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System Identification of the Vincent Thomas Suspension
Bridge using Earthquake Records

ABSTRACT

The Vincent Thomas Bridge in the Los Angeles metropolitan area, is a critical artery for commercial traffic

flow in and out of the Los Angeles Harbor, and is at risk in the seismically active Southern California region,

particularly because it straddles the Palos Verdes fault zone. A combination of linear and nonlinear system

identification techniques is employed to obtain a complete reduced-order, multi-input-multi-output (MIMO)

dynamic model of the Vincent Thomas Bridge based on the dynamic response of the structure to the 1987

Whittier and 1994 Northridge earthquakes.

Starting with the available acceleration measurements (which consists of 15 accelerometers on the

bridge structure and 10 accelerometers at various locations on its base), an efficient least-squares-based

time-domain identification procedure is applied to the data set to develop a reduced-order, equivalent linear,

multi-degree-of-freedom model. Although not the main focus of this study, the linear system identifica-

tion method is also combined with a nonparametric identification technique, to generate a reduced-order

nonlinear mathematical model suitable for use in subsequent studies to predict, with good fidelity, the total

response of the bridge under arbitrary dynamic environments.

Results of this study yield measurements of the equivalent linear modal properties (frequencies, mode

shapes and non-proportional damping) as well as quantitative measures of the extent and nature of nonlinear

interaction forces arising from strong ground shaking. It is shown that, for the particular subset of obser-

vations used in the identification procedure, the apparent nonlinearities in the system restoring forces are

quite significant, and they contribute substantially to the improved fidelity of the model. Also shown is the

potential of the identification technique under discussion to detect slight changes in the structure’s influence

coefficients, which may be indicators of damage and degradation in the structure being monitored. Diffi-

culties associated with accurately estimating damping for lightly damped long-span structures from their

earthquake response are discussed. The technical issues raised in this paper indicate the need for added

spatial resolution in sensor instrumentation to obtain identified mathematical models of structural systems

with the broadest range of validity
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System Identification of the Vincent Thomas Suspension
Bridge using Earthquake Records

1 INTRODUCTION

1.1 Motivation and Technical Challenges

While ambient vibration testing offers advantages to system identification approaches of long time-history

recording and relative stationarity in the response, analysis of the earthquake response of a complex multi-

input/multi-ouput (MIMO) system allows one to get a glimpse of its critical response characteristics to

strong input excitation. The system identification and damage detection of long-span structures has been an

area of considerable interest due to the critical role such structures often play in civil infrastructure systems.

Because of their inherent length, such structures must be viewed as having multiple inputs at the base during

strong-ground motions.

A considerable amount of system identification and damage detection work has been performed on

structures subjected to ambient excitations and earthquake excitations. For the most part these have been

performed on relatively small highway overpass bridges, and multi-story buildings. This paper attempts to

tackle the system identification problem for a long-span structure excited by multiple inputs during strong

earthquake events. This problem poses challenges of performing system identification where the vibration

response has a substantial nonlinear component, where the structure has multiple input excitations, and

with measurements from a sensor array with low spatial resolution. These are very practical problems that

demand increased attention from the civil engineering research community.

The development of reduced-order mathematical models for dispersed civil infrastructure components is

essential for structural control applications as well as for global structural health monitoring methodologies

based on vibration signal analysis. While there has been a considerable amount of system identification stud-

ies concerned with building-like structures under ambient, earthquake and wind excitations, as well as stud-

ies of small highway overpass bridges under such excitations, relatively few studies are available concerning

long-span bridges. Although not an exhaustive list, notable studies of ambient vibration response analysis of

long-span bridges include: Abdel-Ghaffar and Housner (1977), Abdel-Ghaffar and Scanlan (1985a, 1985b),

Abdel-Ghaffar et al. (1995), Niazy, (1991), Fujino et al. (2000), Jones and Spartz (1990), Jones et al.

(1992), Brownjohn et al. (1889, 1992), Chang et al. (2001), Cunha et al. (2001), etc.

Typically, ambient vibration studies can be conducted using very long records (sometimes hours long),

which considerably assists averaging aspects of the parameter identification problem in obtaining an accu-
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rate mathematical model of the structural dynamics. In addition, in contrast to the rather short duration

earthquake excitation case, the ambient excitation is generally a relatively stationary process, and hence,

the same structural modes are always likely to be excited to the same degree over the duration of a record-

ing. This too, as well as the relatively low-level excitation typical of ambient monitoring is particularly

advantageous in obtaining a relatively well behaved linear model of long-span bridges.

As mentioned, considerable work has been done on the analysis of buildings, highway overpass struc-

tures and other multi-span bridges subjected to strong ground motions. One of the early studies was by Beck

and Jennings (1980) in which a multi-story building (one of the few instrumented at the time) subjected to

the 1971 San Fernando earthquake was analyzed using linear structural identification approaches. In Werner

et al. (1987) a highway overpass bridge was analyzed on the basis of its response to the 1979 Imperial Valley

earthquake. More recent work includes that of Desroches and Fenves (1997) in which a curved California

highway interchange structure was modeled based on its response to the 1992 Landers and Big Bear earth-

quakes. In that study, primarily linear model identification was conducted, but a few nonlinear elements

were considered. Along similar lines, but using a different identification algorithm, Chaudhary et al. (2000)

performed system identification of a base-isolated multi-span bridge in Japan subjected to the 1995 Kobe

earthquake and several aftershocks. Most recently, Loh (2000) performed some preliminary analysis of a

multi-span bridge in Taiwan subjected to the 1999 Chi-Chi earthquake. This analysis was performed using

several identification techniques.

Even among the available publications of long-span cable-supported (suspension or stayed) bridges,

there is a paucity of studies that treat the dynamic response under strong ground motion of such inherently

nonlinear distributed-parameter systems as multi-input/multi-output dynamic system (Smyth et al. (2000b),

Betti et al. (1993), Niazy, (1991)). These studies considered the Vincent Thomas Bridge (the subject of this

paper), and clearly recognized the importance on the multi-input aspect of the bridge response to earthquake

excitation. The overall lack of studies on earthquake excited long-span bridges is due not only to the added

complexity of the associated analysis, but also to the limited number of adequate sensor measurements with

sufficient spatial resolution to afford a meaningful processing of the data.

The damping characteristics of a long-span bridge are among the essential parameters needed for de-

sign and analysis, but which cannot be obtained from engineering drawings. In the case of the Vincent

Thomas Bridge (VTB), damping estimates were required to establish the level of retrofitting required for

a recent seismic upgrading project. Information from a preliminary ambient analysis of the VTB in the

Abdel-Ghaffar et al. (1995) study (to which the authors contributed) was used to assess planned earthquake

mitigation measures which have recently been completed. It is however important to note that the damping

estimates obtained from ambient (or other low level) excitation tests may not reflect the inherent damping

estimated from critical events such as earthquakes. This is an additional distinguishing aspect of system

identification with strong motion data.
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One additional feature of this study is that in the equivalent-linear modeling of the structural system, the

damping estimates are not constrained to be of the classical mode type. Therefore the approach yields the

optimum general viscous damping representation which is more appropriate for the control as well as the

monitoring aspects of structural control applications.

1.2 Scope

With the above discussion in mind, the authors have developed an efficient identification algorithm for

handling general structural systems which may or may not exhibit nonlinearity in their response. Section 2

gives an overview of the Vincent Thomas Bridge monitoring system. Section 3 presents the formulation of

the identification technique to be used in this study, with a particular emphasis on identifying an equivalent

linear system model based on earthquake excitation and structural response data. In Section 4, the results

of the linear identification and analysis are presented, while in Section 5 a brief overview of nonlinear

identification results is given. Finally, in Section 6 a discussion of the significance as well as limitations of

the results is presented.

2 VINCENT THOMAS BRIDGE AND ITS DYNAMIC MONITORING
SYSTEM

2.1 Vincent Thomas Bridge and Sensor Array

The Vincent Thomas Bridge is located in San Pedro, California, and is a major transportation artery con-

necting Los Angeles with its harbor. It is a cable-suspension bridge, approximately 1850 m long, consisting

of a main span of approximately 457 m, two suspended side spans of 154 m each, and a ten-span approach

of approximately 545m length on either end. The roadway accommodates four lanes of traffic. The bridge

was completed in 1964, and in 1980 was instrumented with twenty-six accelerometers as part of a seismic

upgrading project. Currently, the sensor network is maintained by the California Division of Mines and

Geology (CDMG) through the California Strong Motion Instrumentation Program (CSMIP).

Figure 1 shows the layout of the location of all the 26 sensors mounted on the bridge. A summary of

the sensor numbering system and measurement directions is presented in Table 1. Notice that the eastern

half of the bridge is more densely instrumented. This is because the analog recorder is housed in the eastern

cable anchorage. Sixteen accelerometers are distributed at various locations and in lateral, longitudinal

and vertical directions about the superstructure itself. Note that the sensor at Station 22 produced bad

data and its measurement will be ommitted in the following analysis. Ten accelerometers measure motion

at the substructure footings. Because the accelerometers were placed at locations on the footings of the

substructure, the effects of soil-structure interaction need not be considered in the system identification
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Category of Sensor and Station No. Sensor Location Sensor Direction w.r.t. Bridge

22,15,16,17,18,21 truss top, i.e., deck vertical
2,4,5,6,7 truss top, i.e., deck lateral

12 truss top, i.e., deck longitudinal
3 truss bottom lateral
8 tower lateral

10,11 tower longitudinal
14,19,20 tower base vertical

1,9 tower base lateral
13,23 tower base longitudinal
26 anchorage vertical
24 anchorage lateral
25 anchorage longitudinal

Table 1: Vincent Thomas Bridge sensor locations. (Note that channel 22 contains bad data.)

process. These measurements may be viewed as direct inputs into the structure, because they already include

the effects of the soil-structure interaction. This differs from the often-encountered scenario, where nearby

free-field recordings are considered to be excitation input, and where soil-structure interaction effects must

be considered in the structural identification process.

2.2 Earthquake Response Data Sets

Since its installation, the instrumentation network has been automatically triggered twice during large seis-

mic events in southern California. The first was for the 1987 Whittier-Narrows earthquake (M = 6.1), and

the second was for the 1994 Northridge earthquake (M = 6.7). The proximity of these earthquake epicenters

relative to the Vincent Thomas Bridge is shown in Fig. 2. Despite the greater distance to Northridge, be-

cause of the larger magnitude of that earthquake, the observed peak input and response accelerations ranged

anywhere from 1.5 to 3 times of those recorded during the Whittier-Narrows earthquake.

For both Whittier and Northridge earthquake records, the instrument and baseline-corrected acceleration,

velocity and displacement were processed by CSMIP and adopted in this study. The recorded time lengths

were 80 and 120 seconds, respectively. Accordingly, the fully processed data lengths were 4000 and 6000

points, respectively. During the Northridge earthquake, Station/Channel 22 did not start at the beginning

of the record. Therefore, the measurement from this station was excluded from this study. Typical ground

motion and structural response records from both earthquakes are plotted in Fig. 3. It can be seen that both

the excitation and response are highly non-stationary processes.
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3 FORMULATION OF TIME-DOMAIN IDENTIFICATION APPROACH

The system identification procedure used in this study consists of two basic stages. The first is to identify a

reduced-order linear model, and the second is to treat the unmodeled response not simply as error, but rather

as unmodeled linear dynamics as well as nonlinear dynamics still to be modeled. The first step involves the

identification of an equivalent linear reduced-order model of the structural system. The methodology was

first presented in Masri et al. (1987a,b), and is summarized in the following section.

3.1 Overview of time-domain identification approach

The complex structural system is treated as a reduced-order discrete dynamic system subjected to ground

excitation at discrete locations. The symbol n1 represents the system degrees-of-freedom and n0 the number

of base (or support) excitations. The equation of motion for such a system is given in Eq. (1), and is pre-

multiplied by M−1
11 . The M11, C11 and K11 matrices have the same meaning as the more typical M, C, K

notation of the mass, damping and stiffness matrices.

M−1
11 C11ẋ1(t) + M−1

11 K11x1(t) + M−1
11 M10ẍ0(t) + M−1

11 C10ẋ0(t) + M−1
11 K10x0(t) = −Iẍ0(t) (1)

where
x1(t) = [x11(t), ..., x1n1(t)]

T

ẋ1(t) = [ẋ11(t), ..., ẋ1n1(t)]
T

ẍ1(t) = [ẍ11(t), ..., ẍ1n1(t)]
T

represent the measured response (“active”) displacement, velocity and acceleration, respectively, and

x0(t) = [x01(t), ..., x0n0(t)]
T

ẋ0(t) = [ẋ01(t), ..., ẋ0n0(t)]
T

ẍ0(t) = [ẍ01(t), ..., ẍ0n0(t)]
T

represent the measured ground displacement, velocity and acceleration, respectively. The system matrices

and their shorthand notations and dimensions are as follows:

Matrix product M−1
11 C11 M−1

11 K11 M−1
11 M10 M−1

11 C10 M−1
11 K10

Shorthand notation 2A 3A 4A 5A 6A
Dimension (n1 × n1) (n1 × n1) (n1 × n0) (n1 × n0) (n1 × n0)

Table 2: Shorthand notation for the identified system matrices.

Equation (1), contains n1 number of parallel equations corresponding to each degree-of-freedom and

holds true at any time instance. Applying Eq. (1) to discrete time-steps, t =
[
t1, ..., tN

]
, where N is the
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time step index, yields parallel matrix equations as follows:

M−1
11 C11ẋ1(t1) + M−1

11 K11x1(t1) + M−1
11 M10ẍ0(t1) + M−1

11 C10ẋ0(t1) + M−1
11 K10x0(t1) = −Iẍ1(t1)

...
M−1

11 C11ẋ1(tN ) + M−1
11 K11x1(tN ) + M−1

11 M10ẍ0(tN ) + M−1
11 C10ẋ0(tN ) + M−1

11 K10x0(tN ) = −Iẍ1(tN )
(2)

For system identification problems, one assumes that the components in the mass, damping and stiffness

matrices (i.e., the above jA matrices in Table 2, where j = 2, 3, 4, 5, 6) are the unknowns. Realizing this,

one can then group the terms appearing in Eq. (2) so as to solve the unknown system parameters. In general,

Eq. (2) can be converted into the following generic format:

R̂α̂ = b̂ ⇔




R 0 · · · 0
0 R
...

. . .
0 R







α1

α2
...

αn1


 =




b1
...
bi
...

bn1




(3)

where α̂ contains all the unknown parameters to be identified, R̂ is equivalent to a coefficient matrix assem-

bled from data measurements, and b̂ is the re-organized RHS of Eq. (2).

Equation (3) may be formulated in several ways depending upon the assumptions which are made or by

using a priori knowledge of certain parameters in the system matrices (Masri et al., 1987). Eq. (3) shows the

case when no symmetric condition is assumed for the system matrices (M11, C11 and K11) to be identified.

There is a total of (2n1 + 3n0)× n1 number of unknowns in the jA matrices (j = 2, 3, 4, 5, 6) and they are

imbedded in α̂ which has a dimension of (n1 (2n1 + 3n0) × 1). In Eq. (3),

αi =
[

2 (αi) 3 (αi) 4 (αi) 5 (αi) 6 (αi)
]T

(4)

and j (αi) is the ith row of jA matrix (j = 2, 3, 4, 5, 6). Also, b̂ has a dimension of (n1N × 1), and

bi =
[ −ẍ1i(t1) −ẍ1i(t2) −ẍ1i(t3) · · · −ẍ1i(tN )

]T
, i = 1, ..., n1 (5)

The matrix R has a dimension of N×(2n1+3n0) and is composed of measured data. Note that because

there are n1 identical R’s, the αi’s can then be solved directly from:

Rαi = bi, i = 1, ..., n1 (6)

That is, each row of the jA matrices is identified independently. Note that in general jA will be unsymmetric

even when M11, C11 and K11 are symmetric.

For each i value in Eq. (6), the number of equations, N , is normally much greater than the total number of

unknowns, (2n1 + 3n0). Consequently, the parameters of the matrix clusters shown above are obtained by
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posing the problem as a series of overdetermined equations and then determining the unknown parameters

by least-squares methods, i.e., by obtaining the pseudoinverse of the R matrix. This can be written as

follows:

α̂ = R̂†b̂ or αi = R†bi (7)

where † stands for the pseudoinverse of a matrix.

It should be noted that in cases of force excited structures, rather than base excitation (as is the case with

earthquakes), that an additional constraint of symmetry in the M11, C11 and K11 matrices can be imposed

on the least-squares solution; this was done in Smyth et al. (2000a).

3.2 Identification of nonlinear residual terms

Once the unknown linear system matrix coefficients have been determined they may be inserted into Eq. (3)

to yield an estimated b vector, denoted as best, which simply contains estimates of the accelerations of the

active degrees of freedom. Rather than treating the difference (b − best) as modeling error, one can treat it

as a nonlinear residual, bnl, to be modeled. There are several nonlinear modeling techniques available to us,

however a nonparametric technique was chosen here. Each residual in acceleration was fitted by forming a

set of basis functions from the measured displacements and velocities of the active degrees of freedom and

the accelerations of the base (Smyth, 1998). These basis functions were generated by producing all possible

3rd order power combinations of all of these signals. These were then arranged just as in Eq. (3) (where

only 1st order, i.e., linear model, basis functions were assumed) and a new set of unknown coefficients was

identified.

3.3 Identification of modal frequencies, damping coefficients and mode shapes

The identified matrices M−1
11 C11 and M−1

11 K11 are not convenient for direct use if matrix M11 is not known,

and this happens to be true in most practical applications of base excited structures. However, modal fre-

quencies, modal damping coefficients and mode shapes can be derived from the above identified matrices.

These three quantities give important information on the system’s dynamics and they can be derived from

the following standard eigenvalue problem (for example, Inman 1994):

Az = λz (8)

where

A =
[

0 I
−M−1

11 K11 −M−1
11 C11

]
(9)

Since M−1
11 K11 and M−1

11 C11 are identified by the above, the matrix A is thus identified. It has a

dimension of 2n1 by 2n1. The eigenvalue λk (k = 1, 2, . . . , 2n1) of 2n1 numbers may be complex valued.
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If so, the eigenvector zk (k = 1, 2, . . . , 2n1) of 2n1 numbers, with a dimension of 2n1 each, may be complex

valued.

The complex eigenvalues λk (k = 1, 2, . . . , 2n1) come in complex conjugate pairs. The n1 physical modal

frequencies, ωi, and modal damping coefficients, ζi, are related to λk by:

ωi =
√

Re(λ2i−1)2 + Im(λ2i−1)2 =
√

Re(λ2i)2 + Im(λ2i)2, i = 1, ..., n1 (10)

ζi =
−Re (λ2i−1)√

Re (λ2i−1)
2 + Im (λ2i−1)

2
=

−Re (λ2i)√
Re (λ2i)

2 + Im (λ2i)
2
, i = 1, ..., n1 (11)

where Re(·) means the real part of a complex number, and Im(·) the imaginary part.

The 2n1 dimension complex eigenvectors zk (k = 1, 2, ..., 2n1) of 2n1 numbers also come in complex con-

jugate pairs. They are related to the n1 dimension complex mode shapes ui = ai + bij (i = 1, . . . , n1, j =√−1) in the following manner:

z2i−1 =
[

ui

λ2i−1ui

]
, i = 1, ..., n1

z2i =
[

conj(ui)
λ2iconj(ui)

]
, i = 1, ..., n1

(12)

It can be seen that the first n1 rows of the eigenvectors with odd subscript, i.e., z2i−1, form the n1 dimension

complex mode shapes ui (i = 1, . . . , n1). Thus, it has been shown how the complex modal frequencies,

damping coefficients and complex mode shapes are derived from the identified M−1
11 C11 and M−1

11 K11

matrices. Details are shown in Appendix B.

4 LINEAR IDENTIFICATION RESULTS

For this problem, the continuous structural system of the Vincent Thomas Bridge is analyzed as a reduced-

order discrete system based on the 15 structural response locations and 10 support inputs. The parameter

values of n1 = 15 and n0 = 10 are substituted into the above formulae. Because this represents a reduced-

order model of what is likely to be a more complex system with more degrees-of-freedom and support

motions, the modeling of this system using Eq. (1) will naturally incorporate some error due to these

unavailable measurements. This inherent limitation, due to low spatial resolution of the sensing, affects the

range of conclusions which can be drawn from the identified reduced-order model.
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4.1 Shifted window identification for nonstationary process analysis

It is not surprising that, given the highly nonstationary nature of earthquake ground motions, the mea-

surements of base and structural accelerations were also highly nonstationary for both earthquake events

as shown in Fig. (3). From preliminary analysis, it was also suspected that during the time of strongest

shaking, the response had a significant nonlinear component. This may have been due to several factors in-

cluding geometric nonlinearities caused by large deformations, and/or perhaps “rattling” of expansion joints

in the bridge deck. From visual inspection of acceleration time history data in Fig. (4) from channels 6,

12 and 2 which are all located at or near tower-to-deck connections, one can see periodic impulses. This is

undoubtedly as a result of banging and slipping of the “wind shoe” which provides the deck with vertical

and transverse support at the tower-to-deck connections. In fact there is physical evidence to support this:

only a few weeks before the Northridge earthquake the bridge was painted in the area of the “wind shoes”,

and after the earthquake, clear signs of scraped paint were observed, indicating substantial deck movement

relative to the tower (Abdel-Ghaffar, 2001).

With this in mind, one must be careful with the idea of linearization as well as interpreting the results

obtained from this type of equivalent linearization technique. Identification of the residual, composed of

nonlinear as well as unmodeled linear dynamics, is briefly discussed here, but is not the main focus of this

study (rather it will be the focus of future research). Instead, an attempt is made to seek an equivalent linear

model for the system based on the structural response during the earthquake. The equivalent linear model

can be used to assess the structural integrity after the earthquake.

Because different levels of nonlinearity were suspected to occur during different periods of shaking,

identification could be performed on various time windows of the recorded measurements. The identification

procedure can be performed over relatively short windows and then each window can be shifted by a small

amount until the end of the data set is reached. These types of results can be compiled to track structural

changes during the excitation process. Statistical results from the shifted response segments can be an

indication of changing structural dynamics.

Because the first part of each earthquake contained the strongest motion and was quite nonstationary,

it is expected that the greatest nonlinearity in response would occur during this time. With this in mind,

and because a linearization technique is being employed, some of the shifting window identification results

presented in this study will be from only the second half of the response records. There is no particular

rationale for choosing the suitable window length for the identification, other than to consider the tradeoff

between including enough points to make an overdetermined system of equations, and still being able to

capture any possible time variation. Because of this, a few window lengths were tested, and their results

compared.
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4.2 Identified modal frequencies and damping ratios

It is important to stress that, unlike many methods which yield only modal frequencies and damping es-

timates, in this paper these quantities are actually computed indirectly after the complete reduced order

system matrices are identified. In fact, the identification procedure makes no assumption of classical normal

modes, and thus we get information on the nonproportional damping. Unfortunately, however, because this

is a base-motion input case, and not a force-excited example, it is only possible to identify the cluster of

system matrices premultiplied by the inverse of the mass matrix.

For the reduced order modeling of the Vincent Thomas Bridge, the number of degrees-of-freedom is 15

(corresponding to the number of sensors at active DOF’s). Therefore, 15 modal frequencies and damping

ratios respectively can be identified from each time-history window.

As previously mentioned, the identification procedure is performed over relatively narrow windows. The

window lengths which were used are 1000 and 2000 continuous measurement points (i.e, about 4.2, and 8.4

fundamental periods) for the Whittier earthquake and 1000, 2000 and 3000 points (i.e, about 4.2, 8.4 and

12.6 fundamental periods) for the Northridge earthquake, respectively. The short windows are shifted with

10 points overlap with their previous window in all the cases. The shifting windows start from the very

beginning of the time period under consideration and end when the end of the data-set is reached. As

mentioned earlier, because this is a base excited case, the identification procedure was performed without

invoking any symmetry assumption in matrices M11, C11 and K11.

Variations in identified modal frequencies and modal damping ratios using the shifted window approach

from the second half of the Northridge response record, are plotted in Figures (5a) and (6a) relative to the

window length used. In these figures the variation is shown by giving the mean, maximum and minimum

values obtained for the set of shifted windows. It is not surprising that the dispersion is greater for the shorter

window length. The shorter window also places more importance on high frequency modes, by identifying

slightly higher frequencies for the highest modes. In addition, the second column (b) in each of these figures

shows the same results for identification analysis performed using the entire record length. The mean values

of the identified frequencies are quite similar, except for the fact that higher frequencies are again identified

for the highest modes. Not surprisingly also, because the nonstationary and presumably nonlinear response

portion of the time-history is now included, the distribution range from minimum to maximum is noticeably

larger for both the identified frequencies and damping ratios.

Using the type of mode-number frequency and damping statistics just presented should be done with

great care. This is because the total number of modes which can be determined by this method is in essence

fixed to be the same as the number of active degrees of freedom (n1), and therefore it is quite possible

that for a system which is in reality of a higher order, that the technique under discussion will identify n1

modes which are not the same as the n1 modes in the next time window. In other words, the least-squares
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based approach will identify the n1 order system which yields the dominant motion for that particular

response time interval. This can be considered a limitation or a strength of the method, depending upon

the application. This feature is common to all methods which seek to obtain a 2nd order model (as in Eq.

(1)) with physically meaningful coordinates based on discrete location measurements, with no additional a

priori information on the system dynamics.

Because one cannot draw conclusions from the variation over time of a given mode-number, one is left

with possibly tracking a particular mode by its mode shape from data set to data set (or window to window),

and comparing its frequencies and damping ratios. This will be discussed in the next section.

It is important to note also that negative damping coefficients are identified intermittently during the

entire response process. This might be related to the varying magnitude and severity of the earthquake

excitation process causing the response to exhibit varying levels of nonlinearity. One can see however that

most of the mean values of the damping ratios are non-negative. Because the identification is relatively

unconstrained, and because the equivalent linear modeling is being performed on what is suspected to be

nonlinear response dynamics, there is nothing to prevent the identification of negative damping coefficients.

4.3 Identified complex mode shapes and their physical interpretations

Normally, mode shapes are used as a time-invariant basis for the displacement profile of a linear system. For

a system with n1 degrees-of-freedom, the absolute displacement x (as a function of time t) can be expressed

as:

x (t) =
n1∑
i=1

ci(t)uie

�
−ζiωi−ωi

√
1−ζ2

i j
�
t

(13)

where ci’s are mode shape coefficients, ui’s mode shapes, ζi’s modal damping coefficients and ωi’s modal

frequencies. Note here, that the ui’s are complex mode shapes in general.

In this study, the complex response of a nonlinear system is reduced to an equivalent linear process, and

its complex mode shapes are derived. The derived mode shapes then reflect the underlying time invariant

linear basis for the time window considered. However, care must be exercised with respect to how these

mode shapes are related back to the complete original response. Furthermore, complex, rather than real

mode shapes should be interpreted for a real structure.

In general, the mode shapes as derived in Section 3.3 are complex vectors of dimension n1 for each

mode. For any time window selected, a set of mode shape vectors can be obtained. They represent the

displacement profile at n1 = 15 stations for a total of n1 = 15 modes. Figures (7) and (8) show the n1=15

plots of the magnitude and phase of a representative set of the 15 mode shapes corresponding to a specific

time window. Each plot is composed of n1 = 15 discrete points showing the relative movements at the

15 sensor locations. In this study, all the acceleration measurements have the same units of translational
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movement. For convenience, each mode shape vector is normalized to have a Euclidian norm of one. The

mode-shape phase angle plots in Fig. (8) have a range of [−π, π]. The plots of phase angle shown in Fig. (8)

are important in that they indicate which motions are coupled with one another. This information helps in

understanding the interactions of major bridge components during strong earthquake responses.

To get a better feel for the deformed shape that these complex mode shapes represent, a “snap shot” is

taken to project complex vectors into real vectors. To preserve features of both magnitude and phase angle,

the location of the projected real and imaginary axes should be chosen to minimize the total projection onto

the imaginary axis. In this case a weighted least squares methods was used to obtain the optimal reference

axes. The first and fifteenth modes are plotted for major station locations and shown in Figs. (9) and (10)

respectively. This 3-dimensional representation approximates the mode shapes at points between the sensor

locations by straight lines. It should be noted that in order to construct these figures some assumptions

were made at a few locations where sensor information was not available. For example, because the tower

supports the deck truss vertically through a truss link, it was assumed that there was no vertical deflection

at that deck section. Also, because the side-span vertical Station 22 was not included in the study due to a

data recording problem, its vertical motion is shown based on judgement of the overall mode shape and the

vertical motion of Station 21 at the other side of the roadway.

4.4 Identified results of 3A matrix

The identification of the stiffness matrix K11 enables a direct evaluation of structural integrity of the bridge,

however, only M−1
11 K11, i.e., the 3A matrix, can be obtained from the present identified results. 3-D bar

charts of the samples of symmetrically identified 3A matrices using a 2000 points window for Whittier and

Northridge earthquakes are presented in Figs. (11) and (12), respectively. The height of each bar simply

represents the magnitude of each matrix coefficient, and the view from above (panel (a) of each figure)

clearly shows the positive values, and the view from below (panel (b) of each figure), the negative values.

It can be seen that these 3A matrices are quite unsymmetric. The diagonal terms range in magnitude from

about 2-60 (rad/sec)2, whereas, several off-diagonal terms, particularly in the columns corresponding to

stations 3 and 4, have coefficients with magnitudes up to about 100 (rad/sec)2. To further examine the

variation over time in the system dynamics, histogram plots of the dominant elements of the above identified
3A matrices are shown in Figs. (13) and (14) for Whittier and Northridge earthquakes, respectively. Note

that these histogram plots are all to the same scale. Clearly some terms, for example diagonal number 10

in Fig. (13), are relatively unchanged regardless of which time-window is used for the identification. This

contrasts with others such as 3A(21, 4) which has considerable dispersion, indicating either variability over

the duration of the total identification time-window, or an increased level of uncertainty (for any number of

reasons) in identifying this parameter. The reader will observe that the values of 2-60 (rad/sec)2 for the

M−1
11 K11 diagonal coefficients (which are in ω2 units) correspond with the obtained modal frequencies of
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about 0.2Hz-1.2Hz.

If one assumes the mass distribution does not vary, the histograms reflect variation in the stiffness matrix.

These types of results can be compiled to track structural changes during the excitation process. However,

this indicator of structural change is indirect. It is difficult to quantify structural alteration based only on

changes in the 3A matrix without knowledge of the mass matrix or the nature (bandedness) of the stiffness

matrix.

4.5 Comparison of identified results of the 1987 Whittier and 1994 Northridge earthquakes

The identification results of the structural dynamic parameters from the Whittier and Northridge earthquakes

can be compared. Typically, such a comparison would entail the comparison of identified modal frequencies

and damping coefficients. As previously mentioned, this must be done with some care, because what might

be mode k in one case (i.e., for a selected time window) may not be mode k in another. Having said this,

certain gross conclusions can perhaps be drawn from an overall comparison by mode-number. The obtained

modal frequencies and damping ratios are shown in Fig. (15). Clearly there is an overall drop in modal

frequencies from the Whittier earthquake to the Northridge earthquake. This can also be seen from the

comparison of the histograms of the obtained diagonal coefficients of the 3A matrices. In principle, these

coefficients can be compared with one another as they are directly obtained from the identification procedure

and relate to each DOF. The mean values of the histogram plots of the identified diagonal elements of

the 3A matrices from both earthquakes are shown in Fig. (16). There is a clear trend of reduction in the

magnitude of the diagonal elements in 3A matrices from Whittier to Northridge earthquakes. From this

information one can conclude (under some questionable assumptions on the bandedness and nature of the

mass matrix) that there is an overall reduction of the effective stiffness of the bridge under the Northridge

earthquake compared to its behavior under the Whittier one. On a cautionary note, it is important to recall

that, because these matrix coefficients are obtained from an equivalent linearization procedure, and because

the magnitude of the excitation was larger in the Northridge case, that some of the observed changes in

identified coefficients could be due to the fact that one is in a different nonlinear response range, and not the

effect of an inherent structural change. An additional figure, Fig. (17), showing the mean values of the most

dominant matrix coefficients, also shows a general reduction in magnitude. Again, it is difficult to draw

conclusions about changes in the stiffness matrix from this indirect information.

The modal damping estimates shown in Fig. (15) from each earthquake response include a few negative

values. Clearly these have no physical meaning, but are simply the result of obtaining the optimal equivalent

linear model for a very lightly damped system with probable nonlinear system dynamics. Typical estimates

for long-span bridge modal damping values are on the order of 1% of critical, and as shown here, most of

the damping estimates are in this range. This was shown in a more general sense earlier in Fig. (6), where



Vincent Thomas Bridge ”VTB˙Smyth etal˙reprint” 13 August 2004 16:49 14

the mean values of the damping estimates are positive and on the order of about 1-2%. It should be noted

that depending upon which overall time span was used for the identification, different estimates of damping

were obtained. Figure (15) shows the results from using the last 3000 points of both earthquake response.

This latter part of the records was specifically chosen for comparison purposes with results from a study by

other investigators as discussed below.

5 NONLINEAR IDENTIFICATION RESULTS

Depending upon which time window was used for equivalent linear modeling and subsequent comparison

of fits, the nonlinear residual error for the entire response time-history ranged anywhere from as low as 10

percent to as high as 85 percent, with an average residual of about 50-60 percent. A sample of these fitting

errors is shown in Fig. (18). Notice in Fig. (18) how the acceleration based on the linear model matches the

response reasonably well (approximately 20 percent RMS residual). This is largely attributable to the fact

that the vertical deck modes dominated the response signal for this station, and were relatively easy for the

linear system to model.

Residual response components, which presumably included nonlinear as well as unmodeled linear dy-

namics and measurement noise, remain for each active degree of freedom acceleration measurement. These

were fitted with the nonparametric technique outlined earlier. An example of the performance of this method

is shown in Fig. (19). In this case the fitting was performed on lateral response station 7, which had a 46

percent RMS nonlinear residual to be modeled nonparametrically. The fitting of this nonlinear component

was to within 55 percent RMS error. Therefore the entire signal was modeled to within an accuracy of about

25.3 percent RMS error (shown in the bottom panel of Fig. (19)). This is a respectable result given that the

system is presumably undergoing change during the excitation, and that the identified model is assumed to

be time-invariant throughout the earthquake event.

6 DISCUSSION

Some identification results shown herein confirm that this relatively simple time-domain based identifica-

tion procedure can capture, in a reduced order model, the essence of the response dynamics of this highly

complex structural system. The equivalent linear identification phase yields system information which in-

cludes complex mode shapes; in other words, it makes no assumptions of proportional damping. The modal

frequencies obtained for the two earthquakes are similar, but indicate some system changes. Additional

detailed analysis is needed to compare these identified systems under earthquake loading with previous

identification work performed on the bridge under ambient loading conditions (Abdel-Ghaffar and Housner,

1977, Abdel-Ghaffar et al., 1995).
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6.1 Preliminary data processing

Successful application of the time-domain identification approach adopted in this study strongly relies on

the accuracy of the acceleration, velocity and displacement data set. When the acceleration is the only

measurement available, care must be taken when integrating acceleration data to get the corresponding

velocity and displacement because this approach is known to be sensitive to the noise imbedded in the

original acceleration measurement data. When the acceleration measurement is polluted with noise, the

identified results can contain biases even when the signal-to-noise ratio is high. Therefore, a significant

role is played by the original data quality as well as the preliminary data processing. In this study, the

data used were pre-processed by California Strong Motion Instrumentation Program (CSMIP). They are the

instrument and baseline-corrected acceleration, velocity and displacement.

6.2 Comparison with other identification methodologies

Other published investigations have been conducted on the Vincent Thomas Bridge, although principally

based on ambient measurement data (for example, Niazy (1991), and Housner and Abdel-Ghaffar (1977)).

The frequencies and mode shapes determined in this study are similar to those obtained in the aforemen-

tioned ambient studies, but show some differences, which is expected given that the bridge underwent some

minor structural changes during a retrofit between the time of the ambient testing and the earthquakes con-

sidered here. In Niazy (1991), the Whittier earthquake data-set is also used for identification purposes. In

Luş et al. (1999), the Whittier and Northridge responses of the Vincent Thomas Bridge were also considered

using the Observer Kalman Filter IDentification (OKID) approach (Juang et al., 1993). This time-domain,

first order, discrete linear identification approach is capable of obtaining an arbitrarily high number of modes,

but in states which have no physical meaning. In the Luş et al. study, the authors modeled five vertical deck

location responses based on all ten base inputs. As previously mentioned, the vertical deck motions can

clearly be seen to behave quite linearly, and were hence modelled to a high degree of accuracy with a large

number of modes. In contrast, in this study the responses of all available 15 active DOF’s were modeled

with the fixed size reduced-order model. This is therefore a more challenging identification problem. Table

3 gives some of the results obtained for both earthquake data-sets.

In the table, several modal frequencies have been highlighted with a ‘�’ symbol for comparison with

similar results in the Luş et al. study. These modes exhibited a significant vertical component in the mode

shapes, and this explains why they were also detected by the Luş et al. study which concentrated only on

those modes. The accuracy in agreement with the other study is very good.

The identification method employed in Luş et al. is constrained to give only positive damping estimates,

and does not therefore yield the few negative damping estimates obtained in this study. In addition, the

difficulties associated with accurate estimation of damping from this type of data-set may be seen from the
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Smyth et al. Luş et al. (1999)
Dominant Modes (All directions) Vertical Comp. Modes

Whittier Northridge Whittier Northridge
ω (Hz) ζ ω (Hz) ζ ω (Hz) ζ ω (Hz) ζ
� 0.212 0.012 � 0.225 0.001 0.234 0.015 0.225 0.017
� 0.242 0.017 � 0.240 0.082 0.388 0.382 0.304 0.286
� 0.317 -0.043 � 0.358 -0.047 0.464 0.097 0.459 0.018

0.531 0.102 0.390 0.042 0.576 0.099 0.533 0.040
� 0.570 0.006 � 0.448 -0.007 0.617 0.145 0.600 0.262

0.636 0.042 � 0.478 0.013 0.617 0.768 0.632 0.137
� 0.672 0.001 � 0.522 0.014 0.769 0.297 0.791 0.156

0.734 0.024 � 0.587 -0.001 0.804 0.014 0.811 0.010
� 0.818 0.019 0.625 0.074 0.857 0.116 0.974 0.027
� 0.958 0.029 0.733 0.012 0.947 0.043 1.110 0.006

1.027 -0.019 0.837 0.050 – – – –
� 1.111 0.013 � 0.935 -0.018 – – – –
� 1.159 0.017 1.036 0.016 – – – –

1.391 0.023 1.110 0.017 – – – –
1.554 -0.013 � 1.136 0.014 – – – –

Table 3: Identified modal frequencies and damping ratios obtained by analyzing the last 3000 points of both
the Whittier and Northridge earthquake data sets. Note that the set of modes indentified for a given data set
may not correspond to the identified mode numbers for another data set.

fact that very high damping estimates can also be obtained. In this study no large damping values were

obtained, however, the Luş et al. study identified several modes with very high damping, in one case as high

as 77% of critical.

7 CONCLUSION

The dominant dynamic characteristics of the Vincent Thomas Bridge response to both the 1987 Whittier and

1994 Northridge earthquakes are modeled using a combination of linear and nonlinear system identification

techniques. From the equivalent linear modeling results, some structural changes are detected, although

definitive conclusions are impossible to make without making assumptions. Some of the difficulties of iden-

tifying the structural dynamics of a long-span flexible bridge to nonstationary earthquake multi-input base

excitation are illustrated and discussed. These difficulties include the low spatial resolution of the sensor

array, and presumed time variation of the actual structure, presumed nonlinear response contribution, incom-

plete excitation information, and measurement noise. The range of validity of the identified reduced-order

model for this type of study would be enhanced with increased spatial resolution of sensor instrumentation.

It is shown that the approach of this paper is useful in obtaining the optimum (in a least-squares sense) equiv-

alent linear properties of multi-input/multi-output structures based on a relatively short observed response
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under nonstationary excitation.
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tier and Northridge earthquake. The variation was produced by performing the identification
at numerous shifted windows of length 2000 points over the last 3000 point (top panel) or
the full measurement time-histories (bottom panel) for both earthquakes respectively. . . . . 37

17 Comparision of the identified mean value of the 10 most dominant elements in 3A matrix
between Whittier and Northridge earthquake. The variation was produced by performing the
identification at numerous shifted windows of length 2000 points over the last 3000 points
for both earthquakes. These are the mean values from Fig. (13) and Fig. (14). . . . . . . . . 38

18 Comparison of the equivalent linear time-invariant system time history fit for the vertical
response at Station 15 at the bridge midspan. Note that only the last 1500 points of the 6000
sample record are shown for added resolution. Over the entire earthquake response, the fit
error is approximately 20% RMS at this location. . . . . . . . . . . . . . . . . . . . . . . . 39

19 Representative example of the nonlinear residual fitting. In the top panel, the measured
station 7 (lateral, side-span) acceleration is shown. Below this is the linear, time-invariant
model estimate. The middle panel shows the residual (i.e., the difference of the previous two
signals). In the fourth panel the nonparametrically modeled residual is given, and finally at
the bottom the remaining total error is shown. For ease of comparison, identical scales are
used for all panels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
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Figure 5: Variation in maximum, minimum and mean value from (a) the second half history, and (b) the
entire records, of unsymmetrically identified modal frequencies for the Northridge earthquake with different
window lengths. T1 is the fundamental period of the identified model for the bridge and was found to be
about 4.5 seconds in most of the results.
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Figure 6: Variation in maximum, minimum and mean value from (a) the second half history, and (b) the
entire records, of unsymmetrically identified modal damping ratios for the Northridge earthquake with dif-
ferent window lengths. T1 is the fundamental period of the identified model for the bridge and was found to
be about 4.5 seconds in most of the results.
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Figure 7: Magnitude plot of a normalized complex mode shapes. The example used here is of the identified
mode shapes from the Northridge earthquake with a window covering the last 3000 points in the recorded
history.
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Figure 8: Phase angle plot of the normalized complex mode shapes. The results shown here are from the
identified mode shapes for the Northridge earthquake data with a window covering the last 3000 points in
the recorded history.
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Figure 9: Snap shot of the normalized complex 1st mode. The example used here is from the Northridge
earthquake data with a time window covering the last 3000 points in the recorded history.
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Figure 10: Snap shot of the normalized complex 15th mode. The example used here is from the Northridge
earthquake data with a time window covering the last 3000 points in the recorded history.
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Figure 11: 3-D bar chart (view from above (a) and below (b)) of the identified 3A matrix for the Whittier
earthquake. The coefficient indices in the 3A matrix are related to the original station numbers. The window
length used is over the last 3000 points.
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Figure 12: 3-D bar chart (view from above (a) and below (b)) of the identified 3A matrix for the Northridge
earthquake. The coefficient indices in the 3A matrix are related to the original station numbers. The window
length used is over the last 3000 points.
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Figure 13: Histograms showing variation in the identified 10 most dominant coefficients (in an absolute
sense) in the 3A matrix for the Whittier earthquake. The variation was produced by performing the iden-
tification at numerous shifted windows of length 2000 points over the last 3000 points of measurement
time-histories.
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Figure 14: Histograms showing variation in the same dominant coefficients shown in Fig. (13) from the
3A matrix for the Northridge earthquake. The variation was produced by performing the identification at
numerous shifted windows of length 2000 points over the last 3000 points of measurement time-histories.
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Figure 15: Comparison of modal identified frequencies and damping ratios for the last 3000 points of the
time-histories from the Whittier and Northridge earthquakes. Note that care should be taken in drawing
conclusions from this because the modes are compared by their number and not by their mode shape.
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Figure 16: Comparision of the identified mean value of diagonal elements in 3A matrix between Whittier
and Northridge earthquake. The variation was produced by performing the identification at numerous shifted
windows of length 2000 points over the last 3000 point (top panel) or the full measurement time-histories
(bottom panel) for both earthquakes respectively.
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Figure 17: Comparision of the identified mean value of the 10 most dominant elements in 3A matrix be-
tween Whittier and Northridge earthquake. The variation was produced by performing the identification at
numerous shifted windows of length 2000 points over the last 3000 points for both earthquakes. These are
the mean values from Fig. (13) and Fig. (14).
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Figure 18: Comparison of the equivalent linear time-invariant system time history fit for the vertical response
at Station 15 at the bridge midspan. Note that only the last 1500 points of the 6000 sample record are shown
for added resolution. Over the entire earthquake response, the fit error is approximately 20% RMS at this
location.
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Figure 19: Representative example of the nonlinear residual fitting. In the top panel, the measured station
7 (lateral, side-span) acceleration is shown. Below this is the linear, time-invariant model estimate. The
middle panel shows the residual (i.e., the difference of the previous two signals). In the fourth panel the
nonparametrically modeled residual is given, and finally at the bottom the remaining total error is shown.
For ease of comparison, identical scales are used for all panels.


