

"Mechanics for Sustainable and Resilient Systems"

### Continuum damage model for Pronyseries type viscoelastic solids

#### Juan G. Londono, Luc Berger-Vergiat and Haim Waisman Department of Civil Engineering and Engineering Mechanics

Columbia University in the City of New York

August 6<sup>th</sup> 2014

### Continuum damage model for Prony-series type viscoelastic solids

#### Juan G. Londono, Luc Berger-Vergiat and Haim Waisman

Department of Civil Engineering and Engineering Mechanics, Columbia University in the City of New York

2014 Engineering Mechanics Institute (EMI) Conference, McMaster University,

August 6th, 2014





### Outline

- Introduction and motivation
- Viscoelastic models
- Continuum Damage Mechanics
- Viscoelastic damage and implementation
- Applications and results
- Conclusions
- References

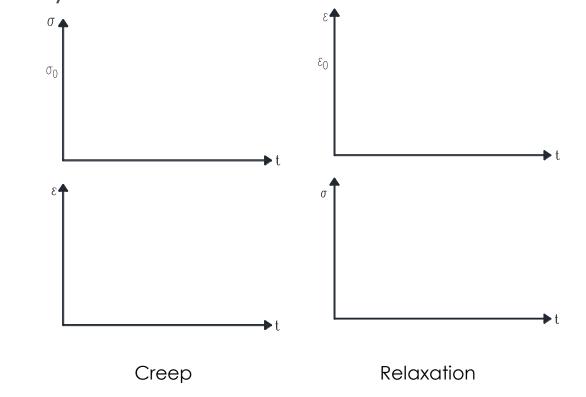


### Introduction

- Adequate computational models is required for engineering applications (Expensive physical testing)
- Materials display time dependent deterioration
- Viscoelastic behavior: Elastic + viscous properties
- Damage growth: Continuum damage mechanics
- Viscoelastic behavior and damage growth effects combined

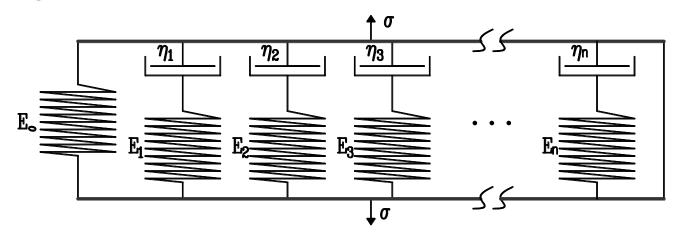


- Model is phenomenological: no related to chemical composition or molecular structure
- Material experience Creep, Stress relaxation, Recovery





- Prony series:
  - Material modulus expressed in the Prony Series form leads to a generalization of the Maxwell model



$$\sigma = \int_{-\infty}^{t} E(t-\tau)\dot{\varepsilon}(\tau)d\tau \qquad E(t) = E_0 + \sum_{i=1}^{n} E_i e^{-\frac{t}{\lambda_i}} = E\left(\mu_0 + \sum_{i=1}^{n} \mu_i e^{-\frac{t}{\lambda_i}}\right)$$

$$\tau_i = charteristic time; \sum_{i=0}^n \mu_i = 1$$



• Some materials display viscoelastic behavior on the shear component only,

$$\sigma = \sigma^{vol} + \sigma^{dev} = 3K tr(\varepsilon) + 2G(t)\varepsilon^{dev}(t)$$

and 
$$2G(t)\varepsilon^{dev}(t) = 2\int_{-\infty}^{t} G(t-\tau)\dot{\varepsilon}^{dev}(\tau) d\tau$$

Prony series of G(t),

$$G(t) = G\left(\mu_0 + \sum_{i=1}^n \mu_i e^{-\frac{t}{\lambda_i}}\right)$$

$$2G(t)\varepsilon^{dev}(t) = 2G\int_{-\infty}^{t} \left[\mu_0 + \sum_{i=1}^{n} \mu_i e^{\left(\frac{-(t-\tau)}{\lambda_i}\right)}\right] \dot{\varepsilon}^{dev}(\tau) d\tau$$



# Damage model

• Progressive deterioration of material preceding the failure due to accumulation of voids and micro-cracks

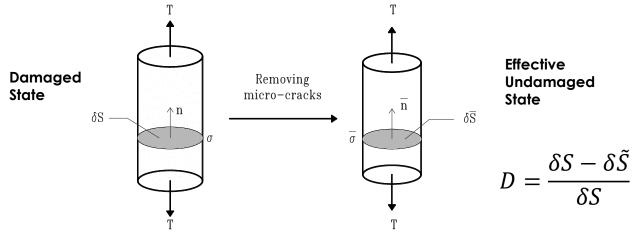


Fig.. Isotropic damage in uniaxial tension (concept of effective stress).

- No cracks present in the material
- Damage evolution fully phenomenological
- Degree of damage is quantified into the parameter D ( $0 \le D \le 1$ )
- Damage might be anisotropic

$$\tilde{\sigma} = \sigma \frac{\delta S}{\delta \tilde{S}} = \frac{\sigma}{(1-D)} = M\sigma$$



Continuum Damage

# Damage model

- Kachanov-Rabotnov uniaxial creep damage  $\dot{d} = B \frac{|\tilde{\sigma}|^r}{(1-d)^{k_\sigma}}$
- Hayhurst's (1972) equivalent stress measure

$$\chi = \alpha \tilde{\sigma}^{(1)} + \beta \sqrt{3 \Pi_{\tilde{\sigma}^{dev}}} + (1 - \alpha - \beta) I_{\tilde{\sigma}}$$

where

$$\mathbf{I}_{\tilde{\sigma}} = \tilde{\sigma}_{ii} \qquad \mathbf{II}_{\tilde{\sigma}^{dev}} = \frac{1}{2} \tilde{\sigma}_{mn}^{dev} \tilde{\sigma}_{mn}^{dev} \qquad \tilde{\sigma}^{(1)} = \lambda_{1}$$

• Murakami & Ohno (1981), Murakami (1983), Murakami (1988)

$$\dot{D} = B\chi^{r} \{ Tr[(1-D)^{-1}(\xi^{(1)} \otimes \xi^{(1)})] \}^{k} [(1-\gamma)\mathbf{1} + \gamma \xi^{(1)} \otimes \xi^{(1)}] ]^{k} [(1-\gamma)\mathbf{1} + \gamma \xi^{(1)} \otimes \xi^{$$

 $\xi^{\scriptscriptstyle (1)}$  = eigenvector related to  $ilde{\sigma}^{\scriptscriptstyle (1)}$ 

 $\gamma = anisotropic \ parameter$ 

• Simplifying for isotropic damage,

$$\dot{D} = B \frac{\langle \chi \rangle^r}{(1-D)^k}$$

B, k, r = Material parameters

 $\chi=$  Hayhurst's equiv. stress



### Viscoelastic damage implementation

• Current stress,  $\sigma_{n+1}$ :  $\sigma_{n+1} = \sigma_{n+1}^{vol} + \sigma_{n+1}^{dev}$ 

$$\sigma^{vol} = (1 - D_{n+1}) 3K Tr(\varepsilon)$$
  
$$\sigma^{dev}_{n+1} = (1 - D_{n+1}) \left[ 2G \left\{ \mu_0 \varepsilon^{dev}_{n+1} + \sum_{i=1}^n \mu_i \left[ e^{\left(\frac{-t}{\lambda_i}\right)} \varepsilon^{dev}_0 + h^i_{n+1} \right] \right\} \right]$$

$$D_{n+1} = D_n + \Delta t \left( B \frac{\langle \chi \rangle^r}{(1 - D_n)^k} \right)$$

$$h^{i} = e^{\left(\frac{-\Delta t}{\lambda_{i}}\right)} h_{n}^{i} + \Delta h^{i}$$

$$h_n^i = e^{\left(\frac{-t_n}{\lambda_i}\right)} \int_0^{t_n} e^{\left(\frac{\tau}{\lambda_i}\right)} \dot{\varepsilon}^{dev}(\tau) \, d\tau \,, \qquad \Delta h^i = \lambda_i \left[1 - e^{\left(\frac{-\Delta t}{\lambda_i}\right)}\right] \frac{\Delta \varepsilon^{dev}}{\Delta t}$$



### Viscoelastic damage implementation

- Damage time integration by explicit forward Euler method ullet
- Initial conditions:
- For the current time step,  $t_{n+1}$ : lacksquare
  - 1.
  - Strain computation:

Damage update:

- Effective stress: 3.
- From previous time step:  $t = t_n$ ,  $\varepsilon(t_n) = \varepsilon_n$ ,  $D(t_n) = D_n$  $u_{n+1} \longrightarrow \varepsilon_{n+1} = \varepsilon_{n+1}^{vol} + \varepsilon_{n+1}^{dev}$  $\tilde{\sigma}_{n+1}^{dev} = f(h_n^i, \Delta h^i, \varepsilon_{n+1}^{dev}, \varepsilon_n^{dev})$  $\tilde{\sigma}_{n+1} = \tilde{\sigma}_{n+1}^{vol} + \tilde{\sigma}_{n+1}^{dev}$  $\dot{D}_{n+1} = f(\tilde{\sigma}_{n+1}) \longrightarrow \Delta D_{n+1} = \Delta t \ \dot{D}_{n+1}$

t = 0, D = 0

 $t_{n+1} = t_n + \Delta t$ 

$$D_{n+1} = D_n + \Delta D_{n+1}$$

Approxim. Stiffness,  $K_{n+1}$ : 5.

$$d\sigma = \frac{\partial \sigma}{\partial u} du + \frac{\partial \sigma}{\partial D} \frac{\partial D}{\partial u} du$$



4.

# **Applications and Results**

- Parameters calibration:
  - Constrained Optimization

$$\forall i \in [0, n], \mu_i > 0$$

$$\mu_0 + \sum_{i=1}^n \mu_i = 1$$

o Damage Parameters

$$k = k_1 + k_2 \theta$$
$$B = B_1 + B_2 \Theta$$

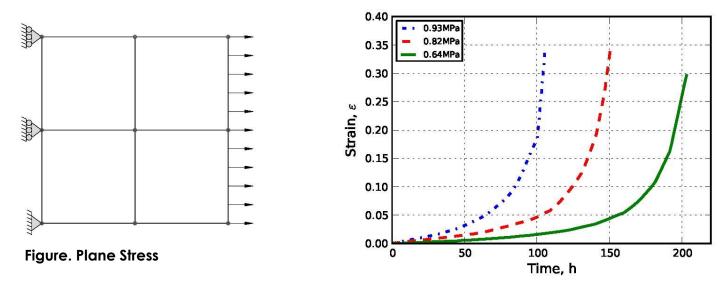
Where,  $k_1, k_2$  and  $B_1, B_2$  are material parameters from linear fitting and  $\theta$  and  $\Theta$  have components of  $\sigma$ ,  $\varepsilon$  or  $\dot{\varepsilon}$ 

- Civil Engineering applications:
  - Polycrystalline Ice
  - Asphalt concrete



# Polycrystalline Ice

- Finite Elements implementation: FEAP user element
- Values at central node, Plane Stress

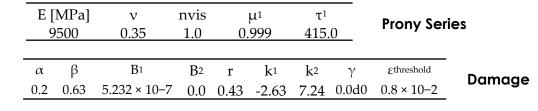


• Tensile creep (Mahrenholtz, W. Z. 1992)

$$T = -10^{\circ}C$$
  
 $\sigma = 0.93, 0.82, 0.64 [MPa]$ 

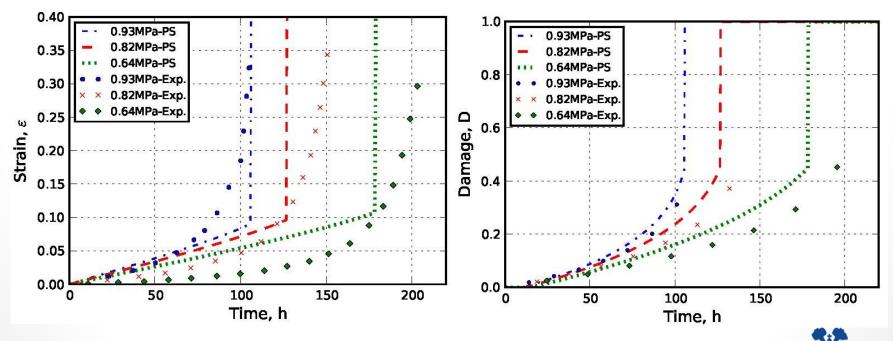
# Polycrystalline Ice

Parameters selected



$$\theta = |\sigma_{ii}| \qquad D_c = 0.45$$

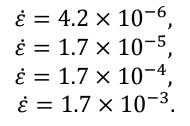
• Results

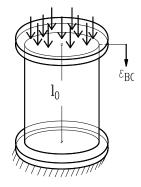


### Asphalt Concrete

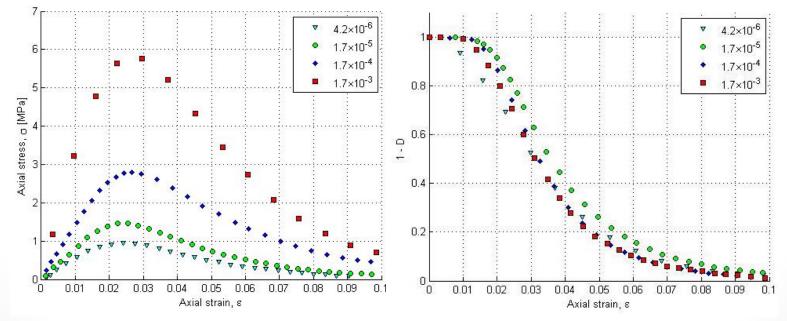
Unconfined compression:

Strain rates applied



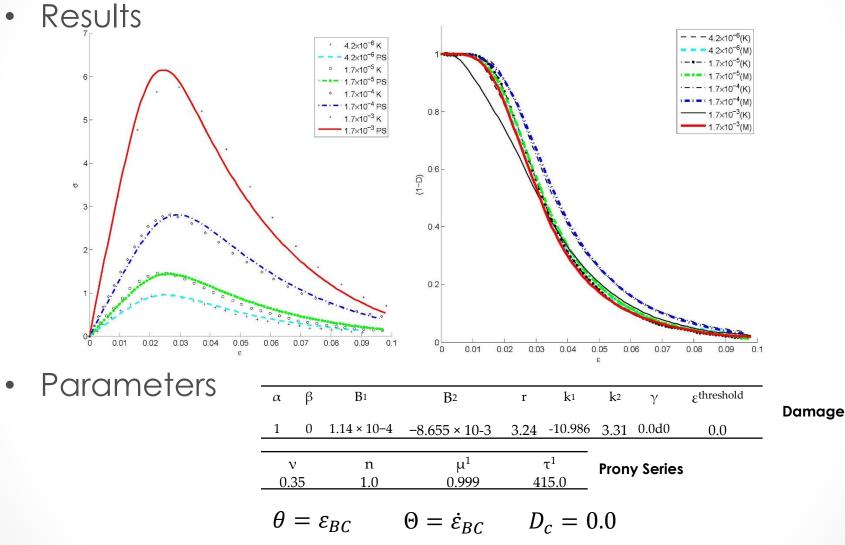


Experimental data (Katsuki D. & Gutierrez M., 2011)





### Asphalt Concrete





### Conclusions

- Material viscoelastic deterioration can be predicted with simple implementation with proper material selection
- Prediction of material behavior under tension and compression can be calibrated
- Semi-analytical time integration of the constitutive equation and explicit Forward Euler for damage results in fast and accurate prediction of material behavior
- Optimization of the material parameter required careful selection of initial values. Global optimization method could be beneficial
- In the finite elements implementation, the model displayed mesh sensitivity



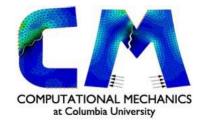
### References

- Findley W. N., Lai J.S, Onaran K., "Creep and relaxation of nonlinear viscoelastic materials With an introduction to linear viscoelasticity" (1976)
- Krishnamachari S.I, "Applied Stress Analysis of Plastics-A mechanical engineering approach" (1993)
- Lakes, R.S., "Viscoelastic Solids" (1999)
- Murakami S., Kawai M., Rong H., "Finite Element Analysis of Creep Crack Growth By A Local Approach" (1988)
- Taylor, R.L, "FEAP-A Finite Analysis Program", University of California at Berkley (2011)
- Waisman H., Duddu R., "A temperature dependent creep damage model for polycrystalline ice" (2011)
- Katsuki D., Gutierrez M., "Viscoelastic damage model for asphalt concrete", Acta Geotechnica (2011

#### Acknowledgement

The authors are grateful to the funding support provided by the National Science Foundation under Grant #PLR-1341472



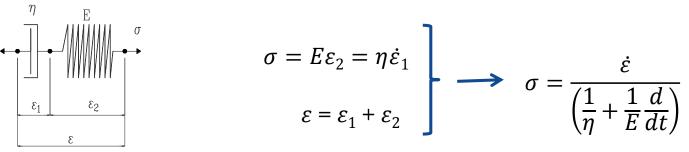


# Thank you!

**Questions**?



- Springs and dashpots models:
  - Elastic behavior (Hook's law)  $\sigma = E \varepsilon$
  - Viscous behavior (Newton's Law)  $\sigma=\eta\dot{arepsilon}$
- Maxwell model:
  - Represent relaxation very well but not creep or recovery



- Kelvin-Voigt model:
  - Creep and recovery are well represented but not relaxation

$$\begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$$

