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Predicting the direction, growth rate and damage zone is crucial in order to model
correctly the degradation of viscoelastic materials. While local damage models have been
popular in the literature, they are all similar in that they lack a length scale that will
regularize the solution and lead to mesh independent results.

Based on an equivalent stress measure concept and apply it to a generalized viscoelastic
Maxwell model with a Murakami type damage-rate law. Viscoelastic behavior is achieved
by a semi-analytical integration of the constitutive law assuming time dependent behavior
of the deviatoric component and purely elastic response of the volumetric part. The
scheme leads to a coupled set of nonlinear equations which are solved simultaneously
using a monolithic Newton framework to obtain displacement and damage fields as
function of time. The Jacobian matrix of the Newton scheme is formulated analytically.

Mesh-insensitive behavior is demonstrated for one and two dimensional problem.

Abstract

Following the gradient enhanced model proposed (Mühlhaus H.B, 1991, Peerlings RHJ, et
al., 1996), a second order gradient equation is proposed as

𝜒𝑁𝐿 − 𝑐𝛻2𝜒𝑁𝐿 = 𝜒 (11)

where 𝑐 is a measure of the characteristic length of the material and the local Hayhurst’s
equivalent stress measure 𝜒 is obtained from

where 𝛼 and 𝛽 are material-dependent weights,  𝜎(1) is the maximum principal stress and

𝐽2 =
1
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𝑑𝑒𝑣 .

• A nonlocal damage model is proposed for viscoelastic solids by
introducing a coupled non-linear equation for displacement and
an equivalent stress measure

• Gradient-enhanced damage model display mesh insensitive
results for 1D and 2D numerical tests

• In 2D, the selection of material parameters in the source term of
the gradient equation allows for different crack paths and
damage rates

• Selection of the parameters 𝛼 and 𝛽 to generate different crack
paths need to be studied further for each material. In any case,
the model proposed yield mesh insensitive results

Conclusions

Viscoelastic properties are obtained from a generalized Maxwell model in which the
material modulus is presented in a Prony-series form. Additive decomposition of the
effective stress  𝜎 into its deviatoric and volumetric components is used,

Where 𝐾 is the Bulk modulus, 𝐺(𝑡) is the time dependent shear modulus and tr(∙) is the
trace operator. Material viscoelastic behavior is achieved by changes in shape rather than
volume, thus the shear modulus is written in a Prony-series form while the volumetric
stress is purely elastic.

Where 𝜆𝑖 is the characteristic time, 𝐺0 is the time-independent shear modulus and 𝜇𝑖
satisfies  𝑖=0

𝑛 𝜇𝑖 = 1. Which yields the deviatoric stress,

 𝜎 =  𝜎𝑣𝑜𝑙 +  𝜎𝑑𝑒𝑣 = 3𝐾 tr 𝜀 + 2𝐺(𝑡)𝜀𝑑𝑒𝑣(𝑡) (1)    

 𝜎𝑑𝑒𝑣 = 2𝐺0  −∞
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𝜆𝑖  𝜀𝑑𝑒𝑣(𝜏)𝑑𝜏 (3)  
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Viscoelastic Constitutive Model

Gradual accumulation of microcracks and microcavities are accounted for through the
concept of the effective stress in which the total stress 𝜎 is obtained by applying the
damage projector 𝑀 to the effective stress  𝜎 as,

A non-local damage projector 𝑀 is proposed following the isotropic damage model by
Murakami (1981) in which,

and the Murakami’s Damage rate is obtained from the non-local equivalent stress 𝜒𝑁𝐿

where 𝐵, 𝑟 and 𝑘 are material parameters and D is the damage variable with values from
0.0 (undamaged) to 1.0 (fully damaged). Where the Macaulay brackets ∙ are defined by,

The non-local damage rate is constrained by the value of 𝜒𝑁𝐿 being larger than a stress-
equivalent history threshold 𝜒𝑡ℎ whose initial value is updated during simulation as

Following the derivation for local-damage model by Londono et al (2016), the model
proposed is also thermodynamically consistent.

Continuum Damage Model

𝜎 𝑡 = 𝑀−1  𝜎 𝑡 (6)

𝑀−1 = 𝑰 −  −∞
𝑡  𝐷𝑁𝐿 𝜏 𝑑𝜏𝑰 (7)

 𝐷𝑁𝐿 = 𝐵
𝜒𝑁𝐿 𝑟

(1−𝐷)𝑘
(8)
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2
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 𝐷𝑁𝐿 =  
 𝐷𝑁𝐿

0

𝑖𝑓 max 𝜒𝑁𝐿 ≥ 𝜒𝑡ℎ
𝑖𝑓 max 𝜒𝑁𝐿 < 𝜒𝑡ℎ

(10)

Gradient-enhanced damage

𝜒 = 𝛼  𝜎(1) + 𝛽 3𝐽2 + 1 − 𝛼 − 𝛽 tr(  𝜎) (12)

𝜎

Fig.1 One dimensional symmetric view for gradient-enhanced damage regularization. Coarse mesh shown

Meshes:
• h1 = 0.005 [𝑚]
• h2 = 0.010 𝑚
• h3 = 0.020 [𝑚]
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Fig.2 Local (Left) and Nonlocal (right) damage for 1D test under two stress values (creep) and three 
meshes used
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Strong Form

𝛻 ∙ 𝜎 − 𝑓𝑒𝑥𝑡 = 0

𝜒𝑁𝐿 − 𝑐𝛻2𝜒𝑁𝐿 = 𝜒

𝜎 𝑡, 𝐷, 𝜀 = 𝑀−1 𝑡, 𝐷, 𝜀  𝜎 𝑡, 𝜀

 𝐷 − 𝐵
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1 − 𝐷 𝑘
= 0
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Numerical results in 1D

Stresses:
• 𝜎1 = 45 𝑀𝑃𝑎
• 𝜎2 = 50 [𝑀𝑃𝑎]

In 2D, mesh sensitivity is tested in the Kalthoff problem, in which, the symmetric part of a plate subjected to a constant
velocity impact is applied to a pre-notched plane-strain plate. Mesh sensitivity and the effect of the Hayhurst’s weight
parameters on the crack path are studied

Numerical results in 2D

Mesh sensitivity test

𝛽 = 0.00, 𝜃 ≈ +68° 𝛽 = 0.80, 𝜃 ≈ +55° 𝛽 = 0.95, 𝜃 ≈ ±57° 𝛽 = 0.999, 𝜃 ≈ −65°

Fig.3 Kalthoff problem scheme (left). Results of the coarse mesh with 3492 elements (center) and fine mesh with 7269 elements (right)

Fig.4 Different crack path direction for different Hayhurst’s weight parameters under the same boundary conditions and mesh (5700 elements)

Fig.5 Deformation shape 
of Kalthoff problem with 
a scale factor of 20. 
Elements with Damage 
greater than 0.96 are 
removed. Fine mesh 
shown (7269 elements).
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Crack path 𝛼 = 0.00 :

ℎ𝑝 = 5.0 × 10−3 𝑚

𝑛𝑙 = 2.5 × 10−3𝑚
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