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Introduction

ÅAdequate computational models is required for 

engineering applications (Expensive physical testing)

ÅMaterials display time dependent deterioration

ÅViscoelastic behavior: Elastic + viscous properties

ÅDamage growth: Continuum damage mechanics

ÅViscoelastic behavior and damage growth effects 

combined
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ÅModel is phenomenological: no related to chemical 

composition or molecular structure

ÅMaterial experience Creep, Stress relaxation, 

Recovery

Viscoelastic model
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Creep Relaxation



Å Prony series:

Å Material modulus expressed in the Prony Series form leads to a 

generalization of the Maxwell model
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Viscoelastic model
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Å Some materials display viscoelastic behavior on the shear 

component only, 

and

Prony series of Ὃὸ, 

Viscoelastic model
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Å Progressive deterioration of material preceding the failure due to 
accumulation of voids and micro -cracks

Å No cracks present in the material

Å Damage evolution fully phenomenological
Å Degree of damage is quantified into the parameter D (0 Җ  DҖ1)

Å Damage might be anisotropic 

Damage model
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Fig.. Isotropic damage in uniaxial tension (concept of effective stress).
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Å Kachanov -Rabotnov uniaxial creep damage

Å Hayhurst's (1972) equivalent stress measure

where

Å Murakami & Ohno (1981), Murakami (1983), Murakami (1988)

Å Simplifying for isotropic damage, 

9

(1) 3 II (1 )Idev ss
c as b a b= + + - -

1

(1)s l=I iis s= dev dev1
II

2
dev mn mns

s s=

1 (1) (1) (1) (1){ [(1 ) ( )]} [(1 ) ]r kD B Tr Dc x x g x x-= - Ã - + Ã1 ɔ

anisotropic parameterg=(1) (1)eigenvector related tox s=

Continuum Damage

Ὀ ὄ
…

ρ Ὀ

ὄȟὯȟὶ Material parameters

… Hayhurst's equiv. stress

Damage model
Ὠ ὄ

„

ρ Ὠ



ÅCurrent stress, „ :

where,
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Viscoelastic damage implementation
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Viscoelastic damage implementation
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Å Damage time integration by explicit forward Euler method

Å Initial conditions:

Å For the current time step, ὸ : 

1. From previous time step:

2. Strain computation:

3. Effective stress:

4. Damage update: 

5. Approxim. Stiffness, ὑ :
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Applications and Results
Å Parameters calibration:

o Constrained Optimization

o Damage Parameters

Where, ὯȟὯ and ὄ,ὄ are material parameters from linear fitting 

and —and ɡhave components of „, ‐or ‐

Å Civil Engineering applications:
o Polycrystalline Ice

o Asphalt concrete
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Polycrystalline Ice
ÅFinite Elements implementation: FEAP user element

ÅValues at central node, Plane Stress

ÅTensile creep ( Mahrenholtz , W. Z. 1992)
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Figure. Plane Stress



Polycrystalline Ice
ÅParameters selected

ÅResults
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E [MPa] Ϡ nvis µ1 ϧ1

9500 0.35 1.0 0.999 415.0

ϔ ϕ B1 B2 r k1 k2 ϖ Ϙthreshold

0.2 0.63 5.232 ×ƕƔǸƛ0.0 0.43 -2.63 7.24 0.0d0 0.8 ×ƕƔǸƖ

— „ Ὀ πȢτυ
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Asphalt Concrete
ÅUnconfined compression:

ÅExperimental data ( Katsuki D. & Gutierrez M., 2011)

Strain rates applied
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Asphalt Concrete
ÅResults 

ÅParameters ϔ ϕ B1 B2 r k1 k2 ϖ Ϙthreshold

1 0 1.14 ×ƕƔǸƘǸƜȭƚƙƙɯ× 10-3 3.24 -10.986 3.31 0.0d0 0.0

Ϡ n µ1 ϧ1

0.35 1.0 0.999 415.0

Damage
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