
 - 1 -

Programming with Punched Cards

© 2005 Dale Fisk. All rights reserved
dalefisk@gmail.com

It must have been about 1973. Life at IBM was good, and I was busy doing whatever it
is that engineers did then. Suddenly, in the life of our project, something came up that
called for a computer program that did not exist, and I was asked to create it. My boss
knew I’d never written a program before; not unusual since in those days there were very
few engineers who knew how to program.

I’m sure he thought about asking a real programmer to do the job. Maybe he couldn’t
find anyone available. Or maybe he decided the program would be so technically
involved that it would be easier for an engineer to learn how to program than it would be
for a programmer to learn how to be an engineer. In hindsight, I think he made the right
decision, but at the time he was taking a huge gamble. Could I learn enough, quickly
enough, to be the right choice?

He told me how much confidence he had in me and that he knew I would do an
outstanding job and that it would be a wonderful learning experience for me. He patted
me on the back (probably with his fingers crossed behind his own back) and sent me on
my way.

The first thing I needed to do was to learn how real programmers programmed. I knew
that down the hall was a big room that had two brand new IBM 360 computers, and I
knew that the programmers kept walking in and out of that room carrying big, flat boxes
of punched cards. The boxes they carried actually looked more like a tray – picture a box
about three inches high, eight inches wide, and maybe fifteen inches long.

Walking past programmer’s offices I could see that they had stacks and stacks of punched
cards and boxes and boxes of them in their offices. They had nice, neat boxes stacked in

corners and ragged-looking ones poked under
tables. Some boxes had pink cards, others held
blue cards, and more had those boring cream-
colored cards. Some of the stacks of cards, as
well as the boxes, had seemingly random
collection of different colored cards. All had
names, usually cryptic, written on the sides of
the cards with a felt-tipped pen. I had seen them
flipping through the cards, looking at them,
replacing them one by one. This was
programming!

Figure 1 Punched card program decks

I learned that each punched card described one instruction in the program and that each
box could hold about two thousand cards. The size of a box, then, became a built-in limit

 - 2 -

to the size of a program. More than one box was awkward for a guy (or gal – we had lots
of women programmers) to carry around. One full box was pretty heavy; more than one
became a load.

There was another reason to keep this number of cards as a limit. The punched card
hopper on these brand-new computers could hold just about that amount at one time.
Any program requiring a more than one box required that the computer be spoon-fed the
boxes in the right order.

My program shouldn’t be too big, so I wouldn’t have to worry about managing more than
one box of cards. I hoped.

Writing a program began with a paper tablet of coding forms. Each page of the tablet had
about fifty lines on it, and each line on the form would eventually be converted into a
punched card and stowed away in a box with a bunch of other cards

So that’s how I began. I went down to the big metal stationery cabinet that Bob, my
programmer buddy, had showed me and picked up a pile of coding form tablets to bring
back to my desk. I was a programmer! With my How to Write a Program book open at
my elbow, I started writing my program. I wrote and erased and wrote some more, and
finally I had a stack of dog-eared sheets that I thought should make at least the
beginnings of a program.

I knew what to do now. I took my coding sheets down to our computer lab. Well,
actually I went around to the back door because that’s where our keypunch operator
worked. She had a room just off the computer lab where she and her keypunch machine
resided. I greeted Maria, who I already knew as a wonderful lady with a ready smile, a
quick wit and fingers that just flew over the keyboard. She showed me the ‘in’ basket
and told me to come back tomorrow to pick up my deck of cards.

Deck? Like a deck of playing cards? I had expected at least a partially filled box! No
way could everything I had done be contained in a ‘deck!’ But, sure enough, when I
went back the next day Maria’s ‘out’ basket held my dog-eared coding sheets wrapped
around a half-inch high stack of punched cards, all held together by a rubber band.
Chagrined at the meager size of my card stack, I looked around to see if anyone was
watching before picking them up.

I took them back with me and carefully set the brand new deck of cards down in the
middle of my desk. They sat there quietly, challenging me to do something with them.

What to do next? Maybe I could postpone the next step by playing with these new cards
a bit. I picked up one of the cards carefully, not wanting to ‘fold, spindle or mutilate’ it.
Maybe I should make sure that Maria had punched them correctly? I could compare the
cards with what I had originally written on my coding sheets. That sounded good.

 - 3 -

And then, another rude shock. The card I was looking at had little square holes punched
in it as I expected but nothing that told me what the little square holes meant. I knew
there was a code to translate from the punches to each specific letter in the alphabet, but
manually decoding those punches would take forever! This seemed serious! What if I
needed to change something? I flipped through the rest of the cards and sure enough
none of the cards had any writing on them at all. I took the deck of cards back to Maria
and asked her how to find out what had been punched into each card.

“Oh,” she said, “You didn’t ask me to turn on the keypunch printer. If you had, the
keypunch would have typed out on the top of each card what the card was saying.” Ever
helpful, though, she took the deck of cards and put them into another machine the size of
a small desk. “This is a punched card interpreter.” She said. “It will put that typing you
want on the top of each card.” And, a couple minutes later she returned the deck of cards
to me.

Sure enough, each card now had typed on the top of the card a line of text that agreed
with one line from the coding sheet I had given her.

 Figure 2 Punched card character coding

Now what? I knew the next step was to feed the deck of cards into our IBM 360
computer. Clearly I needed a little guidance, so I went back to Bob and asked what I
should do next with my program.

“First,” he said, pointing to the small stack of punched cards I had set on his desk, “That
deck of cards isn’t yet a program. That deck of punched cards is what we call a source
deck. Your source deck is a description, very detailed and very technical, but still just a
description of what you want your program to do.”

 - 4 -

“Your source deck,” he said, “has to be read by the computer, and a program called a
compiler will look at each card. When it is done looking at all of them the computer will
punch out another deck of cards. That second deck of cards will be your program.”

Then I understood. Writing a program is a two-step process, where first a program called
a compiler, already written by somebody else, would read my ‘source deck’ and create
another set of punched cards, the ‘program.’ I would then ask the computer to read my
new deck of cards, my program, and the computer would do whatever it was that I was
asking it to do!

Following Bob’s instructions I took my deck of cards, the source deck, back to the
computer lab, this time going to the front door. Actually, by the door was an open
window into the lab with a big counter under it, with an ’in’ section and an ‘out’ section.

Only a select few programmers were allowed in the computer lab. The rest of us were
barred from that temple to technology, so I filled out a request form and laid it, along
with my source deck, on the ‘in’ section. I saw several other similar stacks of punched
cards there, and a couple big cardboard boxes as well. They were ahead of my request, so
I knew I would have to wait for a while. How long? I didn’t know.

I knew what would happen next. The computer operator, a young guy that spent his
entire day inside that mysterious room, would at some point gather up my program deck
and walk over to the computer’s punched card reader, a machine the size of a small desk
that had a big electrical cable running from it over to the actual computer. I knew which
was which because the through the open window I could see that the computer had a
bunch of flashing orange and green lights on the front, as well as a bunch of dials and
toggle switches that I had once seen the computer operator twist and flip.

Figure 3. Computer
console is on the far
left. The punched
card reader is
against the back wall
on the right. The
cables connecting the
various devices run
beneath the floor.

 - 5 -

Sometimes he would sit down at a special typewriter – a Selectric typewriter that he used
to control what the computer did. Remember the Selectric typewriter with its golf-ball
type element that danced and spun its way across the page? This particular one was
connected directly to the computer and only the computer operator was allowed to use it.
A few keystrokes on this typewriter would stop a program. A few more and a new
program would take its place! That was one special typewriter.

I stood in front of the ‘in’ counter for a bit, watching through the window as the orange
and green lights flashed on the computer console and the computer operator moved
things around inside the computer lab. He picked up a big box of paper destined for the
printer and disappeared behind the computer. When he didn’t reappear I reluctantly I
went back to my office. Half an hour later I checked again, and my request form, and
source deck, still lay in the ‘in’ section of the counter. So did all the other decks of
punched cards I had seen earlier, along with a few that had been added since I was there
last. Disappointed, I went home.

The next morning I eagerly went down to the computer lab – the ‘in’ section of the
counter was empty! Not the ‘out’ section, though. Sorting through the various program
results there, I found my source deck and a stack of computer printout paper with my
name on it. I picked up my source deck and the stack of paper (actually, it was only
about an eighth of an inch thick) and took them back to my desk to see what I had. It
wouldn’t be cool to stand at the counter and read it.

The first thing I did was to admire the first page of the computer printout where my name
was blazed across it in three-inch letters. No need for reading glasses here! Lifting the
first page of the stack of fanfold paper, I studied the first of several pages telling me in
great detail how the computer had first understood what program I wanted to run -- the
compiler -- and what to do with the result -- print out a report and create a punched card
deck containing the program.

Then it dawned on me. The computer had not created that program deck that I told the
compiler program to produce! Dumb computers! I had this small stack of paper but no
punched cards. Clearly the computer had messed up somehow. I’d have to fix that.

I turned a couple more pages of the computer printout and finally found the section where
the compiler started to process the source deck. And, the compiler immediately did the
equivalent of a computer barf! An error message described in infinite detail some
problem. The computer obviously had hiccupped and done the wrong thing! The only
thing to do was to rerun the program – the compiler – and give the computer a chance to
do it right this time.

I took my source deck back to the computer lab and called the computer operator over,
telling him that his computer had messed up and that I wanted him to redo the request I
had originally put in. He said: “Are you sure?” I was. “Just as soon as the program
running now finishes,” he said. He took a stack of punched cards out of the card reader,

 - 6 -

set them aside and put mine in their place. I impatiently waited for the present program
to finish so the computer would redo my source deck. I remember wondering a trifle
guiltily whose cards the operator took out of the card reader in order to redo my request.

It didn’t take long before the other program finished and mine started. Then, almost
immediately, I got another stack of paper back. Again no program deck! In fact, the one-
eighth inch stack of computer printout showed the exact same error message I had seen
earlier.

Could it be that it wasn’t the computer? Something that I had done? I trudged back to
my desk and glumly pulled out my How to Write a Program book again. And, after a
while I found that one of the cards in my source deck was missing a needed comma. I
remember grumbling that if the computer could figure out that a comma was needed, and
exactly which comma was missing, why didn’t it fix it for me? Dumb computers!

So now I dug out my pad of coding forms and wrote one line on it, this time including the
missing comma. I took it back to Maria and asked her to make me a new card. I
remember that she looked at me kinda funny, but she really was a nice lady and
interrupted what she was doing to and made me a new card. One card! I took it back to
my desk and pulled out my source deck. I found the old card with the missing comma,
threw it in the wastebasket and inserted the
corrected punched card in its place.

Back to the ‘in’ counter I went, waited a while
and retrieved the computer output. Again
there was an error message, but a different one
this time. I studied my source code to see
what went wrong and then went back to Maria
with my one-line coding form. I didn’t blame
the computer this time. Maria looked at my
one-line coding form and said: “Let me show
you how to use the spare keypunch machine.
You can usually make these one-card changes
quicker yourself.” In addition to becoming a
programmer I was learning how to use a
keypunch machine.

Now things went a little faster. I could make Figure 4. IBM 029 Keypunch Machine
my own corrections without waiting for
Maria to finish what she was doing. Instead of two or three corrections a day I was now
able to run the compiler program four or five times! In fact, a few days later the ‘output’
counter had, in addition to a half-inch stack of computer printout paper, TWO decks of
cards! It held my source deck, now getting a little grimy around the edges, and a brand-
new set of cards that was clearly my program deck!

 - 7 -

I had reached a milestone in my journey toward becoming a programmer. I now had a
program that I could run. I picked up both decks of punched cards, along with the
computer printout and almost ran back to my desk. This time I decided to look closely at
the program deck. By now I knew just about everything there was to know about the
source deck.

The program deck was quite different from the source deck. To start with, it was a much
smaller stack of cards. There were no letters typed on the top of the cards, and there were
lots of punches in each of the cards. Lots of punches! In fact, some of the cards looked
almost like lace. Clearly in order to verify that the compiler had done its job right I
would need to learn how to read these cards as well as I could now read the source deck
cards. I took the program deck to Bob and asked him how to decipher all those punches.

“Don’t worry about it,” he said. “This deck of cards, your object deck, is punched with a
binary coding system that only computers understand. You could figure it out if you
really had to, but you don’t.”

I couldn’t put it off any longer. I had to run my program. So I set my source deck of
punched cards up on a shelf in my office and walked down to the computer lab. I filled
out another request form and left it, along with my brand-new program deck, on the ‘in’
counter.

The next morning there was another stack of computer printout paper, and my program
deck, on the ‘out’ counter. I remember a feeling of awe and pride – my very own
program! I carried both back to my desk and put the program deck up on the shelf next
to my source deck. The printout paper went smack in the middle of my desk, and again
my name, in big block letters, proclaimed my ownership.

I flipped through the first several pages of what I had come to think of as computer
boilerplate before I got to where my program started to control the computer. I had asked
the computer to print, in this listing, what it was doing, and sure enough, it had. My
program was working! I stared at it with wonder.

But was the program working right? Probably not. By now I now knew that
programmers spent a lot of time ‘debugging’ programs. So I fully expected that my
program would have errors, or bugs, in it, and, it did. Lots of bugs. Some were big,
some were small, but all bugs that I needed to fix. So, how did I fix all those bugs?

I started by studying the compiler program printout, a list of all the instructions in the
program, to see what was causing the bug. Then I figured out what the program should
have done, marking up the source code printout with corrections that needed to be made.
I copied these corrections onto a coding form, took that coding sheet down to the
keypunch machine, sat down at the spare keypunch machine and created new punched
cards to replace incorrect ones in my original source deck.

 - 8 -

Finding the incorrect punched card and replacing it with a new corrected card became
more and more difficult as my program grew. A few times I replaced the wrong card,
introducing a brand new bug into my program without fixing the old one. I learned to be
very, very careful when I updated my source deck.

I would take my updated source deck back to the ‘in ’counter and wait for the output to
appear on the ‘out’ counter. Usually, the compiler output now included a brand-new
program deck, so I would move six feet to the left and fill out a new request form with
my new program deck before I went back to my desk.

One day I was asking Bob something about my program and he said: “Now that you are
debugging your program, why don’t you combine your two computer runs? Run the
compiler and then follow that by running your program all with one request form? ”

He showed me how, and the number of times I could run my program each day doubled!

I was becoming less aware of the debug process and more focused on what my program
was supposed to do. The sophistication of the program increased, and my source deck
became several inches high. Or long – I had adopted the habit of laying the cards,
wrapped with a rubber band, on their side. The pile seemed more stable that way.

Over the next several weeks the amount of wear on the punched cards accumulated, and
one day the computer operator wouldn’t take my source deck, telling me “The card
reader on the computer can’t read it any more. You will have to get a new set of punched
cards.”

Now what? I only had one deck of source cards. Backups? Who needed a backup when
your program source code physically sat on your desk? Nobody had a backup.

It had been a while since I had visited with Maria, but clearly I needed her expertise.
And she knew exactly what to do. “The computer card reader is sensitive and will only
accept punched cards in very good condition. However, we have another machine, a
punched card duplicator, designed to do just what you need to do. Give me your source
deck.”

She took my gray, dog-eared source deck and a few minutes came back with a brand new
deck of cards, all the same color and all with typing on the top of them. She set them
down, on edge, in a spare punched card box, making sure they were evenly aligned. She
picked up a felt-tipped pen and, with a smooth, even stroke, drew a diagonal line from
bottom left to top right across the top edges of the cards.

I’d seen that diagonal line before -- sort of a poor-mans way of keeping the cards in the
right order. I knew that the black mark on the top of a card out of sequence would stand
out even if only misplaced by one or two cards from its original order.

 - 9 -

Maria then smiled and handed me the box with my cards in it. A real programmer’s box!
I think she knew how much that box meant to me.

No longer would I have to rely on a rubber band to hold the cards in my source deck
together. I looked like a programmer as I nonchalantly carried my new cardboard box
with my new source deck back to my office. I took the long way, stopping by my boss’s
office to ask him some innocuous question.

I was digging deeper and deeper into the details of my program, changing this and adding
more there. Sometimes I punched my own cards, and sometimes Maria helped me create
new cards for large sections of new program instructions. Soon I had filled half the box
with punched cards.

As my program grew my confidence grew along with it. One day I was talking with the
manager of the computer lab about how best to fit my growing program into the limited
memory size of our computer. He had some suggestions that I hadn’t thought of. When
we were done he said: “I think you should have a key to the computer lab. Then you can
go in and out whenever you want.”

He gave me a key and left me to explore my newly authorized domain. I turned the key
in the computer lab door and walked in.

I stopped just inside the door. I had been given the Secret Handshake, the Password, and
the Magic Wand, all at once. I stood tall, surveying my domain.

Figure 5 IBM 360
Series 50

We had two computers, both inside this carefully guarded space. Desk-sized boxes
scattered around the room held disk drives, printers and card readers. Tall refrigerator-

 - 10 -

sized magnetic tape drives completed the cluster of equipment surrounding each of the
two computers. Along the wall to the left were some punched card machines similar to
those Maria had in her room. One of the programmers sitting at a keypunch machine saw
me, waved, and went back to his work I belonged.

But two things immediately struck
me. First, it was cold! A steady
flow of cold air came from the
ceiling vents. Computers didn’t like
heat, and the building air conditioner
had been cranked all the way down. I
learned later that if the temperature
in the room got over eighty degrees
the computers would shut themselves
down. That was definitely not a
good thing, since restarting each
computer would take several hours.
Next time I would bring a sweater.

And it was noisy. Through the open
window to the computer lab I had
seen a world of muted efficiency.
Once inside, though, the noise was an Figure 6 IBM 2540 Card Reader/Punch
enveloping cloak impossible to shed.
A loud rumble came from the building
air conditioner with its fans turned all
the way up. Then came a higher whine
from the ventilating fans inside each of
the many desk-sized and refrigerator-
sized boxes. Fan-fold paper flew out
of the printer to fall in a neat pile,
driven by silken motors almost
inaudible under the sound from the
whirling metal bicycle chain inside the
printer, and the hammers needed to
pound ink onto the paper could have
been sound effects for that war movie I
saw last night. Suddenly the punched
card reader announced its presence
when a stack of punched cards
descended into the body of the reader,
eaten by the whirring, clacking
tin grasshopper hidden inside. Below
these brash noises was a softer hum from Figure 7 IBM 1403 Chain Printer
one of the magnetic tape readers in the

 - 11 -

room, and a more erratic note from the disk drives that crowded around the computer.
The computer itself was mute. Nothing moved on that magic box other than the flashing
orange and yellow lights on the console.

Just then the computer operator went over to the ‘in’ counter and picked up the next
request form and read it. He took the stack of punched cards that accompanied the
request form and put them into the input hopper of the card reader. I watched the stack of
punched cards disappear into the card reader to be chewed on by that tin grasshopper and
reappear in a slot much lower on the machine. The operator restacked the punched cards
in its original cardboard box and went over to the printer where he gathered up the stack
of paper that came out of the printer. The paper and the punched cards went onto the
‘out’ section of the counter.

This is the cycle he repeated over and over during the day. Well, actually it was a bit
more complicated than this. Three different program requests were active at a time; the
request actually being run on the computer, the request that had just finished running, and
the next one to be run. In addition, he replenished the paper in the printer as it was used
up and made sure blank cards were in the cardpunch machine ready to be punched. He
performed this complicated little dance, weaving around his dance floor with stately
grace. I remember thinking that it took two to tango, and I didn’t know what dance
would accommodate all of his partners.

The next day as I worked at my desk I had the source deck in front of me. I had pulled
several cards out and was thinking about what corrections I needed to do, when somehow
the cards slipped and ended up on the floor. Only a few, and I quickly put them back in
the correct order, but the incident made me think.

Maria had made that wonderful diagonal mark across the top of the source deck but since
then I had inserted quite a few cards that had no mark at all on the top. I had even moved
a few cards around, making the diagonal line distorted at best. What would have
happened if I had dumped the whole box? That would be a disaster. Yet I never heard of
other programmers worrying about it. How did they deal with that potential problem?

“Bob,” I asked, “How do you keep your source cards in the proper order?”

He gave me that “You don’t know?” look and said: “How many columns are there on a
punched card?”

“Eighty,” I said. “Everybody knows that.”

“OK,” Bob responded, “How many columns do you use to describe your program?”

“Seventy two. The compiler only looks at the first seventy two columns on each punched
card.” I answered.

 - 12 -

“What do you do with the remaining eight columns, columns seventy three through
eighty?”

“Nothing.”

“And, can you think of anything that you could use those columns for?”

I thought for a minute. “A sequence number?”

He smiled and turned back to his work.

We had a punched card sorting machine that I had used a few times before. Another
desk-sized machine, it was a vital part of the punched card process. While it would only
sort one card column, or one digit of a number, at a time it would only take a few minutes
to sort using the eight-digit sequence number, if necessary.

Figure 8 Punched Card Sorter. The knob in the center of the right photograph is
the dial that selects a specific column to be sorted.

Ten minutes later I was back in his office. “I’ve decided that it’s too much work.
Whenever I add a new instruction to the program I’m out of sequence. And when I need
to reorder the instructions somehow, the sequence numbers will be all wrong anyway.
I’ll take my chances.”

He looked at me soberly, thought for a moment and said, “Let me tell you a story. Do
you remember Andy?”

“Yes.” I said. Andy had moved on several months ago. He was a good programmer but
self-centered and not well liked by the other programmers.

“Andy didn’t believe in sequence numbers,” Bob said. “And I worried about that,
especially since he would stack his source deck into the card reader without worrying
about who was ahead of him. Then he would leave, and when the computer had run his
program he wouldn’t be there to take care of his punched cards. It was up to the rest of

 - 13 -

us to take his cards out of the card reader and stack them somewhere until he finally came
back to get them.

“One day I decided to teach him a lesson. He had left his source deck in the card reader,
as he usually did, and when his program finished running Andy was nowhere around. I
took his cards out of the card reader and set them on the floor. Then I got another stack
of blank cards about the same height as his and put that stack on top of the card reader,
right where we usually put his source deck.

“Another guy and I waited for Andy to come back. When he did, I said to the other guy
‘And it was THIS big!’ spreading my arms wide and knocking the stack of blank cards all
over the place.

“Andy looked at me, looked at the cards all over the floor, and said ‘Oh shucky-darn’ or
something to that effect. He then pulled back his right foot, and he gave that neat stack of
cards on the floor a mighty kick!”

He got a faraway look on his face for a moment, and little laugh wrinkles appeared
around his eyes. Then he looked at me thoughtfully and said “We have a program that
will read a source deck and punch out a new copy with new sequence numbers on them.”

From then on I used sequence numbers.

My program grew. My cardboard box was almost full and it dawned on me that other
people were asking me how to solve little programming problems. I spent less and less
time in Bob’s office, and the questions we discussed became more about the philosophy
of programming and less about the technical issues of how to write a program.

One Saturday I went to the Lab to work on my program. I was a little behind schedule
and wanted to have the computer to myself. Or so I thought! I recognized several cars in
the parking lot as belonging to other programmers, and when I opened the door to the
computer lab they were clustered around the computer. Past experience told me that was
a bad sign. Was the computer broken?

The stillness of the group was ominous. Only two of them moved; the rest were intently
watching them. Bob was reading aloud from an instruction book while one of the other
programmers typed on the computer typewriter.

“We have it!” The computer operator said to me softly, not wanting to disturb Bob.

“What do we have?” I asked fearfully.

“We have the new MFT operating system. From now on, we can run more than one
program at a time on our computer. At least we should be able to Monday morning!”

 - 14 -

They were installing a new operating system for the computer! This would take a while,
but at least nothing was wrong with the computer. That was the good news.

I went home, disappointed at the lost time. I wouldn’t be able to do anything more until
Monday. All for a programmer’s toy that wouldn’t help me at all. Why would anybody
care whether a computer ran two programs at the same time? Each program would only
run half as fast, wouldn’t it? The computer only had so much work it could do, so many
instructions per second. Or minute. Or hour. At the end of the day no more work would
have been done, right?

I didn’t realize then that this new operating system would forever change how
programming was done. Within a month I had set aside my punched cards, and Maria’s
career as a keypunch operator was over.

Remember that second computer? I never used it. Neither did any of the other
programmers. The only people who used that computer were working on a project to
support document creation. I don’t remember the name of the project, but the secretaries
in the lab loved it.

Each of the secretaries had been given a Selectric typewriter just like the one that the
computer operator had. Those typewriters were connected to that second computer, and
the secretaries could save and edit long documents, something they had never been able
to do before! No more carbon paper and no more whiteout smears!

I got involved because I was writing, with our secretary’s help, a long technical paper
describing our project objectives. I remember that typing the cryptic characters p/322 (p
for print) would cause the typewriter to print line 322 of the report:
 Merry had a little lamb
Then, typing c/Merry/Mary/ (c for change) would cause the revised line to be printed out:
 Mary had a little lamb

It was wonderful. I loved it and probably spent as much time as our secretary working on
my document. I think I must have been a pest. When I was at work I would bounce back
and forth between working on my program and writing the new report for our project. I
finally agreed that I would use the typewriter only during the lunch hour.

The program that talked to all those Selectric typewriters ran on that second computer.
There it ran all day, changing things here for one secretary and printing things there for
another. But the computer was essentially useless to the rest of us programmers – it just
sat there. No big reports were printed and no decks of punched cards came or went. The
computer operator’s dance never involved that second computer. All the activity
occurred at the typewriters scattered around the Lab.

But when the new operating system, MFT, was installed, this document creation program
was moved to ‘my’ computer. I grumbled, because it meant that all the rest of the
programs, including mine, ran a slower. Besides, MFT took twice the amount of core

 - 15 -

memory, 64 kilobytes, meaning there was that much less memory for my program. The
computer only had about 512 kilobytes, so the amount of memory space left over was
reduced significantly. This was progress?

I would work on my program during the morning, and when our secretary went to lunch I
would race over to our Selectric typewriter to work on my report. When she came back
from lunch I would reluctantly give it up and go for lunch myself.

Bob stopped by one day on his way to lunch. He hadn’t spent any time with the
document creation program before, and this time I became the expert, showing what the
program could do. It made me feel good to answer his questions for a change! He didn’t
say much, but I got the feeling that he was impressed.

A couple of days later he came back. He said: “We’ve figured out a way to make the
document creation program look like the punched card reader to the computer. We need
to make a copy of your source code deck and store it just like the report you are working
on, and then you can use the Selectric typewriter to make your program changes. We
need you because you already know how to use the typewriter. I’ll help you get
everything organized the way you will need it.

“Let me borrow your source deck. I’ll bring it back in a few minutes,” he said.

Bob was one of few people I trusted with my source deck.

He came back shortly, and I put my source deck back in that special place on the shelf
where I kept it. Then Bob and I worked together at the typewriter - long past the time
that the secretary came back from lunch - and finally we had it. The computer was
running my program! We went down to the computer lab and from the ‘out’ counter
picked up a stack of computer printout. No source deck and no program deck. The
information on both had been saved on the disk storage attached to the computer. From
now on, any time I wanted I could use the document creation program to edit what I used
to call my source deck, or I could ask the computer to run my program. All I had to do is
sit down at the typewriter and type in a command to the computer!

But this would take some getting used to. For one thing, I had second priority on the
secretary’s typewriter, a distinct problem. Could I get a typewriter?

“No,’ Bob said, “But we will set one up in a room down the hall that we can all share.”

The next several days were hectic. All the programmers were learning how to use the
document creation program, and there was always a line of people waiting to use the
Selectric typewriter down the hall.

A few of the programmers were reluctant to make the change. Giving up their punched
cards was a big leap; being able to hold their source deck in our hands was important.
Also, the ability to hand a coding sheet to Maria in the keypunch room had always been

 - 16 -

heavily used by those without typing skills. But soon even the non-typists were
converted, however reluctantly, to the typewriter. The increased productivity, even for a
hunt-and-peck typist, was just too great to ignore.

My source deck stayed on the shelf where I had set it, and the card reader in the computer
lab now sat idle most of the day. The computer hummed, though, and while the ‘in’
counter grew dust bunnies, piles of computer printout grew on the ‘out’ counter. It no
longer held stacks and stacks of punched cards.

One evening, as I straightened up my office getting ready to go home, I thought about
that card deck sitting on the shelf. I hadn’t used it for several days, and, it was out of
date. I had used the document creation program to make several changes, some
important, to my program without bothering to update the punched card deck. Clearly
some major effort would be required to update the card deck, and if I didn’t do that, the
card deck would shortly be worthless.

However, all that effort would be wasted if I didn’t use the card deck.

Would I use the card deck again? I couldn’t think of a reason, as long as the document
creation program continued to work as it was. Bob had assured me that I could, if
necessary, ask the computer to punch out a new source deck if I needed it. Reluctantly I
decided that I would not update my source deck.

Pulling the box down from its shelf I lifted the top and looked at the cards. The box was
now almost full. Remnants of the diagonal stripe that Maria had drawn long ago on the
top of the cards were still there, interrupted by cards I had inserted later. There were
some finger smudges here and there, and on the
left side of the cards was a brown smear where I
had slopped, and then quickly wiped away,
coffee one day.

I ran my hand over the top of the cards and
memories floated up, as if the cards were
speaking to me in Braille. The long evening I
had spent creating a small section of bright blue
cards, just a hair bigger than the surrounding
cream cards. The difficult debugging process
that went into a particularly uneven section of
cards, where I had replaced and revised many
cards before I got it right. My fingers gliding
over a smooth section reminded me of the
satisfaction and pride I had when the cards
Maria created for me were intact, having
required no debugging at all. Figure 9 IBM 2311 Disk Storage Unit

Throwing away that card deck would be throwing away a part of my life.

 - 17 -

I got up and walked down to the computer lab. Inside, the familiar cold air and muted
roar welcomed me as I walked over to the disk storage units that now held my program
source – information? I chuckled to myself, thinking that I could no longer call it a
source deck, and that I didn’t know what the new name should be.

We had four of the disk storage units, each holding well over seven million characters of
information. One of the four had my source data. I had earlier decided that as long
as the computer knew where it was, and could connect me with it whenever I wanted it, I
didn’t need to know exactly which one.

I could see a stack of spinning disks through the clear Plexiglas cover, and I knew that
little tiny magnets embedded in the thin coating on those spinning disks now defined my
data. This was my future, whether I wanted it or not. As I had done with my card deck, I
reached out and put my hand on one of the disk storage units, but the machine didn’t
speak to me. That faint impersonal vibration had no meaning, invoked no memories.

Back in my office I closed the lid on my box of punched cards and carefully put it back
on the shelf in its familiar place.

The next day, feeling like a pallbearer at my own funeral, I brought my source deck down
to the computer lab and laid it tenderly in the recycling bin there. And then went back to
my empty office.

We got several more typewriters, and these were
immediately put into use.

A shipment of television-like display terminals
arrived, and they were rapidly set up around the
building to replace and augment the typewriters.
The computer lab process of managing a bunch
of programs, all submitted by different
programmers at the same time, became more
streamlined, and the turmoil in our daily
schedule slowly died back to its normal level of
chaos.

I finished my program. At least as much as any Figure 10 IBM 3270 Display Terminal
useful program is ever finished, as I continued
to receive requests for improvements. I enjoyed the feeling of accomplishment when the
program became more and more useful; the feeling of satisfaction when others used my
program.

Maria stopped by my office one day. “It’s been great working with you,” she said.
 “I’m not sure where I’ll be going.” We walked down to the cafeteria where I bought her
a cup of coffee, and we chuckled remembering my early attempts to master the art of

 - 18 -

punched cards. She showed me pictures of her family. A shadow lay over the day,
darkening my mood as I walked back to my office alone. I knew that someone special
had left of my life. I never saw her again.

A couple months later it dawned on me that she and I had shared a unique moment in
history. There are words for it – an inflection point, a paradigm shift, a sea change.
Whatever you call it, our world had changed forever.

A programmer’s office was no longer filled with stacks and stacks of punched cards. No
less messy, maybe, but no punched cards. Now I started to see reels of magnetic tape
and, sometimes, magnetic disk cartridges, the very expensive spare-tire-sized floppy disk
of the day. But mostly our programming world revolved around stacks of computer
printout paper. Our shelves became repositories of paper.

No longer could we hold our program in our hands, feel its heft, measure our productivity
by the pound. Now our programs were ‘out there’ somewhere, just as useful as before
but not visible in the way we were used to. The electronic age hadn’t mutilated that
sturdy punched card, but it had figured out how to ignore it.

The Twentieth Century had, as a technical foundation, that little piece of cardboard with
holes in it. The 1890 census started it, Social Security in the 1930’s cemented it into our
culture, and throughout the first half of the century IBM Unit Record Equipment
supported and automated the growth of business and our society.

While we will talk about punching in and out of work for a long time, today that punched
card is seen primarily on Election Day. The threat of ‘hanging chads’ will soon eliminate
it even there.

Incidentally, have you ever heard the term ‘Throw it in the bit bucket?’ Computer people
use it to imply that something has been deleted from the computer memory. The bit
bucket has become a slang term for a computer trashcan, when those little tiny magnets
on a spinning disk are used for something else. There really was a bit bucket. Whenever
a card was punched, a small number of little, tiny rectangles of cardboard were punched
out of the card. The chad. That chad went into a little tin container and was later
discarded. That container was - guess what – the bit bucket.

The things in our lives go through a cycle. They start out being modern, then mature,
dated, outmoded, obsolete, junk, finally retro and ultimately antique. The punched card
is now approaching the antique stage.

My daughter still talks wistfully about that Christmas wreath we made by stapling blue
punched cards together in a ring. One year a squirrel got into our attic and ruined it, and
we can’t duplicate or repair it – we have no cards.

Maybe we can find some on ebay.

 - 19 -

Figure source web sites.

I am grateful for their visual contributions to this tale. The pictures are included
for illustration only, and I do not hold or claim copyright on the pictures, which are
the property of their respective owners.

Figure 1 http://www.nfrpartners.com/comphistory/punchcards1.htm

Figure 2 http://www.columbia.edu/acis/history/029.html.

Figure 3 http://www-03.ibm.com/ibm/history/exhibits/mainframe/mainframe_2423PH2040.html

Figure 4 http://www.columbia.edu/acis/history/029.html

Figure 5 http://www-03.ibm.com/ibm/history/exhibits/mainframe/mainframe_2423PH2050.html

Figure 6 http://www.columbia.edu/acis/history/2540.html

Figure 7 http://www.rwc.uc.edu/koehler/cshist.html

Figure 8 http://www.rwc.uc.edu/koehler/cshist.html

Figure 9 http://ibm1130.org/hw/disk

Figure 10 http://www.cs.utk.edu/~shuford/terminal/ibm.html

