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SUMMARY

The use of heterogeneous, non-collocated measurements for non-linear structural system identification

is explored herein. In particular, this paper considers the example of sensor heterogeneity arising from

the fact that both acceleration and displacement are measured at various locations of the structural

system. The availability of non-collocated data might often arise in the identification of systems where

the displacement data may be provided through Global Positioning Systems (GPS). The well known

Extended Kalman Filter (EKF) is often used to deal with nonlinear system identification. However,

as suggested in [1], the EKF is not effective in the case of highly nonlinear problems. Instead, two

techniques are examined herein, the Unscented Kalman Filter method (UKF), proposed by Julier and

Uhlman, and the Particle Filter method, also known as Sequential Monte Carlo method (SMC). The

two methods are compared and their efficiency is evaluated through the example of a three degree of

freedom system, involving a Bouc Wen hysteretic component, where the availability of displacement

and acceleration measurements for different DOFs is assumed. Copyright c© 2002 John Wiley & Sons,

Ltd.
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2 ELENI N. CHATZI AND ANDREW W. SMYTH

1. INTRODUCTION

In the past two decades there has been great interest in the efficient simulation and
identification of nonlinear structural system behavior. The availability of acceleration and often
also displacement response measurements is essential for the effective monitoring of structural
response and the determination of the parameters governing it. Displacement and/or strain
information in particular is of great importance when it comes to permanent deformations.

The availability of acceleration data is usually ensured since this is what is commonly
measured. However, most nonlinear models are functions of displacement and velocity and
hence the convenience of acquiring access to those signals becomes evident. In practice,
velocities and displacements can be acquired by integrating the accelerations although the
latter technique presents some drawbacks. The recent advances in technology have provided us
with new methods of obtaining accurate position information, through Global Position System
(GPS) receivers for instance. In this paper the potential of exploiting combined displacement
and acceleration information for different degrees of freedom of a structure (non-collocated,
heterogeneous measurements) is explored. Also, the influence of displacement data availability
is investigated in section 5.3.

The nonlinearity of the problem (both in the dynamics and in the measurement equations
as will be shown) requires the use of sophisticated computational tools. Many techniques
have been proposed for nonlinear applications in Civil Engineering, including the Least
Squares Estimation (LSE) [1], [2], the extended Kalman Filter (EKF) [3], [4], [5], the
Unscented Kalman Filter (UKF) [6], [7] and the Sequential Monte Carlo Methods (Particle
Filters) [8], [9], [10], [11]. The adaptive least squares estimation schemes depend on measured
data from the structural system response. Since velocity and displacement are not often readily
available, for their implementation these signals have to be obtained by integration and/or
differentiation schemes. As mentioned above, this poses difficulties associated with the noise
component in the signals.

The EKF has been the standard Bayesian state-estimation algorithm for nonlinear systems
for the last 30 years and has been applied over a number of civil engineering applications such
as structural damage identification [12], parameter identification of inelastic structures [13]
and so on. Despite its wide use, the EKF is only reliable for systems that are almost linear
on the time scale of the updating intervals. The main concept of the EKF is the propagation
of a Gaussian Random variable (GRV) which approximates the state through the first order
linearization of the state transition and observation matrices of the nonlinear system, through
Taylor series expansion. Therefore, the degree of accuracy of the EKF relies on the validity of
the linear approximation and is not suitable for highly non-Gaussian conditional probability
density functions (PDFs) due to the fact that it only updates the first two moments.
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NONLINEAR SYSTEM ID WITH HETEROGENEOUS SENSING 3

The UKF, on the other hand does not require the calculation of Jacobians (in order to
linearize the state equations). Instead, the state is again approximated by a GRV which is
now represented by a set of carefully chosen points. These sample points completely capture
the true mean and covariance of the GRV and when propagated through the actual nonlinear
system they capture the posterior mean and covariance accurately to the second order for any
nonlinearity (third order for Gaussian inputs) [7]. The UKF appears to be superior to the EKF
especially for higher order nonlinearities as are often encountered in civil engineering problems.
Mariani and Ghisi have demonstrated this for the case of softening single degree-of-freedom
systems [14] and Wu and Smyth show that the UKF produces better state estimation and
parameter identification than the EKF and is also more robust to measurement noise levels
for higher degree of freedom systems [15].

The Sequential Monte Carlo Methods (particle filters) can deal with nonlinear systems with
non Gaussian posterior probability of the state, where it is often desirable to propagate the
conditional PDF itself. The concept of the method is that the approximation of the posterior
probability of the state is done through the generation of a large number of samples (weighted
particles), using Monte Carlo Methods. Particle Filters are essentially an extension to point-
mass filters with the difference that the particles are no longer uniformly distributed over the
state but instead concentrate in regions of high probability. The basic drawback is the fact
that depending on the problem a large number of samples may be required thus making the
PF analysis computationally expensive.

In this paper we will apply both the UKF and the Particle Filter methods for the case
of a three degree of freedom structural identification example, which includes a Bouc Wen
hysteretic element which leads to increased nonlinearity. In the next sections a brief review of
each method is presented in the context of nonlinear state space equations.

2. THE GENERAL PROBLEM AND THE OPTIMAL BAYESIAN SOLUTION

Consider the general dynamical system described by the following nonlinear continuous state
space (process) equation

ẋ = f(x(t)) + v(t) (1)

and the nonlinear observation equation at time t = k∆t

yk = h(xk) + ηk (2)
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4 ELENI N. CHATZI AND ANDREW W. SMYTH

where xk is the state variable vector at t = k∆t, v(t) is the zero mean process noise vector
with covariance matrix Q(t). yk is the zero mean observation vector at t = k∆t and ηk

is the observation noise vector with corresponding covariance matrix Rk. In discrete time,
equation (1) can be rewritten as follows so that we obtain the following discrete nonlinear
state space equation:

xk+1 = F (xk) + vk (3)

yk = h(xk) + ηk (4)

where vk is the process noise vector with covariance matrix Qk, and function F is obtained
from equation (1) via integration:

F (xk) = xk +
∫ (k+1)∆t

k∆t

f(x(t))dt (5)

From a Bayesian perspective the problem of determining filtered estimates of xk based on the
sequence of all available measurements up to time k, y1:k is to recursively quantify the efficiency
of the estimate, taking different values. For that purpose, the construction of a posterior
PDF is required p(xk|y1:k). Assuming the prior distribution p(x0) is known and that the
required PDF p(xk−1|y1:k−1) at time k−1 is available, the prior probability p(xk|y1:k−1) can be
obtained sequentially through prediction (Chapman-Kolmogorov Equation for the predictive
distribution):

p(xk|y1:k−1) =
∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1 (6)

The probabilistic model of the state evolution p(xk|xk−1), also referred to as transitional
density, is defined by the process equation (3) (i.e., it is fully defined by F (xk) and the
process noise distribution p(vk)). Consequently, the prior (or prediction) is updated using
the measurement yk at time k, as follows (Bayes Theorem):

p(xk|y1:k) = p(xk|yk, y1:k−1) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
(7)

where the normalizing constant p(yk|y1:k−1) depends on the likelihood function p(yk|xk)
defined by the observation equation (4),(i.e., it is fully defined by h(xk) and the observation
noise distribution p(ηk)).

The recurrence relations (6), (7) form the basis of the optimal Bayesian solution. Once the
posterior PDF is known the optimal estimate can be computed using different criteria, one of
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NONLINEAR SYSTEM ID WITH HETEROGENEOUS SENSING 5

which is minimum mean square error (MMSE) estimate which is the conditional mean of xk:

E{xk|y1:k} =
∫
xk · p(xk|y1:k)dxk (8)

or otherwise the maximum a posteriori (MAP) estimate can be used which is the maximum
of p(xk|y1:k).

However, since the Bayesian solution is hard to compute analytically we have to resort to
approximations or suboptimal Bayesian algorithms such as the ones described below.

3. THE UNSCENTED KALMAN FILTER
The UKF approximates the posterior density p(xk|y1:k) by a Gaussian density, which is
represented by a set of deterministically chosen points. The UKF relates to the Bayesian
approach equations (6), (7) presented above through the following recursive relationships:

p(xk−1|y1:k−1) = N(xk−1; x̂k−1|k−1, Pk−1|k−1)

p(xk|y1:k−1) = N(xk; x̂k|k−1, Pk|k−1)

p(xk|y1:k) = N(xk; x̂k|k, Pk|k)

(9)

where N(x;m,P ) is a Gaussian density with argument x, mean m and covariance P .

More specifically, given the state vector at step k − 1 and assuming that this has a mean
value of x̂k−1|k−1 and covariance pk−1|k−1, we can calculate the statistics of xk by using
the Unscented Transformation, or in other words by computing the sigma points χi

k with
corresponding weights Wi. For further details, one can refer to [15] and [16]. These sigma
points are propagated through the nonlinear function F (xk):

χi
k|k−1 = F (χi

k−1), i = 0, .., 2L (10)

where L is the dimension of the state vector x.

The set of the sample points χi
k|k−1 represents the predicted density p(xk|y1:k−1). Then the

mean and covariance of the next state are approximated using a weighted sample mean and
covariance of the posterior sigma points and the time update step is continued as follows:

x̂k|k−1 =
2L∑
i=0

W
(m)
i χi

k|k−1 (11)
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6 ELENI N. CHATZI AND ANDREW W. SMYTH

Pk|k−1 =
2L∑
i=0

W
(c)
i [χi

k|k−1 − x̂k|k−1][χi
k|k−1 − x̂k|k−1]T +Qk−1 (12)

The predicted measurement is then equal to:

ŷk|k−1 =
2L∑
i=0

W
(m)
i h(χi

k|k−1) (13)

Then the measurement update equations are as follows:

x̂k|k = x̂k|k−1 +Kk(yk − ŷk|k−1) (14)

Pk|k = Pk|k−1 −KkP
Y Y
k KT

k (15)

where

Kk = PXY
k (PY Y

k −Rk)−1 (16)

PY Y
k =

2L∑
i=0

W
(c)
i [h(χi

k|k−1)− ŷk|k−1][h(χi
k|k−1)− ŷk|k−1]T +Rk (17)

PXY
k =

2L∑
i=0

W
(c)
i [χi

k|k−1 − x̂k|k−1][h(χi
k|k−1)− ŷk|k−1]T (18)

where Kk is the Kalman gain matrix at step k.

4. THE PARTICLE FILTER

In this section a general overview of the Particle Filtering techniques will be provided. The
key idea of these methods is to represent the required posterior probability density function
(PDF) by a set of random samples with associated weights and to compute estimates based on
these. As the number of samples increases this Monte Carlo approach becomes an equivalent
representation of the function description of the PDF and the solution approaches the optimal
Bayesian estimate.

Particle Filters approximate the posterior PDF p(xk|y1:k) by a set of support points
xi

k, i = 1, ..., N with associated weights wi
k. The importance weights are decided using

importance sampling [17], [18]. In essence the standard Particle Filter method is a modification
of the Sequential Importance Sampling method along with a Re-sampling step. Importance
sampling is a general technique for estimating the properties of a particular distribution, while
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NONLINEAR SYSTEM ID WITH HETEROGENEOUS SENSING 7

only having samples generated from a different distribution rather than the distribution of
interest [19], [20]. Suppose we can generate samples from a density q(x) which is similar to
p(x), meaning that:

p(x) > 0⇒ q(x) > 0 ∀x (19)

Then any integral of the form I =
∫
p(x)dx can be written as I =

∫ p(x)
q(x)w(x)dx, provided that

p(x)/q(x) is upper bounded. Then a Monte Carlo estimate is computed drawing N independent
samples from q(x) and forming the weighted sum:

IN =
1
N

N∑
i=1

wi
kδ(xk − xi

k) where wi
k =

p(xi)
q(xi)

(20)

where δ(x) is the Dirac delta measure. This means that the probability density function at
time k can be approximated as follows:

p(xk|y1:k) =
N∑

i=1

wi
kδ(xk − xi

k) (21)

where

wi
k ∝

p(xi
k|y1:k)

q(xi
k|y1:k)

(22)

where xi
k are the N samples drawn at time step k from the importance density function

q(xi
k|y1:k) which will be defined later. The weights are normalized so that their sum is equal to

unity. Using the state space assumptions (1st order Markov / observational independence given
state), the importance weights can be estimated recursively by [proof in De Freitas (2000)]:

wi
k ∝ wi

k−1

p(yk|xi
k)p(xi

k|xi
k−1)

q(xi
k|xi

k−1, yk)
(23)

where p(xi
k|xi

k−1) is the transitional density, defined by the process equation (3) and p(yk|xk)
is the likelihood function defined by the observation equation (4).

A common problem that is connected to the implementation of Particle Filters is that of
degeneracy, meaning that after some time steps significant weight is concentrated on only one
particle, thus considerable computational effort is spent on updating particles with negligible
contribution to the approximation of p(xk|y1:k). A measure of degeneracy is the following
estimate of the effective sample size:
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8 ELENI N. CHATZI AND ANDREW W. SMYTH

Neff =
1∑Ns

i−1 (wi
k)2

(24)

Re-sampling is a technique aiming at the elimination of degeneracy. It discards those
particles with negligible weights and enhances the ones with larger weights (usually duplicates
large weight samples). Re-sampling takes place when Neff falls below some user defined
threshold NT . Re-sampling is performed by the generation of a new set xi∗

k
N

i=1 which occurs by
replacement from the original set [21], so that Pr(xi∗

k = xj
k) = wj

k. The weights are in this way
reset to wi

k = 1/N and therefore become uniform. This is schematically shown in Figure 1.

Figure 1. The process of Re-sampling: the random variable ui uniformly distributed in [0,1], maps into

index j, thus the corresponding particle xj
k is likely to be selected due to its considerable weight wj

k

The use of the Re-sampling technique however may lead to other problems. As the high
weight particles are selected multiple times, diversity amongst particles is not maintained.
This phenomenon known as sample impoverishment [10] (or particle depletion), is most
likely to occur in the case of small process noise. Known techniques for tackling the sample
impoverishment problem include the use of crossover operators from genetic algorithms are
adopted to tackle the finite particle problem by re-defining or re-supplying impoverished
particles during filter iterations [22], the use of SVR based re-weighting schemes [23], or the
application of the Expectation Maximization algorithm which is further described in section 4.1
of this paper.

A second issue in the implementation of Particle Filters is the selection of the importance
density. It has been proved that the optimal importance density function that minimizes the

Copyright c© 2002 John Wiley & Sons, Ltd. J. Struct. Control 2002; 00:1–6
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NONLINEAR SYSTEM ID WITH HETEROGENEOUS SENSING 9

variance of the true weights is given by:

q(xk|xi
k−1, y1:k)opt = p(xk|xi

k−1, yk) =
p(yk|xk, x

i
k−1)p(xk|xi

k−1)
p(yk|xi

k−1)
(25)

However, sampling from p(xk|xi
k−1, yk) might not be straightforward, leading to the use of the

transitional prior as the importance density function:

q(xk|xi
k−1, y1:k) = p(xk|xi

k−1) (26)

which from equation (23) yields:

wi
k = wi

k−1p(yk|xi
k) (27)

This means that at time step k the samples xi
k are drawn from the transitional density, which

is actually totally defined by the process equation (3). Also, the selection of the importance
weights is essentially dependent on the likelihood of the error between the estimate and
the actual measurement as this is defined by equation (4). Alternatively, a Likelihood based
importance density function can be used [10], or even a suboptimal deterministic algorithm [21].

Particle Filters present the advantage that as the number of particles approaches infinity,
the state estimation converges to its expected value and also parallel computations are possible
for PF algorithms. On the other hand an increased number of particles unavoidably means a
significant computational cost which can be a major disadvantage. It should be noted however
that the UKF also provides the potential for parallel computing and is in itself a considerably
faster tool than the PF technique.

4.1. Particle Filtering Methods Used

In the example presented next, two different particle filter techniques were utilized, namely
the Generic PF (or Bootstrap Filter of Condensation) and the Sigma Point Bayes Filter. The
Generic Particle Filter described earlier can be summarized by the following steps which are
graphically presented in Figure 2.
a) Draw samples from the importance density IS (usually the transitional prior) -Predict.
b) Evaluate the importance weights based on the likelihood function -Measure.
c) Re-sample if the effective number of particles is below some threshold and normalize weights
-Re-sample.
d) Approximate the posterior PDF through the set of weighted particles.

Copyright c© 2002 John Wiley & Sons, Ltd. J. Struct. Control 2002; 00:1–6
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10 ELENI N. CHATZI AND ANDREW W. SMYTH

 

Evaluate importance 
weights using likelihood 
function: 

( )|i iw y xk k kp∝  

Representation of ( )1:|k kp x y  

( )1 1: 1Discrete Monte Carlo Representation of  |k kp x y− −  

Set of weighted particles  
{ }ˆ ,i i

k kx w at time 1k −  

Draw particles from Importance 
Density, ( )1  |k kp x x − : 

( )1ˆ ˆi i
k k kx F x υ−= +  

i
kw  

ˆi
kx  unweighed particles ( )|y xk kp  

Resample if below effN  

 

Predict 

Measure 

Resample 

a 

b 

c 

d 

Figure 2. Generic Particle Filter Algorithm Outline:a) Predict, b) Measure, c)Re-sample, d)
Approximate the posterior pdf

The second PF method applied in this paper is the Sigma Point Bayes Filter or Gaussian
Mixture Sigma-Point Particle Filter (GMSPPF), which is an extension of the original
“Unscented Particle Filter” of Van der Merwe, De Freitas and Doucet. The GMSPPF combines
an importance sampling (IS) based measurement update step with a Sigma Point Kalman
Filter (Square Root Unscented KF - SRUKF or Square Root Central Difference KF - SRCDKF)
for the time update and importance density generation. More explicitly, the time update step
involves the approximation of the posterior density of step k − 1 by a G-component Gaussian
Mixture Model (GMM) of the following form:

Copyright c© 2002 John Wiley & Sons, Ltd. J. Struct. Control 2002; 00:1–6
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NONLINEAR SYSTEM ID WITH HETEROGENEOUS SENSING 11

pG(x) =
G∑

g=1

α(g)N(x;m(g), P (g)) (28)

where G is the number of mixing components, α(g) are the mixing weights and N(x;m,P ) is
a normal distribution with mean vector m and positive definite covariance matrix P . Similar
GMM models are used for the modeling of the process and observation densities. Next, for
each one of the components of the GMM a Sigma Point Kalman Filter (SPKF) time update
step takes place followed by a measurement update step for each SPKF, using equation (4)
and the current observation. Then, the predictive state density pG(xk|y1:k−1) and the posterior
state density pG(xk|y1:k) are approximated as GMMs. The posterior state density will be used
as the proposal distribution for the measurement update step.

The measurement update step initiates with by drawing N samples from the aforementioned
proposal distribution. The corresponding weights are calculated and normalized as described
in detail in [19]. A weighted Expectation Maximization (EM) algorithm is then used in order to
fit the G-component GMM to the set of N weighted particles that represent the approximate
posterior distribution at time k, i.e. pG(xk|y1:k). The EM step replaces the standard Re-
sampling technique used in the Generic Particle Filter, thus mitigating the sample depletion
problem. The Expectation Maximization algorithm recovers a maximum likelihood GMM fit
to the set of weighted samples, leading to both the smoothing of the posterior set (and the
avoidance of the sample impoverishment problem) and the use of a reduced number of mixing
components in the posterior, leading to a lower computational cost. The pseudo code for the
GMSPPF can be found in [19].
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12 ELENI N. CHATZI AND ANDREW W. SMYTH

5. APPLICATION: DUAL STATE AND PARAMETER ESTIMATION FOR A 3 - MASS
DAMPED SYSTEM

The model utilized in the particular example is presented in figure 3.

Figure 3. Model of the 3-DOF system example. Note that the first degree of freedom is associated
with a non- linear hysteretic component

The objective is to determine the “clean” displacement values along with the parameters of
the system given displacement measurements (GPS) for m1 and accelerometer measurements
for m2 and m3. Also, the first DOF is assumed to have a degrading hysteretic behavior
described by Bouc-Wen’s formula. The state space equations governing the system can be
formulated as follows:

∼x =

 x1

x2

x3

→
 m1 0 0

0 m2 0
0 0 m3


 ẍ1

ẍ2

ẍ3

+

 c1 + c2 −c2 0
−c2 c2 + c3 −c3

0 −c3 c3


 ẋ1

ẋ2

ẋ3

+

+

 k1 k2 −k2 0
0 −k2 k2 + k3 −k3

0 0 −k3 k3



r1

x1

x2

x3

 =

 F1 (t)
F2 (t)
F3 (t)


(29)

where r1(t) is the Bouc - Wen hysteretic component with:

ṙ1 (t) = ẋ1 − β |ẋ1| |r1|n−1
r − γ (ẋ1) |r1|n (30)

β, γ, n are the Bouc-Wen hysteretic parameters which will also be identified.
Combining the equations of motion (29) into the classic state space formulation (where

x1, ẍ2, ẍ3 are the measured quantities) and assuming that the state vector is augmented
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to include the system parameters (ki, ci, β, γ, n) as variables we can obtain the following
formulation:



ż1

ż2

ż3

ż4

ż5

ż6

ż7

ż8

ż9

ż10

ż11

ż12

ż13

ż14

ż15

ż16



=



ẋ1

ẋ2

ẋ3

ṙ1

ẍ1

ẍ2

ẍ3

k̇1

k̇2

k̇3

ċ1

ċ2

ċ3

β̇

γ̇

ṅ



=



z5

z6

z7

(z5 − z14 |z5| |z4|z16−1
z4+

−z15z5 |z4|z16)
(−z8 · z4 − z9 · z1 + z9 · z2+
−(z11 + z12) · z5 + z12 · z6)/m1

0
0
0
0
0
0
0
0
0
0
0



+



0
0
0
0

υ1 + F1(t)
m1

ẍm2 + υ2

ẍm3 + υ3

0
0
0
0
0
0
0
0
0



(31)

y =

 xm1

ẍm2

ẍm3

 =

 1 0 0 0 0 0
k2/m2

−k2+k3
m2

k3/m2
c2/m2

− c2+c3
m2

c3/m2

0 k3/m3
−k3/m3

0 c3/m3
−c3/m3





x1

x2

x3

ẋ1

ẋ2

ẋ3


+

 η1

η2

η3

+

 0
F2 (t)/m2
F3 (t)/m3


(32)

Equations (31), (32) can be compactly written in matrix form as:

ż = A (z) + ẍm + υ + Fa

y = H (z) + η + Fd

(33)
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14 ELENI N. CHATZI AND ANDREW W. SMYTH

where,

A,H are non-linear functions of the state variables.
z is the state variable vector:
z = [ x1 x2 x3 r1 ẋ1 ẋ2 ẋ3 k1 k2 k3 c1 c2 c3 β γ n ]T .
y is the observation vector.
ẍm are the acceleration measurements.
υ is the process noise vector.
η is the observation noise vector.
Fa, Fd are the excitation vectors corresponding to the process and observation equations
respectively.

The system equation is nonlinear not only due to the presence of the bilinear terms involving
state components, such as z8 ·z4 etc, but also due to the use of one of the equilibrium equations
in the process equation for ẍ1 and (30) for ṙ1 which makes the particular problem highly non-
linear. The transformation into discrete time now becomes (where acceleration is measured in
intervals of T):



z1(k+1)

z2(k+1)

z3(k+1)

z4(k+1)

z5(k+1)

z6(k+1)

z7(k+1)

z8(k+1)

...
z16(k+1)



=



z1(k) + Tz5(k)

z2(k) + Tz6(k)

z3(k) + Tz7(k)

z4(k) + T

{
z5(k) − z14(k)

∣∣z5(k)

∣∣ ∣∣z4(k)

∣∣z16(k)−1

+z4(k) − z15(k)z5(k)

∣∣z4(k)

∣∣z16(k)

}

z5(k) + T
m1

{
−z8(k)z4(k) − z9(k)

(
z1(k) − z2(k)

)
−
(
z11(k) + z12(k)

)
z5(k) + z12z6(k)

}
z6(k)

z7(k)

z8(k)

...
z16(k)



+



0
0
0
0

Tυ1 + T
F1(k)

m1

T ẍm2(k) + Tυ2

T ẍm3(k) + Tυ3

0
...
0


(34)

Copyright c© 2002 John Wiley & Sons, Ltd. J. Struct. Control 2002; 00:1–6

Prepared using stcauth.cls



NONLINEAR SYSTEM ID WITH HETEROGENEOUS SENSING 15

 xm1(k)

ẍm2(k)

ẍm3(k)

 =


z1(k){

z9(k)
/
m2

z1(k) −
z9(k)+z10(k)

m2
z2(k) + z10(k)

/
m2

z3(k)+
z12(k)

/
m2

z5(k) −
z12(k)+z13(k)

m2
z6(k) + z13(k)

/
m2

z7(k)

}
{

z10(k)
/
m3
· z2 (k)− z10(k)

/
m3
· z3(k)+

+z13(k)
/
m3

z6 (k)− z13(k)
/
m3

z7(k)

}
+

+

 η1

η2

η3

+

 0
F2(k)

/
m2

F3(k)
/
m3


(35)

Note that the observation equations could be suitably modified in order to account for the
availability of different types of sensor measurements such as strain or tilt data. The above
relationships are essentially in the form presented in equations (3), (4). Thus, we can implement
the previously described methods to identify the states and the parameters of the system.

5.1. Generate Measured Data

For the data simulation we chose m1 = m2 = m3 = 1, c1 = c2 = c3 = 0.25, k1 = k2 =
k3 = 9, β = 2, γ = 1, n = 2. The sampling frequency of the Northridge (1994) earthquake
acceleration data that was used as ground excitation (ϋg), is 100Hz (T=0.01 sec). The
Northridge earthquake signal was filtered with a low frequency cutoff of 0.13 Hz and a high
frequency cutoff of 30 Hz. (PEER Strong motion database: http://peer.berkeley.edu/smcat).
A duration of 20 seconds of the earthquake record was adopted in this example. The system
responses of the displacement velocity and acceleration were obtained by solving the differential
equation (29), using fourth order Runge Kutta Integration, after bringing the equations into
state space form:

ẏ1

ẏ2

ẏ3

ẏ4

ẏ5

ẏ6

ẏ7


=



ẋ1

ẋ2

ẋ3

ṙ1

ẍ1

ẍ2

ẍ3


=



y5

y6

y7

y5 − 2 |y5| |y4|2−1
y4 − 1 · y5 |y4|2

−9y4 − 9y1 + 9y2 − 0.5y5 + 0.25y6−ϋg

9y1 − 18y2 + 9y3 + 0.25y5 − 0.5y6 + 0.25y7−ϋg

9y2 − 9y3 + 0.25y6 − 0.25y7−ϋg


(36)
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5.2. Simulation Results

The Unscented Kalman Filtered UKF with 33 Sigma Points (2*L+1; where L=16 is the
dimension of the state vector), the Generic Particle Filter (PF) and the Sigma Point Bayes
Filter (GMSPPF) were used in order to identify the parameters describing the system and the
unmeasured states. The numerical analysis was done using Matlab and the ReBEL† toolkit.
For the case of the UKF, the initial values assumed for the state variables were the following:

x0
1

x0
2

x0
3

r0
1

ẋ0
1

ẋ0
2

ẋ0
3


=



0
0
0
0
0
0
0


,



k0
1

k0
2

k0
3

c01

c02

c03


=



6
6
6

0.5
0.5
0.5


,

 β0

γ0

n0

 =

 3
2
1

 (37)

For the case of the particle filter analysis an initial interval needs to be defined in order to
initialize the particles corresponding to the constant parameters. The interval assumed for
each constant state component was:

{
k0

1, k
0
2, k

0
3

}
∈ [4 12],

{
c01, c

0
2, c

0
3

}
∈ [0.01 1],

{
a0, β0, n0

}
∈ [1 5] (38)

A study on the influence of this initial interval on the performance of the Particle Filter
methods is presented later on in this section.

A random number generator was used to draw samples from the above interval. Zero mean
white Gaussian noise was used for both the observation and the process noise. The process
noise of 1% RMS noise-to-signal ratio was added only in the case of the state variables z5, z6, z7
where data from acceleration measurements are utilized. The observation noise level was of
4 − 7% root mean square (RMS) noise to signal ratio. Based on the intervals defined for
the initial conditions of the constant parameters the use of 5000 particles seemed to provide
us with efficient results. A 5-Component Gaussian Mixture Model (GMM) was used for the
approximation of the state posterior and a Square Root Central Difference Kalman Filter
(SRCDKF) was used as the Sigma Point Kalman Filter required for the time update step, in
the GMSPPF case.

In Figures 4 - 7, the results are plotted for the Unscented Kalman Filter (UKF) and the

†ReBel is a toolkit for Sequential Bayesian inference and can be freely downloaded from
http://cslu.ece.ogi.edu/misp/rebel
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Particle Filter methods (Generic Particle Filter - PF and Sigma-Point Bayes Filter - GMSPPF).
The duration for the Unscented Kalman Filter identification was 3.203 sec, for the PF

identification with 5000 samples it was approximately 3200 sec, while for the GMSPPF
identification with 5000 samples the elapsed time was 770 sec. The reduced duration of the
GMSPPF versus the PF algorithm is due to the use of the Expectation Maximization algorithm
(EM) and the use of a reduced number of mixing components in the posterior (5 component
GMM).
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Figure 4. State Estimation Results for the UKF (dashed), standard PF (dash-dot) and GMSPPF
(dotted), for the states corresponding to the displacements x1 : x3 and the hysteretic parameter r1.
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Figure 5. State Estimation Results for the UKF (dashed), standard PF (dash-dot) and GMSPPF
(dotted), for the states corresponding to the velocities v1 : v3 and the stiffness parameter k1.
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Figure 6. State Estimation Results for the UKF (dashed), standard PF (dash-dot) and GMSPPF
(dotted), for the states corresponding to the stiffness parameters k2, k3 and the damping parameters

c1, c2.
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Figure 7. State Estimation Results for the UKF (dashed), standard PF (dash-dot) and GMSPPF
(dotted), for the states corresponding to the damping parameter c2 and the Bouc Wen Model

parameters. α, β, n.
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First of all we note the efficiency of the Unscented Kalman Filter in the estimation of the
time invariant model parameters which comprise the last nine components of the augmented
state vector. As Corigliano and Marani noted in [4] even though the state of the system is
always followed with a high level of accuracy, the EKF can lead to unsatisfactory parameter
estimations when applied to highly nonlinear behavior. This is clearly not the case for
the Unscented Filter. The UKF method and the GMSPPF method provide us with very
satisfactory results. Of course, as far as the computational cost is concerned the UKF method
is considerably faster. On the other hand the Generic Particle Filter method, seems to be
performing rather poorly and requires significantly larger computational time. The reason
why the standard PF performs so badly on this problem is due first of all to the nature
of the likelihood function which might lead to an initial assignment of a particularly small
weight to a potentially “promising” particle. Given that the weight update in each step is
dependent on the weight of the previous step, the latter prevents such promising particles from
substantially influencing the weighted estimate and also leads to the promotion of other less
efficient particles, leading to sample depletion through the Re-sampling process. In addition,
the performance of the PF method is greatly influenced by the chosen initial condition interval.
The problems of initial interval selection and sample depletion are of utmost importance in
this case due to the existence of the constant states. Since, the time update in the standard
Particle Filter Algorithm takes place through the process equations (34) it is obvious that time
invariant state components (z8; z16) in each particle will remain unaltered unless at some point
they are replaced by those of another particle during the Re-sampling process. The influence
of the selected initial condition interval and the addition of process noise for the time invariant
model parameters in order to tackle the sample depletion problem will be examined later on
in this section.

Figure 8, presents a plot of the initial and final sample space for the stiffness - damping ratio
pairs (c−k) for each PF algorithm. As one can observe the generic Particle Filter is represented
by a single sample in the final state (square point), which is the particle that survived through
the Re-sampling process as the fittest. The collapse of the particle set to multiple copies of the
same particle is known as the particle depletion problem, mentioned in Section 4 and it is due
to the highly peaked measurement likelihood associated with the particular problem, (arising
from the nature of the observation noise). On the other and, the GMSPPF maintains the
variety of the sample space through the use of the Expectation Minimization (EM) algorithm,
moving the particles toward areas of high likelihood.

In order to examine the effect of Re-sampling, the standard PF resampling algorithm was
slightly modified so that Re-sampling only takes place if the number of efficient particles is
above one third of the total number of particles. The result is plotted in Figure 9 and compared
to the original PF results and the actual values. As observed in the plot, the sample space
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Figure 8. Representation of the Initial and Final Sample Space of the stiffness-damping parameter
pairs for each Particle Filter Algorithm. The generic PF (square points) is represented by a single
point in the final sample space and is evidently quite far from the actual value (circle point) compared

to the GMSPPF final sample space.

for the modified PF (where the aforementioned Re-sampling constraint was added) is more
varied, however the particles are not as efficiently concentrated in high likelihood areas as for
the GMSPPF case (Figure 8) and the accuracy of the estimate (triangle point) is more or less
around the level of the original PF estimate (square point).
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Figure 9. Representation of the Initial and Final Sample Space of the stiffness-damping parameter
pairs for each Particle Filter Algorithm. The original generic PF (square point), where standard Re-
sampling took place leading to the collapse of the particle set to a single component, is compared to
the modified PF (black dots), where Re-sampling takes place only if the effective particles don’t fall
below a certain lower boundary (in order to avoid sample depletion). Although diversity is preserved

in the second case the constant parameter estimate (triangle point) is not improved.

Copyright c© 2002 John Wiley & Sons, Ltd. J. Struct. Control 2002; 00:1–6

Prepared using stcauth.cls



24 ELENI N. CHATZI AND ANDREW W. SMYTH

Parameter Validation
In order to assess the validity of the parameter estimation, the final values obtained from each
one of the above models are used in order to recreate the response of the system (through
numerical integration). Figure 10, presents the hysteretic loop generated in each case.
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Figure 10. Parameter Validation, through the generation of the hysteretic loop for the UKF (dashed),
standard PF (dash-dot) and GMSPPF (dotted)

Addition of process noise for the constant parameters
In Figures 11-12, the performance of the generic PF with 500 samples, after the addition of
process noise in those components of the state equations that correspond to the time invariant
model parameters (namely, z8; z16), is compared to the results obtained previously for the
standard PF with more samples (5000) and no additional process noise. The additional process
noise level was of approximately 0.1 − 0.5% RMS (root mean square) noise to signal ratio.
Results are presented for eight of the states. The response for the remaining states is similar.

Copyright c© 2002 John Wiley & Sons, Ltd. J. Struct. Control 2002; 00:1–6

Prepared using stcauth.cls



NONLINEAR SYSTEM ID WITH HETEROGENEOUS SENSING 25

0 2 4 6 8 10 12 14 16 18 20
−1

0

1

2

time

State Estimation (x
1
)

 

 

clean
pf estimate, M=5000, no noise
pf estimate, M=500, 0.1% NSR
pf estimate, M=500, no noise

0 2 4 6 8 10 12 14 16 18 20
−1

0

1

2

time

State Estimation (x
2
)

 

 

clean
pf estimate, M=5000, no noise
pf estimate, M=500, 0.1% NSR
pf estimate, M=500, no noise

0 2 4 6 8 10 12 14 16 18 20
4

6

8

10

12

time

Parameter Estimation (k
1
)

 

 

clean
pf estimate, M=5000, no noise
pf estimate, M=500, 0.1% NSR
pf estimate, M=500, no noise

0 2 4 6 8 10 12 14 16 18 20
6

8

10

12

time

Parameter Estimation (k
2
)

 

 

clean
pf estimate, M=5000, no noise
pf estimate, M=500, 0.1% NSR
pf estimate, M=500, no noise

Figure 11. State Estimation Results for the standard PF-5000 samples - no additional noise (dashed),
the standard PF-500 samples and additional 0.1−0.5% RMS process noise for the constant parameters

(dash-dot) and the standard PF-5000 samples - no additional noise (dotted).
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Figure 12. State Estimation results for the standard PF-5000 samples - no additional noise (dashed),
the standard PF-500 samples and additional 0.1−0.5% RMS process noise for the constant parameters
(dash-dot) and the standard PF-5000 samples - no additional noise (dotted). The addition of a low

percentage of noise for the constant parameters helped improve the standard PF behavior.
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As can be inferred from the results plotted above the addition of process noise in the constant
parameter state equations can potentially result in similar or even improved results compared
to those obtained for a run involving a significantly larger number of particles. The time
needed for the 500 particle case was approximately 40 sec which is almost one hundredth of
the analysis time corresponding to the 5000 particle case. (∝ N2). In addition a plot of another
run of 500 samples again where no additional process noise was utilized this time is presented,
where it is obvious that the accuracy of the simulation is less satisfactory compared to both
the previous cases.
Influence of the Initial Condition Interval Selection for the PF
The selection of the initial condition intervals plays an important role in the efficiency of the
standard PF method. The same does not apply for the GMSPPF method were the particles are
fitted in a fewer component GMM. Figures 13 - 14, compare the performance of the standard
PF for two additional interval choices. 1000 particles were used in both cases. The initial
interval defined previously in equation (38), is a relatively wide interval containing the actual
values of the constant parameters. Interval 1 is a narrower interval again containing the actual
constant parameter values and finally interval 2 is a somewhat narrow interval, sufficiently
close to the actual values of the initial conditions but not containing them:

Interval1 : {ki} ∈
[

7 11
]
, {ki} ∈

[
0.15 0.4

]
, {α,β,n} ∈

[
1 5

]
Interval2 : {ki} ∈

[
3 7

]
, {ki} ∈

[
0.35 0.75

]
, {α,β,n} ∈

[
2.5 4

] (39)

According to Figures 13-14, the standard PF performs much better given a more precise
initial condition interval, however if that initial choice does not contain the correct constant
parameter values (in case there is not sufficient knowledge of the model) the standard PF
does not have the ability to evolve the constant states beyond the boundaries of the initial
conditions interval. The addition of some process noise could help overcome this problem. In
contrast, the GMSPPF does not present the same problem due to use of the GMM and the
SRCDKF based time update step. This provides the GMSPPF method with the potential of
varying the values for the time invariant particle components without the addition of process
noise.
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Figure 13. State Estimation Results for the standard PF for different initial conditions intervals,
interval 1 (dashed) is a narrow interval containing the actual parameter values, interval 2 (dash-dot)

is an interval not containing the actual values. The GMSPPF response is also plotted (dotted)
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Figure 14. State Estimation Results for the standard PF for different initial conditions intervals,
interval 1 (dashed) is a narrow interval containing the actual parameter values, interval 2 (dash-dot)
is an interval not containing the actual values. The standard PF performs well for interval 1, however
it is unable to estimate parameters outside interval 2. The GMSPPF (dotted) on the other hand is

not influenced by the choice of interval2.
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5.3. Importance of the Displacement Measurements

In order to highlight the importance of including displacement sensing in our identification
scheme for this nonlinear structure, it is interesting to contrast the identification and state
estimation results with those obtained through the use of acceleration measurements alone
from each DOF. The displacement time history comparison for the two simulations is displayed
in Figure 15. Results are presented for the UKF method, which is one of the two most robust
techniques presented herein, so that the comparison could be clearer as to the effect of the
different measurements.
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Figure 15. Displacement time history plots for the actual data (solid), the original measurement
configuration simulation involving one displacement measurement (dashed) and the new measurement

configuration involving solely acceleration measurements for all three DOFs (dash dot)
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As observed in Figure 15, the state estimation especially in the case of the first degree of
freedom -which is associated with a non-linear hysteretic component- is significantly improved
in the case where displacement data is available. Hence, it can be said that the availability
of displacement measurements is immensely beneficial for the accurate rapid identification of
nonlinear systems such as the one presented herein where the state equations are functions of
displacement and velocity.

6. CONCLUSIONS

A comparison of the use of two PF based methods and the UKF method is shown for the
adaptive estimation of both unmeasured states as well as invariant model parameters. This
general class of method was adopted to tackle the problem due to the nonlinear nature of
the physical system as well as the nonlinearity in the measurement equations introduced by
the non collocated displacement and acceleration measurements. Although, the UKF was the
most computationally efficient, in fact with the potential of running in real time, the GMSPPF
technique was more robust.

For the example considered, the UKF and GMSPPF techniques proved to be the most
efficient ones when performing a validation comparison using the final identified parameters,
with the GMSPPF method proving to be the most accurate one especially when it comes to
the estimation of time invariant model parameters. The performance of the PF method, which
proved to be less accurate than the two aforementioned ones, can be improved through the
addition of some artificial process noise, corresponding to the time invariant model parameters,
as this helps overcome the sample depletion problem. In fact, the latter led to improved PF
estimates even when using a lesser number of particles. Also, without the addition of artificial
process noise the generic PF method was shown to perform poorly in identifying the time
invariant model parameters if the initial interval from which the particles were sampled did
not contain the true value of the corresponding parameters. As shown in section 5.2 the
precision in the definition of the initial interval holds an important role in the convergence
of the standard PF algorithm. For the Gaussian Mixture Particle Filter method (GMSPPF)
on the other hand, the particles themselves evolve and therefore it is not an intrinsic problem
for the true value of the constant parameters to lie outside the initial interval. In addition,
the influence of the availability of displacement measurements has been explored leading, not
surprisingly, to the deduction that it is indeed of utmost importance for the identification of
states related to nonlinear functions of displacement. As seen from (30) this is the case for the
first degree of freedom of the application presented herein.

Future work will explore robustness to measurement noise as well as the identifiability
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limitations of the method as the system complexity increases and the number of sensors
decreases. In addition, a variation of the Re-sampling process for the generic PF will be
investigated, where instead of multiplying the fittest samples and eliminating the weakest
ones, a Genetic Algorithm approach will be implemented where new samples (children) are
reproduced from the fittest ones (parents), in order to replace those with negligible weights.
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