)
2800 GPa

(4.06 × 105 ksi)
1700

Fig. 7—Simulated and measured autogenous shrinkage of
hardening cement paste (experimental data from Lura et al.5)

Fig. 8—Reproduced (using capillary porosity simulated by
CEMHYD3D) and measured elastic moduli as function of
w/c of cement pastes at 56 days (experimental data from
Haecker et al.12).

Fig. 9—Reproduced and measured Young’s moduli as function
of degrees of hydration of cement pastes (experimental data
from Boumiz et al.20).

Fig. 10—Reproduced and measured shear moduli as function
of degrees of hydration of cement pastes (experimental data
from Boumiz et al.20).
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of Boumiz et al.20 but slightly underestimates those of
Haecker et al.12 The lack of knowledge of external shrinkage
may explain the slight underestimations of the model
reproductions at later ages in Fig. 9 to 10.

Verifying model for shrinkage of 
hardening cement paste

In Fig. 11, the predictive capacity is validated by reproducing
the experimental results for autogenous shrinkage of cement
pastes reported by Koenders.42 The parameters of Tables 1
and 2 are used as inputs, the fraction of CH is calculated
using Eq. (3), and the capillary porosity is obtained through
Eq. (9) by considering the accumulative shrinkage. The
degrees of hydration and capillary stresses used to calculate
the autogenous shrinkage of the three cement pastes are
obtained using the hydration kinetics model proposed by
Lin.15 It can be seen that the proposed shrinkage model can
successfully predict the autogenous shrinkage of cement
paste under ambient conditions.

SUMMARY
A multi-scale and micromechanical constitutive model for

predicting the volume changes of hardening portland cement
paste has been formulated and validated in this study.

The elastic properties of hardening cement paste were
modeled first based on the theories of poromechanics and
mechanics of composites. The up-scale approach was
adopted in the constitutive modeling, starting from the
hydration products that are assumed to be composed of the
C-S-H matrix and CH inclusions only, to the solid phase of
cement paste that consists of anhydrous cement and hydration
products, and finally to the cement paste. To determine the
properties of the composite materials, the Mori-Tanaka
scheme was used at the scale of hydration products; the
three-phase model scheme was applied at the scale of the
solid phase of cement paste; and the self-consistent scheme
was employed at the scale of cement paste. The increase in
volume fraction of hydration products during cement hydration
was also considered in the model. 

This micromechanical framework was then extended to
take into account the effects of nonlinearity and creep. This
was accomplished by considering both stress equilibrium
and deformation compatibility at the scale of the solid phase
of cement paste. A time-dependent constitutive model
describing the volume changes of C-S-H based on the over-

stress viscoplasticity theory was proposed and incorporated
in the micromechanical framework, with the time-dependent
model parameters back-calibrated using experimental data
on the autogenous shrinkage of cement pastes.

Finally, the model was validated against available experi-
mental data of elastic properties and autogenous shrinkage of
different cement pastes, using the intrinsic elastic properties
of the main constituent components of cement paste reported
in various references as well as the calibrated intrinsic time-
dependent properties of C-S-H.

The effects of mineral and chemical admixtures as well as
inert fillers can be incorporated into the proposed shrinkage
model if the relevant experimental data become available.
The application of the proposed constitutive model to predict
the volume change of massive cement paste can be
attempted by using a numerical procedure such as the finite
element method. The proposed multiscale and micromechanical
framework used herein can also be applied to model the
volume changes of mortar and concrete.
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