A non-local gradient—-enhanced damage model for viscoelastic materials
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Predicting the direction, growth rate and damage zone is crucial in order to model Following the gradient enhanced model proposed (Muhlhaus H.B, 1991, Peerlings RHJ, et Mathematically the problem is described by
correctly the degradation of viscoelastic materials. While local damage models have been al., 1996), a second order gradient equation is proposed as |
popular in the literature, they are all similar in that they lack a length scale that will VL — 72Nl = (4) (11) 9
regularize the solution and lead to mesh independent results. , . , ) Fig.1 One dimensional symmetric view for gradient-enhanced damage regularization. Coarse mesh shown
where ¢ is a measure of the characteristic length of the material and the local Hayhurst’s ,
Local damage Gradient-enhanced damage

Based on an equivalent stress measure concept and apply it to a generalized viscoelastic equivalent stress measure y is obtained from

Maxwell model with a Murakami type damage-rate law. Viscoelastic behavior is achieved
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Mesh-insensitive behavior is demonstrated for one and two dimensional problem. 3 ml T e e
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Viscoelastic properties are obtained from a generalized Maxwell model in which the Viccoelactic Cometitutive | (6D, &) = M-1(t.D. )5 (¢, &) - = 04 e | | Wik W W 02 ]
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effective stress ¢ into its deviatoric and volumetric components is used, 0% A 02
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Where K is the Bulk r.nod.ulus, G(Lt) is the jum.e dep.endent shear moc?lulus and tr(:) is the Prescribed Tractions O N =t in I} 0.1 obz 064 0|06 0108 i Dpie—— L
trace operator. Material viscoelastic behavior is achieved by changes in shape rather than | | - ‘ ‘ ‘ o [ ‘ : : ‘ ‘ ‘ - ‘ ‘ ‘
volume, thus the shear modulus is written in a Prony-series form while the volumetric Prescribed Displacements U =uUgpc M lpc  (Left) and Nonlocal (right) d f | ves and th
: : : — , Fig.2 Local (Left) and Nonlocal (right) damage for 1D test under two stress values (creep) and three
stress is purely elastic. NL | —
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Where A; is the characteristic time, G, is the time-independent shear modulus and y; N a1 lts in 2D o 1 Tl
satisfies }.;— o 4; = 1. Which yields the deviatoric stress, e e :
(_(t_r)) In 2D, mesh sensitivity is tested in the Kalthoff problem, in which, the symmetric part of a plate subjected to a constant g Fig.5 Deformation shape
5 = 2G, f_too [,uo+ Dimqpie’ i ]éde”(r)dr (3) velocity impact is applied to a pre-notched plane-strain plate. Mesh sensitivity and the effect of the Hayhurst’s weight é of Kalthoff problem with
parameters on the crack path are studied PDamage - a scale factor of 20.
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Gradual accumulation of microcracks and microcavities are accounted for through the B = 0.00 ~ g v x | | shown (7269 elements).
concept of the effective stress in which the total stress o is obtained by applying the g 5 o
damage projector M to the effective stress 6 as, h, = 5.0 X 10-3 m , an ! E RS P
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A non-local damage projector M is proposed following the isotropic damage model by .m g 8 * A nonlocal damage model is proposed for viscoelastic solids by
Murakami (1981) in which, vo = 1.0 X 10 e —> R il ans introducing a coupled non-linear equation for displacement and
Vg —» =) B aAC an equivalent stress measure
M-1=]-— f_too DNL(T)dT] (7) :: ! uE ERusuamene e e Gradient-enhanced damage model display mesh insensitive
. : : : NL results for 1D and 2D numerical tests
and the Murakami’s Damage rate is obtained from the non-local equivalent stress ¥ Fig.3 Kalthoff problem scheme (left). Results of the coarse mesh with 3492 elements (center) and fine mesh with 7269 elements (right) * In 2D, the selection of material parameters in the source term of
S NL (xNLY Crack path (a = 0.00): the gradient equation allows for different crack paths and
D" =B (1-D)F (8) i ‘ e damage rates
where B, r and k are material parameters and D is the damage variable with values from f =0.00,0 = +68° f =0.80,0 = +55° f =0.95,0 ~ +57° £ =0.999,0 ~ —65°  Selection of the parameters @ and f to generate different crack
0.0 (undamaged) to 1.0 (fully damaged). Where the Macaulay brackets () are defined by, paths need to be studied further for each material. In any case,
0 the model proposed yield mesh insensitive results
abs(:)+(-)
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