N~
o0
~ g - Scribe:
£ \ e gl
N A Document Specification Language
. - and its Compiler
=T,
Q
< Brian K. Reid
October 1980
DEPARTMENT
of
COMPUTER SCIENCE
3

a

S

e

Z Carnegie-Melion Universiiy
£2 | |

3

: This docwmont DUOT APPIo ved
(& 3 &

for pu’:;;:: FE AT il sgee) 8 <
: @A
disgibution is unlinuted.

P A At g it i AR i

...............................

Tal

CMU-CS-81-100

A

Scribe:
A Document Specification Language
and its Compiler

.
.

v Accession For
iy

NTIS GRA&I
DTIC T43

Brian K. Reid
October 1980

Submitted in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy in
Computer Science at Carnegie-Mellon University

The author was supported by a Computer Science Department Research Assistantship while a
graduate student, and gratefully acknowledges the numerous funding agencies, including the Defense
Advanced Research Projects Agency, the Rome Air Development Center. and Army Rescarch. which
at various times funded that assistantship.

Support for the CMU Computer Science Department research facility, in which this work was

performed, was provided by the Defense Advanced Research Projects Agency (DOD), ARPA Order

. No. 3597, monitored by the Air Force Avionics Laboratory under Contract F33615-78-C-1551. The

o Xerographic printer on which this document was printed. and the workstations at which the diagrams
& were produced, were donated by the Xerox Corporation.

5 The views and conclusions contained in this document are those of the author and should not be
,! interpreted as representing the official policies, expressed or implied, of the funding agencies, the
U.S. Government, Carnegie-Mellon University, or the author's advisor or thesis readers.

R AL P S SPI PP ASNPM? ELE TR PR SO Sy P I GNP, PO cm BB ar e mtan A A i n o PO — s e -—-A-AJ

4
r
.9
,..
ﬁ»
P
w ,
P]
X]
s 4
ﬁ,ns ’ 4
P, .
3
o o

to Loretia
who saw me through it all

”
. .
! -
&

1..h nq
t ’ .
.- .

.
B
¥ ¢
. .
‘u .
f..

-

..- -.
-..A.

..4.

‘.. r

.

]]
Q-- ,

f .

. §
» N -
-.. L

.

s e e e .A..........u.h.‘..*‘..b-ln.......
. REEn o REN AN . S A IR

HP.- ot ot ,F“wl.k. ERTRISCR) LN "I 0 1 V)

- PR

. LA

y IR I AT Y NN
ARG et B 4

Abstract

N

A

N
It has become commonplace to use computers to edit and format documents,
taking advantage of the machines’ computational abilities and storage capacity to
relieve the tedium of manual editing and composition. A distressing side effect of
this computerization of a previously manual craft is that the responsibility for the
appearance of the finished document, which was once handled by production
editors, proofreaders, graphic designers, and typographers, is in the bands of the
writer instead ng the producnon staﬁ‘

[~ J\r

In this thesis I describe the desngn and tmplcmentanon of a computer system for
the production of documents, in which the separation of form and content is
achieved. A writer prepares manuscript text that contains no mention of specific
format; this manuscript text, represented in a document specification language, is
processed by a compiler into a finished document. The compiler draws on a
database of format specifications that have been prepared by a graphic designer,
producing a document that contains the author’s text in the designer's format.

To simplify the knowledge representation task in the document design database,
the document preparation task was parameterized into approximately one hundred
independent variables, and the formatting compiler is controlled by changing the
values of those variables. The content of the document design database is primarily
tables of variable names and the values to be assigned to them.

;I-j To enable substantial feedback from actual users for validating the design,
'-‘.f"- parameterization, and general utility of such an approach, the resulting computer
w system was built as a production-quality program and documented as a piece of
re software rather than as an experiment. Released under the name Scribe, it has been
used as production software at several dozen laboratone; It is therefore possible to
B report on its effectiveness as well as its design and construction. I conclude with a
- critical retrospective on the project’s basic principles, its implementation, and its
t' ' overall strengths and weaknesses as compared both 1o existing alternatives and to an
- envisioned ideal.

L

ke

X

2

.....

el Tl Az

A Linguistic Note

It is customary in scholarly writing to avoid the use of the first person, usually by
using the passive voice. A sentence such as
“] did not get the same results as did Smith when I performed the
distillation experiment.”
is often transformed into something like

“The distillation experiment did not yneld the same results as when
Smith performed it.”

In an attempt to recover some of the clarity of the original sentence, a common trick
is to rephrase it in the third person:

“The author’s results at performing the distillation experiment were not
the same as Smith’s.”

This thesis is about writing, publishing, and printing. I must frequently refer to
“the writer” or “the author”, not in an attempt to escape the first person for the
third, but to talk about the writer who is using the computer system that I describe,

or to differentiate an author from an editor or a proofreader in a discussion of

information flow. As a further complication, the word “editor” used in the context
of computer science normally refers not to a human being but to a computer
program that changes text. Furthermore, following the dictum of current style
conventions, the active voice is used [42, p. 13] I have therefore adopted the
following cast of characters in this thesis:

I, me: Brian K. Reid
the author: Someone who has produced a written manuscript
the writer: Same as the author
editor: A copy editor; a human being
text editor: A computer program to change text

...........................
..............
.........

Table of Contents v

Table of Contents

PARTI:

Introduction 1
1. Prior Work S
2. Goals and Principles 9
" 21 Eanguage Goals n
2.1.1 Portability 11
2.1.2 Nonprocedurality n
2.1.3 Domain 14
2.2 Compiler Goals 14
2.2.1 Quality 15
2.2.2 Clerical support 15
2.2.3 Mutability and Definition by Analogy 15
2.3 Documentation Goals 16
3. Typography and Formatting 19
3.1 Letter Placement and Spacing in Text 20
3.1.1 Letter spacing and kerning 20
3.1.2 Ligatures 24
3.1.3 Diacritical Marks 24
3.2 Lineation and Word Placement 27
3.2.1 Word Spacing and Justification 27
3.2.2 Paragraphing ' 28
3.2.3 Hyphenation 30
3.3 Tabular and Display Material 31
3.4 Page Layout 32

PART II:
Design and Implementation 35
4. The Document Specification Language 39
4.1 Rationale 39

4.2 Syntax 41

................................

vi A Language and Compiler for Producing Documents

4.3 Language Abstract 4

- 4.3.1 Environments 4

4.3.2 Document Types 43

4.3.3 Commands 45

4.3.4 Declarations 45

4.4 Character Sets and Font Variations 46

4.5 Language Examples 48

5. The Environment Mechanism 83

2 5.1 Environment Entry and Exit 53

- 5.2 Types 4

& 5.3 Dynamic State Parameters 55

L 5.4 Static State Parameters 56

b 5.5 Pattern Templates 56

= 5.6 Definition by Analogy . 58

o 5.7 An Dlustrated Example 58

6. The Database 61

b 6.1 Device Data 61

; 6.2 Font Data &

6.3 Document Format Definition Data &4

6.4 Libraries 70

: 7. A Writer’s Workbench 71

& 7.1 Derived Text Y41

7.2 Bookkeeping and Numbering 72

7.2.1 Cross Referencing 72

) 7.2.2 Indexing 73

7.3 Document Management 75

F 7.3.1 Division into Parts 76

o 7.3.2 Separate Compilation i

" 7.3.3 Document Analysis Aids 78

o 7.3.4 Draft Editions ' 78

'@ 7.4 Database Retrieval 80

A 1.5 Summary and Prospectus 82

8. The Compiler 83

o 8.1 Overall Organization 83

X 8.2 Information Flow 85

™ 8.3 The Auxiliary File Mechanism » 86

- 8.4 Data Structures and Data Flow 87

8.4.1 Low-level data Types 87

.Z: 8.4.1.1 Simple Types 87
e
‘

...

Table of Contents

8.4.1.2 Records and Storage Management
8.4.1.3 Strings
8.4.1.4 Association Lists
8.4.2 High-Level Data Structures
8.4.2.1 Manuscript Files
8.4.2.2 Fonts
8.4.2.3 Environments -
8.4.2.4 Text Buffers
8.4.2.5 Symbol Table
8.4.2.6 Dictionaries
8.5 Parsing and Error Reporting
8.6 Formatting and Justification
8.6.1 Word Assembly
8.6.2 Line Assembly
8.6.3 Box and Page Assembly
8.6.4 Hyphenation
8.6.5 Footnotes
8.6.5 Floating, Grouping, and Page Break Control

PART lli;
Results, Conclusions, and Future Directions

9. An Evaluation of the System

9.1 Chronology

9.2 Evolution of the Compiler

9.3 Evolution of the Manuscript Language
9.3.1 Evolution of the Databases

10. Critical Retrospective

10.1 Language Goals
10.1.1 General Language Issues
10.1.2 Portability
10.1.3 Domain

10.2 Compiler Goals

10.3 Documentation Goals

References

Acknowledgments

Glossary

Appendix A. The State Parameters
A.1 Dynamic State Parameters

103

105

105
106
107
108

111

111
111
114
116
117
118

121
127
129
133

133

-‘ B O e T T T e T T e
;'j viii A Language and Compiler for Producing Documents
“ A.2 Static State Parameters 139
B Appendix B. Compiler Implementation Details 143
¢ B.1 The Generic Operating System Interface 143
! B.1.1 The File System 144
- B.1.1.1 Open for Text Input 144
B.1.1.2 Open For Text Output 144
B.1.1.3 Check For Text Input 145
B.1.1.4 Check For Text Output 145
B.1.1.5 Open Unique Text Output 145
B.1.1.6 Close File 145
B.1.1.7 Close and Delete 145
B.1.1.8 Rewind 146
B.1.1.9 Read Text Character 146
B.1.1.10 Write Text Character 146
B.1.2 Address Space Management 146
B.1.3 Environment Inquiry 146
B.1.3.1 Determine Date 146
B.1.3.2 Determine Time 147
B.1.3.3 Determine File Date 147
B.1.3.4 Determine File Time 147
B.1.3.5 Determine User Name 147
B.2 The Generic Device Interface 147
1
- . . e e e e _ﬁ

List of Figures

Figure 1: Information flow in a traditional publishing operation.

Figure 2: Ideal information flow in an automated publishing operation.

Figure 3: Information flow in a typical computerized publishing opera-
tion.

Figure 4: Type slug, showing protruding kerns.

Figure 5: Mechanical (top) and visual (bottom) spacing of the same text.

Figure 6: Derivation of kerning lists from spacing matrix.

W NN

N Figure 7. A ligature character.

h Figure 8: Variations in accent marks of letters within a font.
- Figure 9: Paragraph with “rivers” of white space.

o Figure 10: Unusual paragraphing styles.

% Figure 11: Various schemes for marking text.

-, Figure 12: Font environments in the basic language.

Figure 13: Paragraph envitonments in the basic 1anguage
Figure 14: Simple Scribe manuscript.

Figure 15: Document produced from manuscript in Figure 14
Figure 16: An elaborate scribe manuscript.

Figure 17: Document produced from manuscript shown in Figure 16.
Figure 18: Manuscript used for the example in Figure 19.
Figure 19: State vector changes during environment processing.
Figure 20: Device definition for a photocomposer (part one).
Figure 21: A font family definition (Times Roman 10).

Figure 22: Sample device font (Times Italic Bold).

Figure 23: Document format definition for a business letterhead.
Figure 24: Document format definition for CMU thesis.

Figure 25: Twenty basic rules for indexers, from Collison [11].
Figure 26: Decomposition of a document into a file tree.

Figure 27: Sample document directory.

Figure 28: Sample cross-reference summary.

Figure 29: Conceptual structure of the compiler.

Figure 30: Code space distribution.

: Figure 31: Scribe data flow paths.

Fd Figure 32: Major data flow paths » “~*~the .upiler.

o

AANERS B9+ st aaDaOMD (5 SoKiuria e
BRERRIZFISIQSTBBIzsserEaEBRUEBEY

[P VO S Y e AT S Y "y o - 2 - . - P S ey R PR - ST G SR S

Introduction . ' 1

Part |

Introduction

Throughout history the reproduction of written material has been a craft
requiring an enormous amount of tedious handiwork and a certain amount of
intelligence and artistic sense. Beginning with Gutenberg’s automation of the
process of shaping the letters, various technological advances have reduced the
tedious portions of the printer’s art, but few inroads have been made into its more
cerebral parts. This thesis describes a research project into automating those parts of
the printing process that have traditionally required too much skill or artistry to be
properly mechanized.

The production of modern-day printed material follows an information flow
similar to that shown in Figure 1. An author types his work in rougii form, and
submits it to an editor. The editor marks various changes, and submits the marked
manuscript to a typesetter, who produces typeset galleys. These galleys are then
proofread against the original and possibly returned to the typesetter for error
correction, and finally passed to the page makeup staff, who cut the galleys into
page-size pieces, placing figures and footnotes and adding page numbers and other
“running head™ material. If the book is to have an index, then page proofs are
hurriedly sent to an indexer, who produces the index for the book from the page
proofs. The index is then rushed off to be typeset and made up into pages and
added to the end of the book, which is then printed.

. - Lt el e . . o
EEPR PRI S P WP N W S S SO WP P G Y 2 mm

TTVF

YA A R AR st st S SRS ey T, . v

RANLPL I AR AN Sl Aaoh Sl SENL ML L Svill ok il Srdh JEaiL SRS RGNl eus T —————— T

2 A Language and Compiler for Producing Documents

f—s Document design
\ . Typographic expertise \ |
¥ | | |
l |
l i

Typesetter /—‘ Layout expertise
\' Page ‘

Makeup
hY

N

Flow of text

N

Finished Document

Figure 1: Information flow in a traditional publishing operation.

[—- Document design

/_\ Typographic expertise

/—N Layout expertise !
|

Flow of text

b |

Finished Document ’

Figure 2: Ideal information flow in an automated publishing operation.

Introduction 3

There are numerous sources of cost and delay in this production scheme. When
the text is passed from each person to the next, errors and misunderstandings
inevitably occur. Various tedious aspects of the page layout, such as footnote
placement and cross-reference resolution, need to be completely redone if small
changes to the text cause pagination to change. The index cannot reasonably be
produced until the book is completely finished and all of the pagination decided.

We would like to be able to perform all of the tedious production work with a
computer, so that the flow of work would be as shown in Figure 2. In comparing
Figures 1 and 2, note that they differ only in the substitution of a computer system
for several of the currently-manual processing steps.

Document design

Ty pographic evpertise

Layout expertise

Text design.

Compuier sistem

typographic expertise.

and iax out evpenise

N

Finished Document

Figure 3: Information flow in a typical computerized publishing operation.

Previous attempts at complete computerization of the printing process, while
technologically successful, have lead to a disruption of the traditional flow of
information and expertise. Figure 3, for example, shows the flow of information
and sources of expertise in a typical computerized publication operation. The
author is now responsible for essentially all of the final appearance of the document,
since the control codes that determine the appearance of the finished document are

..................

4 A Language and Compiler for Producing Documents

intermixed with the author’s text, and often typed by the author himself. While
many authors enjoy this involvement in the physical and artistic aspects of the
printing of their work, not all are interested or qualified [15].

The Scribe document specification language was designed to permit writers to
prepare text in a relatively informal manuscript form that contains litde or no
typographic information. This language is processed by the Scribe compiler, which
supplies all of the missing typographic detail to produce the final document. This
first part of the thesis is devoted to a discussion of the ideas behind the language
design and the principles behind the compiler design, and to the problems that need
to be addressed by any document preparation system, whether automated or
manual. Chapter 2 details the goals for the Scribe language and compiler. Chapter
1 sketches the prior work in computer document production. Chapter 3 discusses
the issues raised and problems to be solved in document formatting.

LESCNS 4

LOR A e, SEN 0 & 2aflusr

A L UM A S MR By arag

Prior Work 5

Chapter 1
Prior Work

The early applications of computers to document formatting were concerned
either with computer control of commercial typesetting equipment or with crude
monofont formatting for a line printer. Very little of the pioneering work was
recorded in the literature, but one can get a sense of the goals indirectly from the
tone and intended audience of the instruction manuals.

The earliest text-formarting program known to me is the Print program com-
pleted in 1959 at Johns Hopkins University by R. P. Rich. It ran on an IBM 1401
computer, and produced output for an all-uppercase line printer [38]. Interestingly
enough, it was not designed explicitly as a document preparation program, but as an
information retrieval aid for a simple database system—it obviated the need for the
textual data being stored to be in any particular format.

In 1963 Barnett, Moss, Luce, and Kelley reported the successful completion of a
computer-controlled typesetting systemn that operated an optical photocomposer.
The input commands in their formatting language corresponded to the physical
capabilities of the typesetting machine: there were commands to change fonts,
change magnification, position text, and so forth [4, 5]. Also in 1963, a formatting
program for the IBM 7090 called Text90 became available. Produced by G. Bums,
it formatted text for a line printer, and with special print trains was capable of
generating mixed case and special symbol output from punched-card input.

These two programs, one representing the point of view of commercial type-
setting and the other the point of view of a software documentation writer. were the
opposite ends of the spectrum in terms of their goals. Barnett er al’s program placed
typographic quality as the foremost goal, requiring the user to learn the nuances of
the typesetting machine and to communicate with it in a language that is by modem
standards unintelligible. Text90 placed simplicity of input as a high-priority goal,
and since it could not achieve quality typography on its output line printer, it almost
totally ignored questions of typography, concentrating instead on control and
simplicity. The designers of all formatting programs must steer a compromise path
between these fundamentally conflicting goals of simplicity and power, and in

P AR U S PN

M NN -
e, . f
. . e

Y
COREAA
AR

e S04

e

Ty
&

6 A Language and Compiler for Producing Docum:nis

studving these and later programs it is worthwhile to note the compromises of
simplicity that were made in the interests of power and the compromises of power
that were made in the name of simplicity.

Manuscript conventions used in Text90 have carried over into many similar
computer text formatters. J. Saltzer's Runoff program developed at MIT for the
CTSS system, which was operable by 1966, is the direct ancestor of most of the next
generation of formatters such as Roff; TRoff; Script, Pub, and Text360 {20, 34, 43].
The formatting programs in this family all used the input language convention that a
flag character in the first position of an input record denoted a command and other
lines were text. The early programs in this family were restricted to monofont
printing devices; TRoff and Pub later provided multiple fonts and character sizes.

_ While the basic command structure of these programs was device-oriented and

tedious, some of them provided a macro facility that allowed an ambitious user to
produce high-level commands by macro combinations of the existing commands.

Barnett's work at MIT led tc the development by P.Justus of the Page-]
formating system at RCA, as part of the development effort for the RCA
VideoComp photocomposition system [22, 35]. Justus later produced Page-2, a
successor to Page-l. RCA sold its interests in the VideoComp hardware and
software to Information International Inc. (I11), who continued the software devel-
opment on Page-2. Bell Labs’ TRoff and III's Page-2 are currently the most widely
used programmable photocomposition languages. - A successor to Puge-2. numed
Page-I11, has recently been released.

In 1965. M. V: Mathews and J. E. Miller of Bell Labs reported a system for
editing and typesetting that involved a high-resolution oscilloscope with a camera
mounted in front of it [27]. Although it used a display tube, which in current
technology is associated with interactive systems, the Mathews and Miller system
was a batch system. It was similar in philosophy to the Barnett program, but did not
have the commercial-grade typesetting machine available as an output device.
High-quality mathematical and oriental-language typesetting was achieved by A. V.
Hershey, of the Naval Weapons Laboratory (Dahlgren), who produced both a
typesetting system and a typeface design system that could handle calligraphy and
oriental languages as well as normal type [19].

Until about 1975, the trend in document preparation programs was towards
increasing programmability by macros or interpreted commands. Essentially all
were compiler-model programs, which is to say that they operated on a prepared
manuscript file to produce the output file. with no interaction with the user. (The
Quids interactive documentation system developed at Queen Mary College by
Coulouris et al. is a notable exception [12].) The DPS program developed at the
University of Maryland by K.Sibbald in 1973 epitomizes the algorithmic

Tad "0
L etes

rl

'
r.
.
»

— M S AL A D P
f . L.
0y + oo .

AN SPEATAN

hatier ABeg MM IR

Y
AAROE P8

LRt St Sheh S AP M Ie N R SN P
T - ~ W S -

............

Prior Work 7

approach [40). Its manuscript language was imbedded in an interpreted prog-
ramming language similar in style to Snobol; almost every user-level command was
microprogrammed in this interpreted language. Other notable algorithmic systems
are the Script family of programs {20}, and the Texture system developed by
M. Gorlick et al. at the University of British Columbia [14).

These early formatting programs had the common property that they all proc-
essed a low-level device-dependent input language. The user needed to modify the
manuscript file to format for a different device, and needed to be aware of the
detailed properties of the printing device if he wanted to use them. In 1975 the first
high-level formatting system was reported by B. Kernighan and L. Cherry [23].
Their EQN system for typesetting mathematics processed a high-level machine-
independent language into a formatted mathematical expression, regardless of the
particular printing device used. EQN was actually implemented as a preprocessor to
TRoff, but that fact was essentially invisible to a casual user. The concept behind
the EQN system—a high-level problem-domain language with a processor that
handles all of the device-dependent details—is one of the major concepts embraced
by the work reported in this thesis.

The Yorktown Mathematical Formula Processor, developed by N. Badre at the
T.J. Watson research center, is extremely similar to EQN in concept and
implementation [3). Another high-level system conceptually similar to EQN was the
Generalized Markup Language (GML) developed starting about 1970 by
C. Goldfarb at the IBM Cambridge Scientific Laboratory, and first available in
1978 [13]. It is a modification to the basic IBM Script system that allows automatic
database retrieval of appropriate macro definitions according to the printing device
selected.

Also reported in 1975 by B. Lampson was the Bravo system [25]. Although its
only description is a user’s manual that has never been published, the Bravo work
has strongly influenced the design of text editing and formatting programs [33]. One
expects that as computer hardware capable of supporting such systems becomes
generally available, its influence will be more obvious. Bravo is a display-oriented
formatting editor, running on a raster-display graphics terminal capable of display-
ing an entire page of text in actual size. The essence of Bravo is the maintenance on
the screen of a faithful image of the finished document with all fonts, spacing, and
letter sizes current on the screen. As the text is changed, the display is quickly
updated to reflect that change. Unfortunately, the size of Bravo's video screen (8
inches wide), the resolution with which dots can be displayed on it (80 per inch),
and the useful resolution of the pointing device used to select letters on it (about
0.05 inches) led to an implementation of Bravo in which the screen is only a crude
approximation of the final output; in particular, line breaks do not appear in the

v rTT AR
...-’.:.-. ”

......
......

A R
y N . .

i ‘e ‘. »

.

8 A Language and Compiler for Producing Documents

output as they did on the screen. As a result, Bravo is nearly useless for high-
precision formatting.

As computer-controlled typesetting matured, more attention was turned to the
quality of the typesetting. N. E. Wiseman, C. I. O. Campbell, and J. Harradine
developed a book-production system at the University of Cambridge for the
Cambridge University Press; it was reported in 1978 and is in production at the
University Press [48].

In 1978, D. E. Knuth of Stanford University described his landmark TEX (Tau
Epsilon Chi) system [24]. TEX was designed to give a writer the ability to produce
technical manuscripts of the highest quality. Intended primarily for the production

" of books and other high-quality manuscripts containing large amounts of mathe-

matics, it incorporates and expands upon many of the fundamental ideas of EQN in
a formatting program that takes typographic quality seriously. The resulting system
is very successful; and has proven to be extremely powerful in the hands of expert
users. Many of the algorittms used internally by TEX for line breaking, hyp-
henation, page layout, and justification are notable improvements over the classical
algorithms used in essentially all prior work as well as in Scribe. These algorithms
are mentioned briefly in appropriate places in Part II of this thesis.

While TEX is the asymptotic case of a system that is willing to sacrifice in the
interest of quality of the finished product, programs at the other
asymptote—systems that sacrifice everything in the interests of simplicity—have
been in use for some time in the publishing industry. Usually called idiot text
systems in the printing industry, they process raw text that contains no commands at
all, 1o produce galley files for commercial typesetting systems. These galley files
must then be manually edited to override mistakes made by the idiot text system,
but the bulk of the work—input of the actual text characters—does not need to be
repeated. None of these systems is described in the literature.

........................

1 Goals and Principles 9

3 Chapter 2
;o Goals and Principles

The ideal text formatting system is a good secretary. He can be given rough
- handwritten manuscript text and from it produce a polished document in approp-
! riate form. A near-perfect separation of content and form is achieved: the writer
3 provides only the text and the secretary performs all of the formatting, though
g possibly the secretary is assisted by clues or remarks placed in the text by the writer.

The fundamental goal of the research reported in this thesis was the design,
construction, and documentation of a computer document preparation system that
offers the same level of support for a writer that a good secretary does. Ideally, the
writer would provide only text, and the computer system would correct spelling and
grammar and perform all of the formatting.

The methodology used was to design a document specification language that
embodied the kinds of information that a writer might reasonably be willing to
convey to a secretary, and then to devise a compiler capable of compiling that
language into an actual finished document. In the course of designing the compiler,
it was found necessary to incorporate into it various specialized knowledge about
tvping and formatting as well as a more general mechanism for adding new
knowledge to the compiler. The overall development strategy was to preserve the
simplicity and domain of the specification language regardless of the complexity
needed in the compiler to compile that language properly.

Since the overall project goal involved the construction of a working compiler for -
release to actual users, various subsidiary goals for that construction were adopted.
Most of these goals amount to good engineering practice rather than innovation, and
would be equally applicable to other compiler-like programs. Some of the goals
specific to the document production task were motivated by negative experience
with earlier document production systems.

After suitable reflection on the aggregate of project goals, design principles, and
physical limitations on the available editing and printing devices, the following
outline was set for the entire Scribe effort:

10 A Language and Compiler for Producing Documents

o Design a document-specification language of documents that frees the
author from the need to specify any output format details but encour-
ages him to identify and label the components of a document.

o Design and implement a compiler to process that language into finished
documents. The compiler is to provide all of the details of formatting
that were omitted from the manuscript.

o Design a knowledge representation and retrieval mechanism for the
storage of these format details that will permit the compiler to be made
to produce a wide range of document formats with reasonable efficiency
and grace, and that will permit users of the system to define their own
document formats or modify existing formats.

¢ Determine how to teach the system to novices, and write an introductory
manual that presents the material properly. Since the system differs
from existing similar systems in concept and not just in detail, the
manual should also be able to present the material to people who are
experienced users of other systems, Two different approaches might be
needed for these two different audiences.

Users rarely perceive a system in terms of its separate design components, but will
instead see and use it as a monolithic whole. Various goals were therefore set for the
whole Scribe system, as understood and used by its user community. These goals
flavored the design of the language, the structure of the compiler, and the
organization of the manual. Although these goals were set as guides for the
implementation, they are actually goals for the user’s perception and style of use of
the finished system.

The remainder of this chapter is devoted to more detailed discussion of those
goals, principles, and beliefs that together motivated the design of the Scribe
language and shaped the implementation of its compiler. Chapter 10 reviews these
same goals, with commentary and analysis of how realistic they were and how well
the finished system managed to meet them.

.
N
-

e

el

Ty v ey Tty R Ry L) N /S S Aer e A

P

..........................

Goals and Principles 1

2.1 Language Goals

The Scribe document specification language is the language in which manuscript
files are prepared. The compiler produces finished documents by processing files in
this language. We want the document specification language to be able to serve
both as the input to the compiler and as a communication language for the
transmission of documents from one site to another. Furthermore, the language is
to be nonprocedural, which is to say that it should direct the final result of the
compiler without regard to the details of processing needed to achieve that result.

Nonprocedurality means that “statements” in the document specification lan- _
guage should be viewed not as imperative commands to the compiler, but as goals
for the compiler. Furthermore, since the substantive part of a manuscript file is its
text, the specification language is best viewed as a commentary on that text, as a set
of labels or annotations marking sections of it. These labels can be very abstract: by
combining the role label with specific goal information from the database, the
compiler can determine the necessary or appropriate concrete action.

The document specification language must be able both to label regions of the
text, as for example “this is a chapter heading”, and to mark specific points within
the text, as for example “a footnote reference goes here”. The compiler or human
reader must be able to distinguish unambiguously the text from the text labels.
More conventional document production systems—publishing houses, for
example—use visual methods, such as colored pencils or marginal notations, to

- distinguish text from labels. Since our language must be representable as a linear

stream of characters, there must be some way of distinguishing text characters from
label characters.

2.1.1 Portability

If the manuscript form of a document is not tied, explicitly or implicitly, to a
particular printing device, we say that it is device-portable. If it contains nothing
that ties it to a particular computer, then we say that it is site-portable. The mention
of specific margins or amounts of spacing between lines or the mention of specific
fonts, for example, will make a document be dependent on a particular printing
device; the mention of file system directory names or “library” files not part of the
manuscript will make it be dependent on a particular computer site.

If a manuscript file is both device-portable and site-portable, then it can be
transmitted to another site as a means of communicating the document without the
sender and receiver needing to agree on compatible manuscript conventions. The

O A‘I’|-'Y‘TH,‘ L
Tt s LTl Let

e
-

12 A Language and Compiler for Producing Documents

receiver can compile it locally into a document, using whatever printing device is
convenient. '

We therefore require that the document specification language used in manu-
script files be completely site-portable and device-portable, in order that it can be
used as a document communication language as well as a document specification
language. The necessary device-dependent details must be filled in by the compiler,
which must therefore be sophisticated enough to generate the concrete device-
specific document from an abstract device-independent manuscript.

There are two different interpretations of the notion of device portability. The
first might be called “imitation of the ideal”, and the second might be called
“making do with the resources at hand”. The first approach, imitation of the ideal,
embraces the notion that there is one true output format for a document, namely the
one that would be produced by a typesetter with an unlimited supply of fonts.
Lesser printing devices are just an imperfect imitation of this ideal format, and one
achieves portability by imitating the ideal format as closely as possible on the
printing device at hand. The second approach, making do, assumes that the user is
not interested in printing an imitation of a typeset document on some lesser
machine, but rather in producing something that is maximally readable and
attractive on the printing device at hand. The design goal for Scribe was to produce
the best output for each kind of printing device, rather than to imitate the ideal.

2.1.2 Nonprocedurality

If the primitives provided by any system, whether digital computer or bank teller
machine, coffee percolator or kitchen stove, do not directly fulfill the needs of the
user, then he must synthesize the desired behavior by combining the primitives
provided into patterns that yield the desired effect. Systems that are designed to be
general-purpose, such as digital computers and kitchen stoves, typically provide
low-level primitives that must be combined into higher-level functions before they
are of any direct value to the end user. Systems that are designed to be special-
purpose, such as automatic bank teller terminals and coffee percolators, provide the
funcdonality needed by the intended user as direct system primitives.

There is clearly a continuum of possibilities between purely procedural and
purely nonprocedural systems. If a system can be used directly, without synthesis,
to solve the problem at hand simply by our describing to it the desired effect, then
we call it purely nonprocedural. A vending machine is a pure nonprocedural system
in the domain of food distribution: the desired result (candy bar, peanuts, gum, ice
cream) is communicated to the system by way of its specialized keyboard, and the

L-"-__.‘_..--4J.A_A_-A' Py

Goals and Principles 13

mechanism within it delivers up the candy bar by means invisible to the user. The
details of the algorithm used by the machine to locate and deliver the candy bar vary
with its storage allocation schemes and implementation quirks. Their varying effects

! - are sometimes discernible by an alert user in terms of delays or noises, but the result
e is normally the desired food item.

« If a system cannot be used directly to solve the problem at hand by our just
;:,';f describing the goal to it, then it is at least partly procedural in that problem domain.
' " Sometimes a system can be lured into solving a problem by giving it a series of sub-

goals, each of which it is able to achieve, and the sequence of which will yield the
desired effect. For example, there is rarely a key marked “tea with cream™ on a
beverage vending machine, though there is one marked “tea” and another marked
“extra cream”. By depressing first the “extra cream” key and then the “tea” key, tea
with cream can be had. This is a simple procedure requiring little strategy and little
knowledge of the internals of the machine in order to achieve a goal that is closely
related to the domain that the designer intended for the machine.

Sometimes considerable strategy and knowledge of the implementation of a
system can be used to coerce it into solving a problem substantially outside its
originally intended domain. For example, a certain ice cream vending machine can
often be used to get exact change for bus fare, assuming that a supply of quarters is
available (bus fare is sixty cents), and that a possibly-borrowed “seed nickel” is
available. The ice cream machine is designed to sell ice cream at a price not to
exceed fifty cents. Its coin accepter will accept fifty cents in any form, and will then
stop accepting new coins. If the coin release button is pushed while fifty cents or
less is in the coin accepter, then all of the original coins will be returned. However,
if a single nickel is placed in the machine, followed by two quarters, the second
quarter will exceed the fifty-cent retention threshold of the coin accepter. Rather
than retaining the second quarter in the coin accepter, the vending machine will
drop it irretrievably into the coin box, and record its amount in a register. An
attempt to insert a third quarter will be rejected, since the accepter is now over the
fifty cent threshold. If the coin release button is now depressed, the ice cream
machine will return the original nickel, the original first quarter, and five nickels
from some internal supply. This process can be repeated indefinitely until the
machine runs out of nickels or the would-be bus rider runs out of quarters.

Although the change-making example is relatively far-fetched, it is a good
example of a system that is intended to be purely nonprocedural in a fixed domain
being used procedurally to solve a problem radically outside that domain.

- e

[.
]

\

We require the language used to specify documents to be nonprocedural in the
document specification domain, i.e., that a writer must not have to synthesize
needed functionality from the primitives at hand, but should be able to use them

R At ot s e I R AN A b 4

. SRt 0.
i T

PO PRI POy Ade Socnld P PG Bt e st Ry PP AP U WP

14 A Language and Compiler for Producing Documents

; . directly. This implies specialization: though suited for the specification of many
= documents, this language might not be appropriate for general computational
1 purposes, or even for the specification of certain kinds of documents such as
F airplane tickets or road maps.

2.1.3 Domain .

The scope or problem domain of a low-level procedural system is not well-
defined—it can be used to solve those classes of problems for which its users are
willing to synthesize solutions. There is generally a “kernel” domain that corres-
ponds to the problems that the system designer had in mind when designing the
primitives, but it is rare to see the use of a successful low-level procedural system
restricted as its designer intended. The domain of a higher-level, more nonpro-
cedural system is much more sharply defined.

Document formatting tasks are particularly hard to characterize, since their only
common property is that they include marks on paper. A crossword puzzle is a
document, and so is a display advertisement, but the algorithms executed to produce
them and the criteria for success are completely different.

Scribe was designed to be able to handle the vast majority of the document
preparation tasks found in a computer science research environment: academic
papers, instruction manuals, homework assignments, an occasional textbook, Chi-
nese recipes, business letters, and so forth. There was a conscious decision not to
make it completely general so that it could be adapted to the production of all
documents, but rather to assume a reasonably fixed domain and then try to
characterize (and later parameterize) that domain. 1 considered it far more
interesting to be able to do a really good job of producing 95% of the documents
that people wanted than to be merely able to produce anything.

2.2 Compiler Goals

The Scribe compiler is to serve two purposes: to compile the author’s
specification into a document, and to provide document management and book-
keeping assistance to the author during document development.

F
:

-"V‘.l ‘IO.T?-T!I ‘.'v_‘.‘A ‘~ N X

]
r
3
3

A 4

) SR o A i)

Goals and Principles
2.2.1 Quality

In order to attract and keep users, the compiler must have a production-quality
aura about it. This includes robust recovery from abject errors in the manuscript,
responsible and accurate diagnostics phrased not in the compiler’s terms but in the
user’s terms, and enough speed and reliability that people can actually use it.
Nevertheless, the prototype compiler developed during this research work, even
though it was expected to be released as software within Carnegie-Mellon’s
Computer Science Department, did not have ambitious goals with respect to speed
or workmanship. It was instead to be organized in such a way as to permit
maximum flexibility, encouraging experimentation with the language.

2.2.2 Clerical support

Much writing, especially technical and expository writing, requires a great deal of
clerical support. Technical material is normally cross-referenced and indexed.
Documents contain glossaries, bibliographies, tables of figures, or other derived text.
Documents often contain fixed or boilerplate material that is assembled from
various sources; it is useful to be able to postpone that data retrieval as long as
possible in order that the most recent version be used, and that the manuscript file
not contain an obsolete copy of the text.

We want the Scribe compiler to take on as many of these clerical support tasks as
possible, both to free the author for more important work and to ensure the
accuracy of the finished product. In extreme cases, the actual manuscript might
contain no text except a title; the remainder of the document would be assembled
by the compiler by appropriate database retrieval.

2.2.3 Mutability and Definition by Analogy

The mutability of a system fis its ability to sustain gracefully various changes in its
behavior. Many high-level computer systems permit the user to extend the system
or redefine components of it by supplying a complete definition or redefinition of
the procedure that implements them. The mutation of a system by reprogramming
requires that one understand its primitives and be able to synthesize the desired new
behavior by appropriate procedural combinations of those primitives, which is
precisely the same set of skills needed to program it in the first place.

We require that the user be able to make incremental modifications or definitions
by analogy; the user skills required to make such a mutation must be proportional to

-

T T
SAGE "

Yy 3§ v - ek il

..
Sin B B

16 ' A Language and Compiler for Producing Documents

the complexity of the change and not the complexity of the resulting changed
object. Since the user is not expected to be able to program, mutation by
reprogramming is not an acceptable method. The target users for this document
preparation system certainly should not be expected to learn an elaborate definition
language in order to be able to make small changes to the system behavior.

An incremental modification is a request to “change the definition of X'so that the
z property of its behavicr is now g, instead of p,; leave all other facets of its behavior
alone.” A definition by analogy is a request to “define ¥ to be just like X, except that
its z property is g, instead of p,.” Less formally, an incremental modification is a
specification for change to the definition of some standard compiler function that
specifies only those characteristics of it that should differ. The parts of the compiler
function that are not mentioned one way or the other in the change request are left
untouched. Typically, the compiler’s database would contain a definition for some
relatively complex entity. Rather than providing a complete redefinition of the
entity, the user specifies in his manuscript file an incremental modification that
modifies that entity for the duration of the compiler run.

2.3 Documentation Goals

The user documentation is an essential part of any system design, but it is too
often left until after the construction is completed. A comprehensive tutorial
manual was an integral part of the system design of Scribe, and it ultimately played
a crucial role in the evolution of the design of the system.

As compiler development and language changes progressed, the User’s Manual
was updated in parallel, though not necessarily on a daily basis. Any proposed
modification to the specification language that was not easily documented, or whose
documentation would not fit harmoniously into the existing manual, was rejected for
that reason alone. The manual represents the view of the system seen by the user,
and any complexity of the system that generated complexity in the manual, with
resulting complexity in the user’s mental model of how the system works, was
considered a compromise of the design integrity of the system and therefore a bad
idea.

Faithfulness in the maintenance of the manual during periods of system design
activity, without resorting to “fine print” detailing the exceptional cases, is the best
single control against the design evolving into the baroque morass of details and
“features” that befalls many systems as they mature.

The user's manual for a system is an informal specification of its behavior. While
valuable as a tool for preventing the design from becoming unmanageable, it is rare

W W W o v W Y WLy Ty, e T e T e T s

Goals and Principles 17

to find a situation in which the implementation of a system does not force changes in
its specification. One reason for this is that the informality of the user-manual level
of specification often masks inconsistencies in the design. The use of a more formal
specification scheme as part of the design process, as suggested by J. Gurtag and
J. J. Horning [18], could substantially improve the effectiveness of this sort of
watchdog methodology. The design work on the Scribe project was compieted
before I became aware of the work of Gutitag and Homning, else I would have
attempted to use their methodology.

The specific goals for the user documentation were to produce three distinct
documents aimed at different audiences. The User’s Manual was to be a tutorial
that made no assumptions about the background of the reader other than that he:
could use a computer and a text editor. The User’s Manual was intended to be read
front-to-back by a beginning user. The Pocket Reference was to be a summary of
the information contained in the User’s Manual, bound in such a way that it will fit
in a pocket, and organized alphabetically by function. The third manual was to be
the Expert’s Manual, an advanced manual containing information that expert users
and system maintainers will need in order to add to the database. '

- N T T = R e A

Typography and Formatting | 19

Chapter 3
Typography and Formatting

The preeminent English typographer Stanley Morison defined sypography as “the-
art of rightly disposing printing material in accordance with specific purpose; of so
arranging the letters, distributing the space, and controlling the type as to aid to the
maximum the reader’s comprehension of the text Typography is the efficient
means to an essentially utilitarian and only accidentally aesthetic end, for enjoyment
of patierns is rarely the reader’s chief aim” [31, p. 1]. A good typographer strives to
produce documents that are both beautiful and legible. Where the two conflict, he
must normally choose legibility.

Many illuminated manuscripts are beautiful at the expense of legibility, and
many mass-distribution publications such as newspapers are legible without being
noted for their beauty. Numerous studies have been publisheu of the legibility of
written material, each reaching a slightly different conclusion.

For example, in a classic textbook on typography and graphic design, Arthur
Tumbull has concluded that readers find most legible that which is most familiar to
them, and that all other factors are secondary [44]. Morison insists that “The
typography of books requires an obedience to convention which is almost absolute”
and “for a new font to be successful, it has to be so good that only very few people
recognize its novelty” [31, p. 7]. S. H. Steinberg muses that “A book which, in some
way or other, is ‘different’, ceases to be a book and becomes a collector’s piece or
museum exhibit, to be looked at, perhaps admired, but certainly left unread™ [41, p.
28].

As typographic skill is transferred from the artists who devised it to the craftsmen,
apprentices, and machines who will be performing it, that which was once just the
artist’s taste and judgment must be codified as rules, for the benefit of those not
zZifted with an artist’s instincts. Various typographic traditions have evolved into
numerous standards of correct practice; most of them are expressed as positive or
negative constraints on the finished document. For example, one standard for the
factoring of lines into pages requires that the last line of a paragraph not appear by
itself at the top of a page [1].

LA

Wi o r;‘,‘.«.“ Yy

20 A Language and Compiler for Producing Documents

Not all of the published rules are consistent with one another. A textbook for
printers published in 1915 specifies that the inter-word spacing be reduced by 15
percent when the last letter of the first word and the first letter of the second word
both have ascenders or descenders, e.g., between “shall be” or “and probably.” {2, p.
40). A recent monograph on typographic design specifies that in precisely the same
circumstance, the inter-word spacing be expanded by the same amount [7, p. 33}.

Printers have nevertheless traditionally been loath to reduce their artistic princi-
ples to a set of simple constraints; indeed, one reference work for printers explains:

“Owing largely to the conservative ideas prevalent among printers in
general, it is somewhat difficult to lay down hard and fast rules.” [2, p. 39}

Even if the rules cannot be made hard and fast, they must at least be made rigorous
and consistent, as specific constraints, before they can be used to guide directly any
formatting program. It doesn’t really matter which set of rules is used, but there
needs to be some set. '

This chapter is a discussion of the major and interesting traditions for the
typography of Western languages, with consideration given to the constraints that
those traditions place on computer programs engaged in typographly. Where
appropriate, data structures or algorithms appropriate for their implementation are
discussed. Various terms from typography and printing are used without much
explanation; the reader is referred to the glossary on page 129 for their definitions.

3.1 Letter Placement and Spacing in Text

The requirements on individual letter positioning and spacing are relatively
insensitive to context, requiring at most the consideration of a small amount of
context near the letters in question.

3.1.1 Letter spacing and kerning

Classical type fonts were designed around the idea that each letter was on a
rectangular slug, and the width of that slug determined the width of the letter. The
width was thus always the same for any letter, regardless of the context in which it
was used. Figure 4 shows a drawing of one such rectangular type slug. The
semicircular notch at the bottom of the body helps the typesetter more: easily detect
upside-down letters. Some type faces, such as italic, are slanted enough that parts of
the letter needed to protrude beyond the edges of the slug. These protrusions, are
called kerns [44, p. 58]. When a type slug having a kerned letter is placed next to

LASS asme e o

- T T ~ . T —

Typography and Formatting

Kem —_—

Serifs
\ .
7

Type body

Type size

T~

L

Figure 4: Type slug, showing protruding kerns.

Variable
Variable

Figure 5: Mechanical (top) and visual (bottom) spacing of the same text.

21

........

t -
.75
v
h. -
e
(G
s

4

)

R e AR el ot eant he 4

A e - T T s - - - = - = =

2 A Language and Compiler for Producing Documents

another slug, the kern overlaps the body of the second slug, providing a closer
spacing than could otherwise be achieved. '

When letters are not stored on rectangular slugs and are thus free of mechanical
constraints on spacing, better spacing can be achieved. The term “mechanical
spacing” refers to letters that have been spaced exactly as if they came from type
slugs. See, for example, Figure 5. The words in the top row have been set according
to a simple mechanical spacing, while the words in the bottom row have been set
according to a more complicated “visual” spacing algorithm, in which the spacing
between letters is dependent on those letters. Similarly, the amount of space to be
left after a period depends on the capital letter starting the next sentence: ifitisa T
or a Y or an A, for example, the amount of space to be left after the period is
reduced by a certain amount [44, p. 59].

If letters are mechanically spaced, with the amount of space given to each letter
independent of its context, then a simple table of widths is sufficient to represent a
font. If the actual printed width of a letter differs from the emount of space it is tn
be given on the page, as for example the script letter / , then a separate table of
spacing increments is needed.

For the compiler to be able to implement non-mechanical spacing, the context
that determines spacing must be bounded, and preferably fixed. For all practical
purposes in body-sized text, it is sufficient to compute the space between two letters
without considering any letters but those two. Regardless of how this distance is
derived, it can be stored in a matrix indexed by letter pairs and used to determine
the spacing. Although the complete nXn spacing matrix would be large (n for most
fonts is one or two hundred), it is sufficiently regular that much more space-efficient
encodings of the information can be used.

By subtracting the modal (most frequent) element from each row of the spacing
matrix, and placing that modal element into the corresponding element of a vector,
then the spacing matrix is reduced to a space-adjusting matrix or kerning matrix,
and the vector so derived becomes a table of widths. The kerning matrix will be
relatively sparse, and it will contain regularities based on the equivalence classes of
the left and right edges of letters: the spacing between a left-hand letter and those
with vertical edges (b, B, P, N, h, etc.) will normally be the same. The sparse
kerning matrix can then be represented with short lists of kerning values by
equivalence class of the letter’s left edge, attached to the width vector. Figure 6
shows the various steps in this derivation.

Typography and Formatting

-0 QN O

-0 ON Ow

extract modal element

a b ¢ d e z
LE 13 (16 |15 |15 15
12 113 |12 |12 |12 13
4 115 (14 |14 [14 15
1S 112 15 (14 |14 15
12 j12 12 112 12 11
11 12 11 11 12 12
1S |16 |15 |15 15 17
a b c d e 2z
15 01211 Jo1Jo 0
12 0 1 0 0 0 1
14 0 1 0 0 0 1
15 + 0 3 0 1 1 0
12 0o 0 lo [o I
11 0 1 0 0 1 1
15 o [1]lololoO 2
a [1B —(b=2c=1....)
b |12 | — (b=1....z=])
c 18 — (=1 z=1)
d |15 | —(b=3d=le=1...)
e [12 | —C...2=D
[—_ (b=l e=l....2=1])
T — =122

collapse zeros

Figure 6: Derivation of kerning lists from spacing matrix.

DAY S S P T

24 A Language and Compiler for Producing Documents

3.1.2 Ligatures

In certain fonts, notably script letters and body fonts with serifs (Figure 4 shows
serifs), the very shape of letters changes when they are used in certain groups. For
example, when the letter i is used following the letter fin a Roman alphabet with
serifs, it-is customary to omit the dot over the , letting the dot that is part of the top
of the fserve that purpose: “fi”. This shape-change is normally handled by
designing a ligature character, which is a single character that prints in place of two
or more letters. Figure 7 shows the type slugs for several ligature characters.

In modern Roman-alphabet fonts only the combinations “f™, “A”, A", “M",
and “#1” remain as ligatures, but in the early days of printing, there were hundreds
of ligature characters. A Greezk font developed about 1495 by Aldus Manutius (the
most commercially successful printer of his era) had more than 1300 ligature
characters in addition to the 50 or 60 ordinary alphabetic characters [29, p. 280].
Part of the job of a font designer was to decide which letterspacing could be handled
with kerning, and which actually required ligation. Current typographers consider
the Aldine Greek font to be a black mark on the record of an otherwise artistic

For the compiler to be able to process ligatures, the information kept about each
font must include a list of the ligated letter combinations and the printing sequence
in the font that will generate the appropriate substitute character. The information
available about each ligature must include its manuscript key (“£¢” to generate f
for example), the width of the resulting ligature character (not generally equal to the
sum of the widths of the ligated characters), and the device-dependent code
sequence that will actually cause the character to be printed.

3.1.3 Diacritical Marks

Most Roman languages have diacritical marks, or accents, that can be applied to
letters to indicate a change in pronunciation, to indicate stress, and so forth. Most of
them go above the letters that they mark:

oo s A -]
AéOUEAn
but others go below the letters or even through them:

D¢

P A S s i R NS Y . - Md - — T ‘.‘..vﬁﬁ'—-—‘..—‘...ﬁw—ﬁﬁw}

T YL Ty i.v-f""“'}
o H s e

4

*

-

e §

,,

.
-

r'_.‘b‘w RO
.l
P‘..

A ek Mgl i e - i

Typography and Formatting

Figure 7: A ligature character.

tee EE

Figure 8: Variations in accent marks of letters within a font.

26 A Language and Compiler for Producing Documents

Although English as commonly written no longer needs any diacritical marks,
mathematical notation is rich with them, and many special-purpose applications
such as pronunciation guides rely heavily on diacriticals.

A detailed examination of the accenting process will show that it is more intricate
than the simple superposition of two characters. Figure 8 shows five different letters
in the same font and point size that have been marked with a circumflex. Note that
no two of the circumflex marks have quite the same position, and not all of them
have the same size. We must consider the application of a diacritical mark to a letter
or pair of letters as a function that takes into account the size, shape, and darkness of
the letter in deciding how to accent it.

For the compiler to be able to accent letters properly, a considerable amount of
information must be available to it. The horizontal position of an accent mark is
determined both by the angle of the major axis of the character, the height of the
character, and the center point of the accent mark itself.

Accent characters of size, darkuess, and siyle appropriate to the font being
accented must be used; the accent characters must either be part of the font, or else
the font must have, for each kind of accent symbol, a pointer to a character to
implement the accent in that font. Information about the geometry of the accent

- character must be stored with it in order that it may be aligned properly over the

letter to be accented.

Another approach to accent marks is to treat each accented letter as a ligature and
to devise manuscript sequences that ligate to the accented character.! A scheme like
this has the advantage of properly handling those characters that must be ligated—a
dieresis over a lower-case i for example, requires that the dot over the i/ be
eliminated: 1 . The disadvantages of this scheme are that it greatly increases the
size of the alphabet, it can produce only accented characters that are part of the font,
and it introduces a large number of obscure ligature combinations into the
manuscript language.

Ihe issue of how to print accented characters is entirely separate from the equally important issue
of how to specify them. Language issues, such as the specification of accented characters, are
discussed in Chapter 4.

P
)

’»
).
’-
o
N,

TV VT VYW
- Vo AR

L

"
-

wv—rv1 -

T Loty i

Typography and Formatting 27

3.2 Lineation and Word Placement

Once letters have been formed into words, according to the rules for word
assembly set forth in the previous section, the words must be formed into lines and

paragraphs.
3.2.1 Word Spacing and Justification

Words are assembled into lines of more or less even length; customarily the lines
are then justified by adding extra spaces between words until the right margin is
aligned. This practice was originally a mechanical necessity, as the type box full of
lead slugs could not be used safely uniess the text lines were securely clamped, and
they could be clamped only if they were all the same length [47, p. 121]. Several
studies have shown that unjustified text is often more readable than justified text,
and never less readable (8, 45]. Typographic instructor and author J. R. Biggs points
out, however, that a study of calligraphic manuscripts shows that scribes liked their
lines 10 be about the same length, and frequently resorted to compressing or
expanding their letters towards the end of the line in order to make the line lengths
come out even (7, p. 32].

Word spacing is normally measured and specified in spacing units. A spacing unit
is traditionally 1718 of the width of the widest character in a font [47, p. 58]. Like
many typographic traditions, this nomenclature arose from mechanical limitations
of a particular technology, in this case the Monotype machines introduced in
1894 [30].

The preferred word spacing for text fonts is 4 to 6 spacing units. The narrowest
word spacing that is generally considered by professional typographers to be
reasonable in text is 3 spacing units or 1/6th of the width of the widest letter.2 The
widest word spacing that is generally considered acceptable is 9 units, or 172 the
width of the widest letter [44, p. 59,47, p. 121]. If the line cannot be justified
without expanding or contracting the spaces outside these limits, it is customary to
hyphenate (see Section 3.2.3). The new line breaking algorithm devised by Knuth,
in which whole paragraphs are considered at one time and all the line breaks found
simultaneously, greatly reduces the number of cases in which hyphenation must be
attempted [24, p. 52).

2Pmlmlgecle:q:msm'eto any format willlead onetofinditmorereadable; perhapstypographershave
simply trained themselfto be abletoread suchtext.

e PP a PRSP S R TP U Ay P et rerson

5 —r—r—y
” E.'.'.'. A i'. T

N R ‘v:" o
PR .
. . ro, .

N T W W gy —

28 A Language and Compiler for Producing Documents

In non-text situations, the word spacing often differs. Verse is normally set with
word spacing of 6 to 8 units, somewhat wider than the preferred spacing for text.
When setting tabular material and computer programs, one customarily uses a space
that is the same width as the digit zero in the font in use.

For a compiler to get word spacing correct, it must have some way of computing
the size of a spacing unit and a set of rules for how wide or narrow a space to place
between words before attempting some other solution. Whether the compiler deals
in actual Monotype spacing units or in relative character widths is not important,
but the information must be available to it. The compiler must of course know
whether it is setting text, verse, tabular material, or computer programs, in order
that it choose the correct space width for the circumstance.

3.2.2 Paragraphing

When words are typeset into paragraphs, it is customary to take care that the Jast
line of the paragraph not be too short. Sometimes this constraint is expressed as
“the last line of the paragraph will not be a single word”, at other times it takes the
form “the last line of the paragraph will not be shorter than k% of the other lines.”
In either case, the intent is to prevent paragraphs with vestigial lines at the end of
them; an example of this can be seen in the first paragraph of Section 3.2.2 on page
28.

It is considered bad form to typeset a paragraph so that there are any regular
patterns in the word spaces from one line to the next {44, p. 59]. Figure 9 shows an
example of a paragraph set with geometric patterns or “rivers” in the word breaks.

Any mechanism for arranging words into paragraphs must be able either to look
ahead or to backtrack if it is to be able to do a satisfactory job of avoiding these
conditions, as it is not possible to know at the beginning of a paragraph how the text
will fall at the end, but the only way to control the placement of the text at the end is
to adjust the placement at the beginning.

Some paragraphing styles call for a change in type size or type face after the first
letter, word, few words, or line of text. Figure 10 shows several examples of this sort
of style. Note particularly the third example, in which the precise location of the
font change is determined by the location of the first line break, which cannot be
determined by consideration of the text alone—the first line must actually be set in
type before the location of the font change can be determined. These conditions
amount to events in the text, and the compiler must have a pattern matcher able to

_ recognize these events and trigger the appropriate action if it is to superimpose these

formats on text. The compiler implemented for this research contains no such event

Typography and Formatting -

The guests included Sen. and
Mrs. Edward F. Kennedy, Sen. and
Mrs. John Anderson, Dr. and Msrs.
Michael 1. DeBakey, Dr. and Mrs.
Edward N. Emery, Judge Bean Roy,
Mr. James Marshall Hendrix. Mr.
and Mrs. William O. Douglas, Fr.
and Mrs. John Fetterman, and the
Rev. Jonathan B. Appleyard.

Figure 9: Paragraph with “rivers” of white space.
|

I‘t frequently happens in the history of
thought that when a powerful new
method emerges the swdy of those
problems which can be dealt with by the
new method advances rapidly and attracts
the limelight while the rest tends to be
ignored or even forgotten, its study
despised.

IT FREQUENTLY HAPPENS in the
history of thought that when a powerful
new method emerges the study of those
problems which can be deult with by the
new method advances rapidly and attracts
the limelight, while the rest tends to be
ignored or even forgotten, its study
despised.

IT FREQUENTLY HAPPENS IN THE
history of thought that when a powerful
new method emerges the study of those
problems which can be dealt with by the
new method advances rapidly and attracts
the limelight, while the rest tends to be
ignored or even forgotten. its study
despised.

Figure 10: Unusual paragraphing styles.

b
:i 30 A Language and Compiler for Producing Documents

detector and cannot generate such event-dependent formats, although Page-2 and
Troff can. '

m 3.2.3 Hyphenation

When the justification of a line requires the word spaces to be expanded or
- contracted so much that they are unsightly or ineffective, it is customary to

hyphenate the last word on the line or the first word of the next line. The “correct”

hyphenation of words has been an annoying problem throughout the wktole history
of document production. An examination of early manuscript documents, done
with pen and ink, shows that new lines were started wherever the scribe found it
t. convenient, even if it was in the middle of a word, and that no notion of a “hyphen”
existed. A compositor setting type by hand spent as much as one third of his time
SR on hyphenation, even when using linecasting machines designed to expedite the
' process [44, p. 58].

Standards for correct hyphenation vary among languages. In English it is
customary to hyphenate between syllables, where syllable division corresponds
roughly to pronunciation [36, p. xxv]. Unfortunately, English spelling does not
correspond very well to pronunciation, and so there are no particularly good rules
for finding hyphenation points in a word by examination of letter combinations.
Many homographic pairs are hyphenated differently because of different etymology,
e.g., ten-der (an offer) and tend-er (a ship), and sometimes the same word is
hyphenated differently depending on its part of speech, e.g., prog-ress (noun) and
pro-gress (verb) {17]. English hyphenation cannot be done correctly without an
understanding of the text deep enough to recognize parts of speech.

Most other languages have rules for hyphenation that differ in detail but not in
spirit from the English rules. Some are much more regular. In Finnish, words are
divided between vowels except those that are part of a diphthong [16, p. 435]. There
- is a set of seven rules for hyphenating French; there are no exceptions to those
';‘,‘; rules [16, p. 442). In German, a set of twelve rules for word division suffices [16, p.
ak 448]. However, if a German spelling is an elision of a longer form, then if the word

is hyphenated at the elided syllable, the long form must be restored: glitschst is

hyphenated glit-schest, and Lufischiffahrt is hyphenated Luftschiff-fahrt. When the
. German double consonant ck is divided, it must be spelled kk: Hacke is divided
o Hak-ke [16, p. 450]. In Hungarian, when a word is divided at a “long” consonant
. such as ssz or ggy, the consonant is repeated completely in its short form: hosszu is
hyphenated hosz-szu and hattyu is hyphenated haty-tyu 16, p. 471}.

As noted earlier in this section, a compiler cannot hyphenate English perfectly

Typography and Formatting ' 31

without understanding the context in the sentence of the word being hyphenated,

but it can do an acceptable job with a hyphenation dictionary or with a set of rules

and a dictionary of exceptions to them. A very elaborate commercial typesetting

program might have 200 rules and 15,000 words in the exception dictionary [6]. The

clever hyphenation algorithm used by D. E. Knuth in TgX has S rules and 350

words in the exception dictionary [24, p. 180]. TEX avoids having to hyphenate very

often by considering the entire paragraph at once, to make the lines break more

evenly. It therefore can get by with a hyphenator that in general does not find all of

the legal hyphenation points in a word. The Scribe compiler uses a pure dictionary-

based hyphenator; there are no rules to fall back on if the word to be hyphenated is

not found in the dictionary. This scheme has the advantage of being very simple -
and being independent of the text language, but it is not very efficient in terms of
: the memory space consumed by the dictionary or by the I/0 time expended in

:‘ looking up words if it is not kept in primary memory. A technique for maintaining

and using document-specific hyphenation dictionaries avoids this inefficiency; it is

described in the chapter on the workings of the compiler, in section 8.6.+4.

3.3 Tabular and Display Material

Any text not filled and justified in the usual way is called “display” text;
complicated displays are called “tabular material”. Simple displayed text can be
centered, or flushed left or right to some fixed horizontal position. Complex
displays include matrices, columnar material aligned on decimal points or with
justified text set in tables, and so on. A centered display might have each line
individually centered, like a wedding invitation, or be “block centered”, wherein the
E lines in the display are set flush left to a margin chosen such that the longest line is
centered.

Overlong lines in display material often cannot be automatically folded to the
next line. Some means therefore must be found for making them fit on a page. Use
of a smaller type face, or going outside the margins, or rotating the whole display to
go sideways on a page, or some combination of these effects, is often used to make
long lines fit.

When a large amount of tabular information must be fit into a small space. “dot
leaders”, a row of dots or dashes, are used to draw the eye from one part of the table
to another. Dot leaders are often seen in telephone directories and tables of
contents. The dots in separate rows must be vertically aligned. - Frequently a dot
leader is used in combination with a flush-right operation, so that the dots fill all of
the space up to the text that is right flushed. At other times, dot leaders are used in

DA I S £ 0 S g

ey

YV T ..

| T - - ——— e e . a4 aa aa

L aginreat -

32 A Language and Compiler for Producing Documents

conjunction with filled but unjustified text, so that the dot leader begins at the end
of the last word that was able to fit on the line, and follows from there to the end of
the line.

In tables, the material in each row of a column must be harmoniously aligned
with the other material in that column. Table columns might be flush left, flush
right, centered, justified as text, or aligned on some punctuation character such as a
decimal point. Similarly, the various columns of a table must sometimes be
synchronized to a common vertical position before a new row can begin.

In very geometric or regular tables, it is customary to add blank space or a rule
after every n lines. In poetry or prose that will be cited lineally, line numbers are
often placed beside every ath line.

3.4 Page Layout

“Page Layout”, also called “makeup” or “dummying”, is the assignment of lines
of text to pages while coping with figures, footnotes, and various traditions and
conventions. To a first order, it consists of putting as many properly-spaced lines on
a page as will fit, while taking into account the page numbers, footnotes, and figures.
Beyond that, the primary goals are legibility, consistency of design, and appearance.
There are many traditional constraints and rules designed to assist a typesetter in
producing legible and attractive pages. Not all of them can be satisfied simulta-
neously.

The last line of a paragraph should not be alone at the top of a page, and some
standards call for the first line of a paragraph never being alone by itself at the
bottom of a page. These lines are called widow lines, and the painstaking work that
human typographers perform to get rid of them is referred to as widow elimination.
The last word on a page should not be hyphenated.

When headings are used in text, the amount of text on the page below the
heading should be roughly proportional to the significance of the heading. Major or
chapter headings usually begin a new page. Secnnd-order heads usually should be
placed high enough on a page as to have several lines of text after them. Every
heading should have at least two lines of text following it on a page.

When displayed material is interspersed in text, the line of text introducing the
display should be on the same page as the display. Page breaks are not normally
permitted inside displayed material, except when it is so long that one has no choice.

The first line of a text footnote must appear on the same page as the reference to
it, and it is best if the entire footnote appears on that page. A footnote to a table

DL A L A LA o R I R I A A LA A T Wt W W v Y e, e T s T aTTY T YT YT YT e T e T e e

Typography and Formatting 33

should appear with the table, at its foot, before the caption. When a page contains
both full-width text and multiple-column text, footnotes to the full-width part
. should be set full width, below the column footnotes that are set column-width in
,-c the bottom of the column containing the footnote reference [16].

hY

When figures are used with text, the figure should appear on the same two-page
spread as the first reference to the figure. When possible, the bottom margins on the
) left and right pages of a two-page spread should be the same, though they need not
h - be consistent from one page spread to another.

Page layout has of all aspects of typography yielded the least to reduction to rules,
and remains the hardest unsolved problem in automated document production.
Page layout is also the aspect of a document’s appearance that is most heavily”
. affected by considerations of the document design. The current Scribe compiler
f‘ does a barely adequate job of page layout, using relatively inflexible algorithms. A
compiler for the Scribe document specification language that is able to do a high-
quality job of page layout for arbitrarily compliex document designs will likely
require an order of magnitude more knowledge about the layout task than the
current compiler uses. :

r.rv'.rvzv 9
- "

'.'"ﬂ:_'_i >

"T. IR]

a

LD GAREAAIAT!

Y

) g

Soade g T ey
‘.H FREPA

e 2t 4

S
e

.'.7-1
‘

Design and Implementation 35

Part i

Design and Implementation

The goals for the Scribe system, as itemized in Chapter 2, were the design of a
language for the specification of documents, the design and implementation of a
compiler to process that language into finished documents, and the production of
user documentation. The document specification language explicitly forbids the
user from providing low-level device-specific information. For the compiler to be
able to compile the document specification language properly into a finished
document it must have considerable typographic expertise. The compiler must be
able to recognize problem situations in the text (possibly aided by the writer), and to
apply the correct typographic rule to produce appropriate output.

This organization makes the compiler design be a problem more in knowledge
engineering than in formatting. The actual formatting is relatively trivial once the
compiler has determined the rule or rules to apply. This determination often
involves conflict resolution among multiple rules that apply. The major component
of the compiler design was therefore a codification of the formatting task in terms
that would make the knowledge representation simple, and the design of a
knowledge representation suitable for storage in a database system external to the
program. This codification resulted in the parameterization of the document
production task in terms of about one hundred parameters; the behavior of the
compiler is controlled by changing the values of these parameters. This parameter-
ization and its impact on the solution are discussed in Chapter 5.

Pp——————— - . —_ ENLal Aa o -

36 A Language and Compiler for Producing Documents

In order to be able to evaluate the effectiveness of the solution, especially the
parameterization, the compiler was documented as production software and re-
leased to the university community at Carnegie-Mellon, and later to numerous other
laboratories. As information came in from this field experience, the parameter-
ization evolved somewhat, primarily by the addition of some new variables, but the
basic approach has proved sound. A discussion of this field experience and its effect
on the compiler is in Part III of the thesis.

The various pieces of knowledge needed by the compiler were divided into two
groups: those that were likely to remain more or less fixed over all formartting tasks
within the intended domain, and those that were likely to vary widely over those
formatting tasks. The fixed knowledge was “hardwired” into the code of the
compiler, and the variable knowledge was codified, organized into appropriate
external form, and stored in database files. The compiler must retrieve the
externally-stored knowledge and process it into an appropriate internal form before
it can actually be applied. .

The crucial factor in the compiler’s ability to locate, control, and modify its
formatting knowledge is the representation used for it. The requirements placed on
the knowledge representation were:

1 It must be legibly representable in text files, not just in complex data
structures in memory, to facilitate database management. An external
representation can be designed for any data structure, but we also
demand that:

2. It must be easily read and easily modified, both automatically by the
compiler and manually by users.

3. It must be efficiently usable by the compiler, which is to say that once
the compiler has retrieved the necessary knowledge from its database, it
must run at a speed roughly comparable to one in which the knowledge
is fixed in the compiler code. '

Requirement 2 essentially eliminates any procedural knowledge representation:
procedural knowledge sources are by definition coded in some programming
language, to which automated modifications (such as those needed by the definition-
by-analogy mechanism) are difficult or impractical. Furthermore, a procedural
knowledge representation requires the user to learn the procedural language that is
used before he can make substantive modifications. While there certainly exist
procedural representations of knowledge and editing systems that operate on them
10 automatically perform the changes needed to redirect the behavior of the

PUY OSSN Yy - PRSI RPN N L) A il - s, . DU WL R

B dee Jaam 4

s Design and Implementation ' 37

procedure, they are not well understood. 1 deemed it risky to use such
incompletely-understood techniques in such a crucial part of the compiler, since the
primary research goal was not the investigation of knowledge representation
techniques but the application of them.

The knowledge representation chosen to meet these various requirements, as

discussed further in Chapter 5, is an association list. An association list is similar to
the property lists used in LISP and the description lists used in IPL [28, 32]. The
LISP property list is a list of attributes and their values that is attached to an object
to show what properties it has. In IPL, the description lists are normally used to
implement associations, which are single-valued functions that return a value for an
object [32, p. 58]. Both organizations are used in Scribe, though the property-list
form is dominant.
:‘ The document specification language, described in Chapter 4, has as its dominant
, characteristic the description of formats in terms of formatting environments. Each
8 ' formatting environment causes the text contained within it to be shaped or styled in
a certain way, as controlled by the value of the environment parameters. The
overall collection of environments available to the compiler during the processing of
a document is determined by its document type. The database of document and
device types is discussed in Chapter 6.

-
L
A
)
4
L
r
y .
-
-
b

D el sty Jatrte A i it At Sl e B o=l S M T ——

The Document Specification Language 39

Chapter 4
The Document Specification Language

Further explanation of the compiler mechanisms and implementation requires an
understanding of the document specification language. This chapter outlines that
language. The document specification language abstracted here is described in full
in the Scribe User’s Manual {37]. In this chapter, enough of the specification
language is explained to give its flavor and to provide background for the chapters
on mechanism.

The specification language is a scheme for marking (labeling) regions of the text
and locations in it.3 There is also a simple facility for passing information to the
compiler via declarations at the beginning of the manuscript.

The strategy behind the language design is to have the writer identify segments of
the text in abstract terms, and to have the compiler automatically retrieve the
concrete details from the document design database. The language design process
consisted of identifying the proper set of abstractions and giving them names, then
devising a simple syntax that would allow those abstractions to be represented in a
file of text characters.

4.1 Rationale

Although it is specifically intended that the specification language be repre-
sentable as a linear stream of character text, a sequence of pictures can be used to
explain it best. Figure 1la shows a paragraph of text that has been graphically
labeled to show its component parts. One might envision a simple graphical
notation like this being used informally at a blackboard when two people are
discussing a format. Notice that there are several labeled regions, some nested
inside others.

3The words region and location have precise technical meanings in this thesis; they are defined in
section 4.2.

T a T T T T . T e 8- e TR R T TR T T TR v M A Py A) s " — -

4 40 A Language and Compiler for Producing Documents

T YTr Y

VY
4l . P .
. St L T

The desired document'text:
We need to be able to mark regions of text, individual letters and
words. and also specific points within the text

&

When your pipes clog. call the Plumb Line,
441-4820, and let the. experts from Khalil's
Emergency Plumbing repair it for you.

& Markup using a pictorial notation: 32
:‘ We need to be able to mark(egions)of text, individual letters
» and words, and also specific paints within the tex Vo7 'q'

l ol
When your pipes clog, call (he Plumb Ling)

the experts from&halil's Emergency Plumbing)epair it for you.
—Vod
Markup using a graphical notation:
We need to be able to mark ialic regions end italic of text, individual letters
and words, and also specific points within the text. quotation

When your pipes clog, cail /7alic the Plumb Line end italic, 441-4820, and let

raxe 1
R

441.4820, and let

the experts from bold Khalil's Emergency Plumbing end bold repair it for you.
end quotation '

Markup using an escape-character notation:
We need to be able to mark @i[regions] of text. individual letters and words. and
also specific points within the text. @begin(Quotation)
When your pipes clog, call the Plumb Line, 441-4820, and let the experts from
@b<Khalil's Emergency Plumbing repair it for you. @ End(Quotation)

t

RS {

Figure 11: Various schemes for marking text

EEATAENE IS Anlnd Tan 2ae

- -
;
|
]

S g w2 S ot

Lt

The Document Specification. Language 41

Figure 11b shows the same labeling, but this time the labels are differentiated
from the text graphically: the labels are in script, and the text is in ordinary print.
The printing industry uses proofreaders’ marks in colored pencil to handle the text
marking problem; both color and being handwritten serve to separate a proof-
reader’s mark from the text being marked.

To represent this same labeling without resorting to graphics, special script, or
color, one need only designate some character as the “color shift” character or
escape character. We would like to choose a shift character that does not occur often
in text and that is visually obvious to a person looking at a manuscript file. The
Ascii character “@" satisfies these requirements; selecting “@" as the blue shift
escape character yields Figure llc, which is a syntactically correct Scribe manu-
script.

4.2 Syntax

Three classes of notation are needed in the document speciﬁwion language:

o Region labels: a notation for attaching a label, or attribute, to indicate
the author’s intention regarding a region of text. I will call these labels
environments.

« Markers: a notation for marking specific points in the text, often with
respect to the boundaries of some containing environment. Although it
is a slight misnomer, I will call these commands.

o Declarations: a notation for passing values to the compiler to control
certain details of its behavior. Most simple documents will need no
declarations.

To describe all three of these notations, I shall borrow a word from printers and use
the term mark, with collective plural markup.

A manuscript will consist of a mixture of text and markup, and the compiler must
have some way of telling them apart. Although various schemes are possible, the
fixed single shift-character scheme outlined in the previous section was selected
because it places the least complicated restriction on the writer: anything following
an “@" character is a mark. The shift character cannot be changed or redeclared;
therefore no context dependencies are possible: a word or sentence from the
manuscript can be moved -r copied anywhere with confidence that it will still be
syntactically correct in the new context.

4 A Language and Compiler for Producing Documents

All marks begin with an “@" character. If the character following the “@" is not
alphanumeric, then the mark consists of exactly two characters, such as:

o

[24

9=
If the character following the “@” is alphanumeric, then the mark consists of an
identifier and a single delimited operand:

QHeading(The Document Specification Language)

OLabe1<L19d .

8Style(Doublesided,Footnotes="*")

@Newpage()
Sometimes the delimited operand contains text that will be examined by the
compiler (eg @Label and @Style, above), while other times it contains text that
will be included in the finished document instead of being examined by the
compiler (@Heading in the example above). Sometimes the operand is null
(@Newpage). The mark is ended and text resumed by the closing delimiter that
matches the opening delimiter that was used. Any of these paired Ascii characters
can be used as delimiters: [...] <...> (...) (...} ®..." .0 000 Any
mark that takes a text argument can also be represented in “long form”, with
properly nested @Begin and @End:

@Begin(Heading)The Document Specification Language@End(Heading)
8Begin(Center)
Text to be Centered
@end(Center)
The syntax is not recursive; it is defined only at these two levels.

@Begin(Begin)Heading@End(Begin) is not recognized.
Capitalization in alphanumeric marks is not important; any mixture of upper and

lower case is equivalent to any other. End-of-line characters inside markup are
equivalent to spaces, though in some environments end-of-line characters are

significant.
4.3 Language Abstract

4.3.1 Environments

An environment is the mark attached to a piece of text identifying it to the
compiler, and specifying certain goals that the author has for its appearance. If the
text is a theorem, it would be marked as a Theorem environment; if the text is a
footnote, it would be marked as a Footnote environment. Some environments

I USRU

YTy ,‘”".'?.'" QRN v
PSP B PR ot

—yr - TrTvTY
-

Y

vy

The Document Specification Language 43

represent very simple concepts, like “italic” or “centered”, while others represent
relatively advanced concepts, like “bulleted list” or “footnote”. Environments can
be nested; for example, text can be marked as italic inside text that is marked as
Soatnate.

Environments in the basic subset taught to the novice fall into two categories:

o Environments that define character shape, size, font, or appearance.
These tend to have one-letter names; the / environment marks text as
italic, the C environment marks text in SMALL CAPITALS.

o Environments that define paragraph shape (and sometimes paragraph
font). These have multi-letter names: the /remize environment marks
paragraphs as elements of a bulleted list (like this one); the Quotation
environment marks paragraphs as text quotations.

Figure 12 lists the “font-change™ environments defined in the basic system, and
Figure 13 lists the “paragraph shape” environments.

The “basic system” is not a separate or different part of the language; it is not
implemented in any way differently than the more intricate parts. The concept of a
basic system is rather just a documentation trick: the language features in the basic
system are all simple, regular, stylistically similar, and guaranteed to be present in all
document types.

4.3.2 Document Types

Whenever the compiler produces a document from a manuscript, it does so under
control of the format set forth in a document type definition from the editorial data
base. This document type definition completely determines the appearance of the
document. The manuscript file is expected to contain a declaration of document
type; if it does not, the compiler selects a default document type named 7Text.

All document types provide definitions for the basic environments; some provide
additional definitions for environments that are peculiar to that document type. For
example, the Business Letter document type provides environments for retumn
address, greeting, and signature; the Ph.D, Thesis document type provides environ-
ments for chapter headings, a title page, and a bibliography.

M A a4

Ahae S an aa o

0i[phrase]
eb[phrase]
Sr[phrase]
Sp[phrase]
Sc[phrase]
Su[phrase]
et[phrase]
e+[phrase]
0-[phrase]
eg[phrase]

Center
Description

Display
Enumerate
Example

FlushLeft
FlushRight
format
Itemize

Quotation
Verbatim
Verse

A Language and Compiler for Producing Documents

lalics

Boldface

Roman (the normal typeface)
Bold Italics

SMALL CAPITALS
Underline non-blank characters
Typewriter font

print SYPTscrint

print o\ script

Greek (EAAer)

Figure 12: Font environments in the basic language.

Unfilled environment. Each manuscript line centered.

Filled environment. Outwards-indented paragraphs; single spacing with wider
margins. This list of environments is in a Description environment.

Unfilled environment. Widens both margins.

Filled environment. Numbers each paragraph. Widens both margins.

Unfilled environment. Uses fixed-width typeface for examples of computer type-
in or type-out. Widens both margins.

Unfilled environment. Prints the manuscript lines, in the normal body font, flush
against the left margin. ’

Unfilled environment. Prints the manuscript lines, in the normal body font, flush
against the right margin.

Unfilled environment. Normal body typeface. No changes to margins. Aay
horizontal alignment that is needed should be done with tabbing commands.
Filled environment. Marks each paragraph with a tick-mark or builet. Widens
both margins.

Filled environment. Single-spaced: widens both margins; indents each paragraph.
Unfilled environment. Fixed-width typeface. No changes to margins.

Semi-filled environment; fills lines, but starts a new line for each line break in the
manuscript. Widens both margins.

Figure 13: Paragraph environments in the basic language.

ol ot s AR MR

The Document Specification Language 45

4.3.3 Commands

While environments label whole regions of text, commands mark specific points
in it. Some commands take arguments, others do not. Some sample commands:

e Permit a word break to occur here.

0 Set a tab stop at the current horizontal position.

oLabel(XYZ) Attach the cross-reference name “XYZ" to the current page and
section number. ,

ORef(XY2) Insert as text into the document at this point the section number
that was attached to the cross-reference name “XYZ" elsewhere
in the document.

@PageRef(XYZ) Insert as text into the document at this point the page number
that was attached to the cross-reference name “XYZ" elsewhere
in the document.

Others include commands to do bibliography database retrieval, forcing of new
pages, horizontal tabbing, and various other effects.

4.3.4 Declarations

Declarations in the specification language serve to control the compiler by passing
it various parameters and values. Most declarations are restricted to the beginning
of a manuscript, but some are permitted to occur anywhere.

Simple declarations include @Device(name), which instructs the compiler to
format the document for the named device, and @Make(what), which instructs the
compiler to produce a document of the requested type. More sophisticated
declarations include @Modity, which alters the definition of an existing environment,
and @PageHeading, which tells the compiler what text to put in the running page
heads.

One declaration, @8Styte, serves as a catchall for passing miscellaneous scalar
values to the compiler. There are several dozen “style keywords™ whose values can
be set by the @styte command. These include, for example, values to contol the
way dates are printed, to select a font family for the document, to select nonstandard
paper sizes, and to select single-sided or double-sided formatting. The style
parameters select small variations in document design. '

Certain declarations, such as 8Define and @Form (Which define environments and
macros, respectively) are intended primarily for use in document format definition

L 46 A Language and Compiler for Producing Documents

entries in Scribe’s database. They can nevertheless be used in manuscript files,
where their use permits expert users to develop new document types by gradual
mutation of existing ones.

4.4 Character Sets and Font Variations

Western languages use alphabets, which consist of characters. The set of
characters in each Western language has stayed essentially constant since the
Renaissance, though not all Western languages use the same set of characters.
When a character is typeset, the precise style and geometry of its appearance is
determined by the font in which that character is typeset.

In addition to the alphabetic characters that are the basis of the written language,
writers use many special characters. Some are punctuation marks, like “.” or “;".
Others are symbols borrowed from foreign alphabets, like IT or 8. Others are
purely fabricated, like “+” or “<”. When two printed letters of different appear-
ance are visually compared, the difference sometimes arises because they are
genuinely different letters and sometimes arises because they are the same letter

printed in different fonts.

Pictorial representations of text, such as photographic copies or electronic
facsimile transmission, do not need-to concern themselves with identifying or
encoding the letters—they merely store a picture of the letter and pass on to the
reader the job of identifying the letter so pictured. When text is represented by
character identity independent of the font in which the character is printed, there is
a necessity to determine that identity and represent it with some sort of an
unambiguous code.

Various codes for information interchange have been devised. Each defines a
fixed set of characters to be represented, then assigns a numeric code to each. In the
United States, for example, the BCD code defines 48 characters, the military Fieldata
code 63 characters, the Ascii code 96, and the EBCDIC code 192. Whenever a
character outside the defined set needs to be represented, one must go outside the
interchange standard and use some private encoding. The specification of Ascii
includes an explicit mechanism for extending the code, but does not assign character
identities to any of the extended codes. As a result, no two users ever seem 1o
produce the same set of extensions.

Some special characters are just ligatures of ordinary characters (ligatures are
discussed in Section 3.1.2). For these cases, the compiler automatscally substitutes
the ligature graphic for the group of characters that were in the manuscript: ff for
“e04”, f for “r¢”, and so on. Some special characters can be represented as

i The Document Specification Language | 47

(13

pseudo-ligatures: “—" for “--", for example. To represent special characters for
which no common pseudo-ligature convention exists, the Scribe manuscript lan-
guage uses a special-character convention that is not very satisfactory, and is one of
the ‘weakest parts of the design. It has been very difficult to maintain device
portability of special characters as a result of this convention. A special character is
represented by specifying an ordinary character in a special-character font: while
@i[A] prints as “A” and @b[A] prints as “A”, @f1[A] prints as “V” and @f2{A]

L

prints as * ¢ *.4

It is worth noting briefly the several alternative specification schemes for special
characters that were considered. TEX and EQN both use a “naming™ scheme. To
get an alpha character produced in TEX, one types \alpha (for lowercase “a™) and
\Alpha (for uppercase “A”). [EQN recognizes the identifiers “alpha” and
“ALPHA”, although in the basic Troff system underneath EQN, an alpha is denoted
instead by “\(*a”.

These are implemented as fixed macros, encoded in whose definition is the
information about how to print the special character on the printing device at hand.
These naming schemes presuppose that the language designer knows all of the
special characters that will be available on the printing device, and gives them all
names in advance. Since the Scribe language is intended to be independent of
printing devices, its naming convention would have needed to include all of the
special characters expected ever to be available on any printing device. Fixed macro
names for characters were therefore not adopted (although they are superior to the
scheme actually used in the current Scribe language).

The TEX and EQN special-character schemes both require that the compiler (or
the macro definitions) know the mapping of charac:ers to slot numbers in fonts, for
example, Troff must know that to generate a mu (“u”) character while using a
certain font, it must switch to film 3 and generate a capital W; that font is arranged

so that the character in the capital-W position is a lowercase mu.

A superior scheme for Scribe would have been to encode the font data such that
there was no hard notion of a character slot, as exemplified by the “capital W slot”
example above. Each font would have a name embodying its style and size, for
example, “Helvetica 14-point lightface expanded italic” and would contain a set of
: definitions of characters. Some of these definitions would be standard, which is to
Fy say that they are valid graphics for the character set (Ascii, EBCDIC, etc.) being used,
{ whils others would be non-standard, mea: a:g that they are not valid graphics for

4See Section 8.6.3 on page 97 for a discussion of the formatting issues for lines containing oversize
characters like this one.

48 A Language and Compiler for Producing Documents

any characters in the base character set. The standard characters would be
addressed by their slot in the font, while the non-standard characters would be
addressed by name. The manuscript form of a document would be permitted to
refer to any character by name; a symbol table associated with the base character set
would identify those addressable in a particular slot When a reference is
encountered to a character not part of the base character set, it will first be looked up
in the “current” font. If not found there, then ‘onts that are similar to the current
font in shape and size must be searched until some definition for the character is
finally found. This scheme requires standardization in naming, but not in allocation
of non-standard characters to font slots.

4.5 Language Examples

Figure 14 (page 49) shows a simple manuscript prepared in the Scribe document
specification language, and Figure 15 (page 50) shows the resulting document.
Figure 16 (page 51) shows a reasonably elaborate one-page manuscript, and Figure
17 (page 52) shows the resulting document.

st "k Sl Ztme s A it Ml N A A A ,~}

e The Environment Mechanism 49

Yy e Yy

@Hoading(What can be copyrighted)

Copyright protection exists for '‘origina’ works of authorship'' when they
become fixed in a tangible form of expression. Copyrightable works include the
following categories:

@begin(enumerats)

Titerary works;

musicel works, including any accompanying words:

dramatic works, including eny accompanying music;

pantomimes and choreographic works;

pictorial graphic, and sculptural works;

motion pictures and other audiovisual works; and
sound recordings.

@End(enumerate)

This Tist 1s 11lustrative and 13 not meant to exhaust the categories of
copyrightable works. These categories should be viewed quite broadly so that,
for sxample, computer program3: and most ‘‘compilations'’ are registrable as
**Titerary works''; maps and architectural blueprints are registrable as
*'pictorial, graphic, and sculptural works.''

@Heading(What cannot be copyrighted)

Several catsgories of material are generally not eligible for

statutory copyright protection. These include among others:

0Itemize[

Works that have @i[not] been fixed in a tangidble form of expression. For
example: choreographic works which have not been notated or recorded, or
improvisational speeches or performances that have not been writtsn or recorded.

Titles, names, short phrases, and slogans; familiar
symbols or designs; mere varjations of typographic
ornamsntation, lettering, or coloring; mere listiangs of
ingredients or contents.

"—'"if'.'—"

Ideas, procedures, methods systems, processes, concepts, principles,
discoveries, or devices, as distinguished from & description, explanation, or

- 3

11lustration.

[Works consisting @1[entirely] of information that is common property and
{ containing no original authorship. For example: standard calendars, height and
E weight charts, tape measures and rules, schedules of sporting events, and 1ists
r. or tables taken from public documents or other common sources.@Focot<

: From @1[The Nuts and Bolts of Copyright (Circular R1)], U. S. Copyright Office.>
%]
“ ' L3 * [
: Figure 14: Simple Scribe manuscript.
-
L

e
i
=
3

4

4

.

1

L

SR — T ——

[50 A Language and Compiler for Producing Documents

What can be copyrighted

Copyright protection exists for “original works of authorship™ when they become fixed in a
tangible form of expression. Copyrightable works include the following categories:

1. literary works:;
2. musical works, including any accompanying words;
3. dramatic works, including any accompanying music;

4. pantomimes and choreographic works;

S. pictorial graphic, and sculptural works:;
:‘ 6. motion pictures and other audiovisual works; and

7. sound recordings.

This list is fllustrative and is not meant to exhaust the categories of copyrightable works. These
categories should be viewed quite broadly so that, for example, computer programs and most
“compilations” are registrable as “literary works”; maps and architectural blueprints are registrable as
*“pictorial, graphic, and sculptural works.”

What cannot be copyrighted

Several categories of material are generally not eligible for statutory copyright protection. These
include among others:

o Works that have nor been fixed in a tangible form of expression. For example:
choreographic works which have not been notated or recorded, or improvisational
speeches or performances that have not been written or recorded.

o Titles, names, short phrases, and slogans; familiar symbols or designs; mere variations of
typographic ornamentation, lettering, or coloring; mere listings of ingredients or conteats,

o Ideas, procedures, methods, systems, processes, concepts, principles, discoveries, or
devices, as distinguished from a description, explanation, or illustration.

e Works consisting entirely of information that is common property and containing no

original authorship. For example: standard calendars, height and weight charts, tape
_ measures and rules, schedules of sporting events, and lists or tables taken from public
= documents or other common sources.

- Figure 15: Document produced from manuscript in Figure 14,

SFrom The Nuis and Bolts of Copyright (Circular R1), U. S. Copyright Office.

- ——— - T T T T - e
TR R R A T T T T yo T N N .

The Environment Mechanism 51

@Make (Wedding Progrem)

@Style(Font “"Times Roman 10°)

Sbegin({Introductory)

The Marrisge of Loretts Rose Guarino and 8rian Keith Reid
Saturday, May 12, 1979

The Church of St. Michasl and A1l Angels, Tucson, Artizona
@Separator()

fSend{ Introductory)

8Heading(Voluntary)

08egin(Verse)

91[Sicil1ano], from ®i[Sonata #2 for Flute and Keyboard], J. S. Bach
§1(Prelude in Classic Style], Gordon Young

@1[Andante], from #1[Organ Concerto in F. Major], 6. F. Handel
Send(Verse)

SHeading(Processional)

@begin(Verse)

8i[Adagio in A Minor], from the 81[Toccata, Adagio, and Fugue in C Major], J. S.
#1[R1gaudon], Andre Campra

Send(Verse)

The text for the Marriage Ceremony may

be found in the 81[Baok of Common Prayer] beginning on page 423,
SHeading(The Invocation@PageNum{p. 423])

@Heading(The Ministry of the Word@PagesNum{p. 425})
0SubHeading(The 01d Testament@>Tobit 8:5-80\)
OSubHeading(The New Testament8>I Corinthians 13:1-130\)
OSubHeading(Hymn 363)

8SubHeading(The Gospel@dJohn 15:9-128\)
8SubHeading(Homi1y@>Fr. John Fowler)

@Heading(The Marriage@PageNum[p. 427])

8SubHeading(The Exchange of Vows)

@SubHeading(The Prayers)

@Heading(The Blessing of the Marriage@PageNum[p. 430])
8SubHeading(The Blessing)

@SubHeading(The Peace)

@Heading(The Holy Communion@PageNum[p. 3681])

8SubHeading(The Great Thanksgiving)

8SubHeading(The Breaking of the Bread)

@SubHeading(The Prayer of Thanksgiving@>p. 432)
8SubHeading(Benediction and Dismissal)

@Head ing(Processtional)

8begin(verse)

@1[Toccata], from 21[Symphony #5 for Organ], C. M. Widor
Send(verse)

Figure 16: An elaborate scribe manuscript.

" R

o

F“*“‘ .

52 A Language and Compiler for Producing Documents

The Marriage of Loretta Rose Guarino and Brian Keith Reid
Saturday, May 12, 1979
The Church of St. Michael and All Angels, Tucson, Arizona

L L L L2 1 [2 2]

Voluntary
Siciliano, from Sonata # 2 for Flute and Keyboard, J. S. Bach

Prelude in Classic Style, Gordon Young
Andante, from Organ Concerto in F. Major, G. F. Handel

Processional
Adagio in A Minor, from the Toccata, Adagio, and Fugue in C Major, J. S. Bach
Rigaudon, Andre Campra

The text for the Marriage Ceremony may be
found in the Book of Common Prayer beginning
on page 423.

The Invocation p. 423

The Ministry of the Word p. 425
The Old Testament Tobit 8:5-8
The New Testament I Corinthians 13:1-13
Hymn 362
The Gospel John 15:9-12
Homily Fr. John Fowler

The Marriage p. 427
The Exchange of Vows
The Prayers

The Blessing of the Marriage p. 430
The Blessing
The Peace

The Holy Communion p. 361
The Great Thanksgiving
The Breaking of the Bread
The Prayer of Thanksgiving p. 432
Benediction and Dismissal

Processional
Toccata, from Symphony #5 for Organ, C. M. Widor

Figure 17: Document produced from manuscript shown in Figure 16.

4dv o

r

The Environment Mechanism 53

Chapter 5
The Environment Mechanism

To facilitate knowledge representation and manipulation, the problem of text
formatting was reduced to a set of almost-orthogonal parameters. The behavior of
the formatting compiler is controlled by setting and manipulating the value of these
parameters. The formatter interrogates the most recent value of appropriate
parameters whenever it must make a decision.

The parameterization of the task for document formartting was crucial to the
success of the compiler. It is therefore worthwhile to document the parameter-
ization in detail, explaining the purpose and behavior of the parameters and the
mechanisms that operate on them.

5.1 Environment Entry and Exit

Each environment (environments are defined in Section 4.3.1) specifies a value for
some parameters, but not necessarily all of them. As environments are nested, a
binding stack protocol is used; the current value of a parameter is the one found
topmost on the binding stack, and therefore belonging to the innermost envi-
ronment that specified a value for it. Because the parameters are static (no new
parameters can be created without reconfiguring the compiler) the compiler is able
to implement the binding stack much more efficiently than the classic LISP
implementation.

All changes to the behavior of the output assembler—new margins, new fonts,
new paragraphs, etc.—are effected by changing a state parameter. These parameter
changes are made whenever an environment is entered. and they are unmade when
the environment is exited. The inital values of the state parameters are determined
by the initialization from the document type definition retrieved from the document
design database.

An environment is a prescription for change to one or more state parameters. An
environment could be represented as a program that operates on one set of state

¥

r——gr.—r YT Ty - —
AN . FEEE R R e S TR

TW——

54 A Language and Compiler for Producing Documents

parameter values to produce another, but for a variety of reasons it is implemented
as a simple list of state parameter names and the change that is supposed to be made
to them. An environment normally specifies a change to only a few of the
parameters, leaving the rest to be inherited from outer environments.

When the compiler needs to know the value of a parameter during the formatting
process, it uses the topmost value found in the binding stack for that parameter.
When an environment is entered, its parameters and their values are pushed onto
the binding stack; when the environment is exited, the values that it pushed onto the
binding stack are removed. On both entry and exit, a change analyzer is called to
examine the changes that have just been made in the state parameters to see if any
support processing must be performed. Typical support processing functions
signaled by thie change analyzer include storage allocation, font structure initial-
ization (the first time a font is used), and footnote placement.

5.2 Types

Every parameter has a type, and every value in an environment has a type. When
the environment is entered and a new parameter value is computed, the value that
the environment specifies for a parameter is coerced into the type of the parameter.
Some of these coercions are context-sensitive, so that the same environment value
can produce differing parameter values depending on context. For example, there is
a state parameter named WidestBlank that specifies the largest size to which a blank
can be stretched before the compiler will try to hyphenate the next word. The type
of the WidestBlank parameter is horizontal distance—it specifies a genuine max-
imum size. However, a document format designer can specify a value in type font
width relative distance—and it will be converted to a different absolute distance
depending on the font currently in use. This permits most of the bookkeeping
computations to be handled automatically. These types and their implementations
are discussed in more detail in Section 8.4.1.

e Type character is a single Ascii character.
o Type string is a string of characters.

e Type integer is an ordinary machine integer, subject to the usual
limitations of finite word size.

o Type rational number is a rational number represented as the quotient of
two machine integers. They are used in distance calculations in which
rounding errors must be avoided at any cost.

The Environment Mechanism 55

» Type Boolean is true or false.

o Type vertical distance is an absolute distance measured as an integral
- number of basic vertical spacing units of the destination printing device.
Since it is always an integer, it is not subject to rounding error.

e Type horizontal distance is an absolute distance measured as an integral
number of basic horizontal spacing units of the destination printing
device.

o Type font-width-relative distance is a distance that is proportional to the
width of the digit “0” in the current font. When an environment’s value
for a parameter is in type font-width-relative-distance and the param-
eter’s type is an absolute distance, the environment’s value is multiplied
by the appropriate width at environment entry time, thereby yielding
different absolute distances in different contexts.

T
LA R

L g

o Type font-height-relative distance is a distance that is proportional to the
height of the current font. Its coercion to absolute distance is context-
sensitive; see above.

o Type symbol is a pointer to an entry in the compiler’s symbol table.
State parameters can take on symbolic values when they need to link the
state to some external entity, such as a numbering counter.

There are also various enumerated types that are specific to the parameter whose
value ranges over that type. These types are described along with the parameter for
which they are the domain.

3 5.3 Dynamic State Parameters

They are classified into two groups, inheriting parameters and non-inheriting

parameters. The inheriting parameters obey the binding stack protocol discussed in

Section 5.1. The non-inheriting parameters do not: if an environment entry does
[} not specify a value for a non-inheriting parameter, then a default value is used
s rather than an inherited value.

1
4
4 Dynamic parameters are those that may change during a run of the compiler.
b
3
)

A sample dynamic parameter is the one that selects the font, which is an
j inheriting parameter: an environment whose definition makes no mention of font is
¥ produced in the same font as the containing environment. Another is the flag that

T—y

1

."ri' LR B

S

vv-_"i:'r?..l a

(N SR SR

56 A Language and Compiler for Producing Documents

specifies whether or not a new paragraph is to be started on entry to the
environment. It is a non-inheriting parameter.” The complete set of dynamic
parameters is listed in Appendix A, beginning on page 133.

5.4 Static State Parameters

 Static state parameters are fixed during compiler initialization, and they do not
change during a compilation. Their values are read in from various database files, or
occasionally specified directly in the manuscript.

The various static state parameters that affect the formatting process are listed in
Appendix A, beginning on page 139. These parameters are static not because of a
conceptual or implementation need that they be static, but because there is no need
for them to be dynamic, and static parameters are accessed much more efficiently.
Examples of static state parameters are the width of the paper loaded into the
printing machine and the flag that specifies whether or not the document type is to
be set up for double-sided reproduction.

5.5 Pattern Templates

In designing or modifying a document a document format, one frequently needs
to specify a style for numbering or marking or labeling. Are chapters numbered 1,
2,3, 40r I, II, ITI, IV? Or are they numbered one, two, three, four or One, Two,
Three, Four?

In keeping with the generat Scribe philosophy of nonprocedural specification, the
Scribe compiler has a general mechanism for providing a schema for the generation
of systematically-created names or numbers. This pattern template mechanism is
similar to the Fortran FORMAT mechanism: the user provides a series of codes that
show how the numbers are to be converted and where they are to be placed once
they have been converted.

The Scribe pattern template mechanism supports about 15 different kinds of
numeric conversion, including cardinal and ordinal Arabic (1, 2; 1st, 2nd), cardinal
and ordinal English (one, two; first, second), upper- and lower-case Roman
(I, 1I; i, i), replicated tallies (*, **, ***, etc.) and selection from enumerated sets
(dagger, double-dagger, etc.). Besides these format conversions, the pattern tem-
plate can specify literal text (like the # format in Fortran conversion) and perform
simple conditional tests on the numbers being converted.

There is sometimes a need to control the printing style of automatically-generated

EEMEES S, o ariegrd
SN DN

The Environment Mechanism 57

text other than numbers. The Scribe compiler, for example. will insert the current
date wherever it finds the construct @value(date). The default format is 13
December 1980, but many document styles require different date formats. A user
can request the compiler to generate dates in a different format by providing it with
a date template. A date template is a representation of the date 8 March 1952, using
nearly any format. By parsing that template, the compiler can recognize fields as
standing for the month, the day, the day of the week, the year, and so forth. When a
date is inserted by the compiler into the text, it converts the components of that date
into a string according to the fields found from parsing the template. Various
examples:

The template “8 March 1952” prints today's date as “13 December 1980".

The template *“08 Mar 52" prints today's date as 13 Dec 80".

The template “8/3/52" prints today"s date as “13/12/80".

The template “03/08/52 (Saturday)™ prints today’s date as “12/13/80
(Saturday)”.

The template “The First of March, One Thousand Nine Hundred and
Fifty-two ' prints today’s date as “The First of December, One Thou-
sand Nine Hundred and Eighty™.

The template “Samedi, le 8 Mars, 1952" prints today’s date as “Samedi, le
13 Decembre, 1980".

The template “el 8 de Marzo de 1952 prints today’s date as “el 13 de
Diciembre de 1980,

The standard date was chosen so that a purely syntactic analysis could be used. The
month number (3) must not duplicate the day number (8), the day number of that
date within the week (6), or any of the digits of the year (1. 9, 5, or 2). Both the
month number and the day number must be single digits, so that leading zeros can
be detected (3/8/52 vs. 03/08/52). The month cannot be January, so that day-
within-month and day-within-year can be disambiguated. The date must fall within
the first 99 days of the year, so that leading zeros can be detected in a day-within-
year value. Whatever month is used must have different spellings in all of the
languages that we hope to recognize (English, Spanish, French, German, and
Swedish); this eliminates April, which is spelled the same in English and German.
Finally, | wanted the date to be relatively recent, so that it could be represented as a
positive number in an offset Julian-day scheme whose values would fit into 16-bit
machine words. February 2-8 and March 2-8 all provisionally satisfy these
restrictions, though not all of them will work every year because of conflicts with the
year digits. March 8 is my wife’s birthday, so that settled it.

T S U S SO

..... SoS T T T T e RTETORTTE T e WY a T W R T W e e v N W T T T e e e e e e v ey

58 A Language and Compiler for Producing Documents

5.6 Definition by Analogy

The representation of environments as attribute lists permits a very simple
definition by analogy mechanism. As introduced in Section 2.2.3, a definition by
analogy is the definition of a new environment to be essentially like another, but
with a specified set of differences.

Each environment is a set of pairs of attributes and their values. If environment x
specifies values v,.....v, for attributes ay,...,a,, and environment y is defined to be
“like x, but having value w, for attribute g, ", then y will have values v}.....w;....,v,
for attributes q.,...,ay.....a;,. Environment x might or might not have had a value
specified for attribute g;.

This definition by analogy can also be used to make incremental changes to the
definition of an existing environment, by the simple tactic of substituting x for » in
the above transformation. x will then be redefined to be different in some set of
attributes from its previous deJnition.

5.7 An lllustrated Example

For this example, please refer to Figures 18 and 19. The initial state, at sequence
number 1 in Figure 18, is v,w,....v, for attributes a),0;...,a,, When the
@Begin(Quotation) environment entry command is seen at sequence number 2, the
definition of Quotation is retrieved and found to be

QUOTATION: (a3 = w;,87 = wy,a9 = Wg)
After the Quotation environment is entered, the formatter state is now
vl! va w30v41"5‘ v6v W7, v8‘ wgl vlo,- .oy vn
The next sentence, sequence 3 in Figure 18, is formatted according to that state
vector. When the @1 environment entry command is seen at sequence number 4,
the definition of / is retrieved and found to be
I: (as = 28)
After the / environment is entered, the formatter state is now

Vl,vz, W3, V4, Vs, V6, W7,Zs, W9, Vlo,. . Vn

T v Ot o T
A Fiase

(a3 C i ¢
o T

r.vrfvlr'.v natt o i,' e

T S LW T w

The Environment Mechanism

x‘l'ho quick brown fox said,
angin(ouotation)
38rian, you've just 4@1[got]5 to think of a better
oxauplo for the environment/state vector figure.
OEnd(quotat1on)

--Te1[Anonymous]

Figure 18: Manuscript used for the example in Figure 19.

T
1 vl v2 v3 \4 \5 v6 \'7 \8 \9 yn
w3 Wyl Wg "QTJOtation"
environment
3oL 2 vl Y| Y6 M Ys| Y ‘n
Z "l"
8 environment
v v v
4 vl \2 w3 A 5 6 \~7 28 \9 ‘n
!
5 v . \2 “3 \4 \5 ! \6 v»7 “8 \9 \n
9 \1 \2 »3 \4 \5 \6 \7 \8 \9 \n
b3 I 1"
8 j environment
8 vl \2 V3 \4 \5[\6 \7 28 \9 \n

Figure 19: State vector changes during environment processing.

59

AR AN e & aa oa 0l A 4 -

— T

Bt sl Siae . i Bt Rt S it Rt Mt 4

S T T e imo v m s wT mTe T TN W e TR TR W e T

60 A Language and Compiler for Producing Documents

When the J environment is exited, sequence 5, the state is restored to be the same
as it was at sequence 3, by popping back the old state vector from a stack on which it
was saved when the new one was generated. When the Quotation environment is
exited, the state is restored to its initial state. At sequence 7 another instance of the /
environment is encountered, but this one is not nested inside Quotation. The same
definition for 7 is retrieved, and after environment entry the state vector is now

V¥« V75285 Vg0 - ¥

ry

VTrTYTYY
v e i

VT

The Database

Chapter 6
The Database

The Scribe database contains all of the information needed by the compiler to
produce documents. There are two fundamentally different kinds of information in
the database: device information and format information. There is a certain amount
of interplay between the two, since the formats are device-dependent. Each time the
compiler is run, it produces a document in a particular format for a particular
device; it retrieves the necessary information from the database during compiler
initialization.

6.1 Device Data

The first step taken by the compiler during initialization is to determine the
printing device and retrieve the device definition from the database. The device
definition contains specifications of physical properties of the device, specifications
for retrieving font and format data pertinent to that device, and default implemen-
tations of various environments for that device. The data representation is a
command language syntactically identical to the document specification language, in
order that the same parser can be used for both.

Figure 20 shows the device definition for an optical photocomposer equipped
with photographic fonts and a lens turret to change letter size. The first five
statements assign values to static parameters. The “generic device” is the device
retrieval key for future database retrievals; it permits device definitions for similar
devices to share most database entries. The “driver” is the identifier for the
particular output driver in the compiler; the GSI driver contains code that knows
about optical photocomposers, and has the device commands for those devices
hardwired into compiler tables.

The remainder of this database file is devoted to the default environment
definitions for this device. A format definition can override any or all of these
definitions, but most format definitions use the standard, default environment
definitions.

62

A Language and Compiler for Producing Documents

@Marker(Device,GSI)
@Declare(GenericDevice="GSI" ,DeviceTit1es"GSI CAT-8 Photocomposer®,
FinalName="#.GSI")
8Declare(Driver GSI Hunits 1inch,Hraster 432,Vunits inch,Vraster 144)
@Declare(PaperWidth 7.751inches,PaperLength 1iinches,ScriptPush=no)
@Declare(Underiine available,Backspace available,
Overstrike available,Fonts,Lenses,FontCount 8)

@Define(I,FaceCode I,TabExport)

@Define(B,.FaceCode B,TabExport)

8Define(P,FaceCode P,TabExport)

@Define(C.Capitalized,Size -2,TabExport)
@8Define(V,Capitalized,FaceCode R,Size -1,TabExport)
@Define(R,.Underline off,Capitalized off, TabExport,FaceCode R)
8Define(U.Under1ine NonBlank,TabExport)

8Define(UN.Underiine Alphanumerics,TabExport)
Define(UX.Underline A11,TabExport)

@8Define(T=R, TabExport)

80efine(Plus,Script +0.411nes,S12e -2, TabExport)
@Define(Minus,Script -0.411nes,Size -2, TabExport)
@Define{6,FaceCode G,TabExport)

@Def1ine(Z,FacesCode Z,TavExport)

8Define(Y.FaceCode Y ,TabExport)
@Define(FO0,TabExport)@Define(F1,TabExport)@Define(F2,TabExport)
8Define(F3,TabExport)8Define(F4, TabExport)@Define(F5,TabExport)
8Def1ne(F8,TabExport)8Define(F7, TabExport)8Define(F8,TabExport)
@Def ine(F9,TabExport)

8Def1ne(VW,Spaces NoBreak,TabExport)

@Counter(Page,Numbered <@1>,Referenced <081>,Init 1)

@Define(Hdg,Fixed 0.5inch,Nof111,LeftMargin 0,RightMargin 0,Spread 0,
Capitalized off, Spacing 1,Stze 10,Font HeadingFont,FaceCode R,
Columns 1, ColumnMargin 0,

UnNumbered,Underliine off,Indent 0,
- Initialize "@tabclear()”,.TabExport False)

80eftne(Ftg=Hdg,Fixed -0.51inches)

@Define(Text,Fi11,Justification on,Spaces compact,Break,WidestBlank 5pts,
Blanklines Break)

@Define(Multiple,Indent 0,SpecialCase OpenBefore)

8Define(Transparent)

8Define(Group,Group,Break)

@Define(Float,Float,Break)

8Define(Bspace,Break,Above 0,Below 0,Group,Nofi11,LeftMargin 0,RightMargin 0)

@Define(Bpage,FloatPage ,Break,Continue)

8Define(Pspace,Break,Above 0,Below 0,Group,Nofi1l,LeftMargin O0,RightMargin 0)

Figure 20: Device definition for a photocomposer (part-one).

M aE i el

o | The Database 63

@Define(Verbatim,Break,Continue,Nofi11,Spaces Kept,FaceCode F,
Above 1,Below 1,BlankLines kept,Spacing 1)
8Define(Format,Break,Continue,Nof111,5paces Kept,Above 0.8 1ines,
Below 0.811nes,BlankLines kept,Spacing 1,Justiftcation off)
8Define(Insert,Break,Continue,Above 0.71ines,Below 0.714nes,LeftMargin +4,
RightMargin +4 ,spacing 1.BlankLines kept)
8Define(Conter,Break,Continue,Above .8,Below .8,Spacing 1,
LeftMargin 0,RightMargin 0,
Centered,BlankLines kept,Initialize "@TabClear()".TabExport False)
@Define(Flushright=Contar,Flushright)
@0efine(FlushleftsFormat, LeftMargin 0)
8Define(Heading,Use Center,Continue off,Above 2,Below 1.3,
Font HeadingFont,FaceCode B,
Need 1inch,Size +3,TabExport False,Spacing 1.2)
@efine(SubHeading,Use Insert,LeftMargin 0,Indent 0,Continue off,
font HeadingFont,FaceCode B,
Above 0.8,Below 0.5,Need 4,S51ze +2,Spacing 1.2)
@Define(MajorHeading,Contered,Spacing 1.2,Continue off Need 1inch,
Font HeadingFont, FaceCode B,
Above 2,Below 1,Size +5,Break,TabExport False)
80efine(Display.Use Insert Nofi11,Use R,Group,Blank] ines Kept,
Spaces Kept,TabExport False)
8Define(Examplie,Use Insert,Nofi111,Spaces Kept,Group,Blanklines Kept)
8Define(OutputExampleaVerbatim,LeftMargin 2)
8Equate(InputExample=OutputExampie)
@Define(ProgramExamplesExample)

ey —n T

&

@Define(Itemize,Break,Continue,F111, LoftMargin +5,Indent -5,R1ghtMargin 6,
numbered <8@y[B] @,88y[b] > NumberLocation 1fr,BlankLines break,
Spacing 1,Above 0.514ines,below 0.511nes,Spread 0.511nes,
Spaces compact)
8Define(Enumerate,Use Itemize,LeftMargin +6,Indent -6,
Numbered <@1. 8,8a. 8,81. >,
Referenced <210,8a8,8i>)
8Define(Description,Break,Above 111ine,Fil11,LeftMargin +18,Spaces Compact,
Indent -16,Spacing 1,Spread 0.311ines)
@0efine(Quotation,Use Insert,Fi1l,Use R,BlankLines break,Size -1,
Spaces Compact,TabExport False,Font BodyFont)
@Define(Verse,Use Insort,Fi11,.Spaces Kept,Justification off.Crbreak,Use R,
LeadingSpaces Kept,
indent -3,Spread 0,LeftMargin +8,TabExport False)
@TextForm(Bar="@begin(format)@tabclear()8&8+[]8\Gend(format)"”)
8Define(Fnenv,Use Text,Above 1,Foot,Use R,LeftMargin 0,RightMargin 0,
+ @ Size -2,CrSpace,UnNumbered,Indent 2,Spread 1,spacing 1,Break off,
TabExport False)
@Define(FootSepEnv , Broak,SaveBox <FootSep> . Nof{11,LeftMargin 0,Above 1,

Below 1)
_ Figure 20: Device definition for a photocomposer, continued.
e
L
r
L

64 A Language and Compiler for Producing Documents

The fonts and face codes referred to are defined in a font definition entry from
the database. Font definition entries are described in Section 6.2. The syntax of the
@Define statement is

8Deft ine(name, list of attributes)
or the form for definition by analogy,
@Def 1ne(name=existing name, list of differences)

These environment definitions are processed into an internal representation of
association lists (Section 8.4.1.4), forming a list of pairs of attributes and their typed
values.

6.2 Font Data

Two kinds of font data are needed by the compiler. The first, font organization or
family data, is a mapping between Scribe font names and face codes to the device-
specific fonts. Figure 21 shows the font family definition for a font family named
Times Roman 10A. This font family is commonly used for textbooks. It defines five
named fonts, each of which contains several face codes. An actual device font is
selected by a (Font, facecode) pair.

The second kind of font data found in the database is a device font description. A
device font description is a map from Ascii characters onto code sequences sent to the
final printing device with width information attached. It may also include
specification of ligatures and special characters available in that device font. Figure
22 shows a portion of the device font description for the Times Italic Bold font
available on this class of photocomposer. For ordinary Ascii characters, it specifies
the width (in machine-specific distance units) and the particular device codes
needed to get the photocomposer to print that character in the selected font. For
ligature characters, it shows the ligature key (ff in this example), then the width and
device codes.

6.3 Document Format Definition Data

After the compiler has processed the device data, it retrieves and processes the
appropriate document format definition from the database. Selected by a @Make
command in the manuscript (see Section 4.3.4), the document format definition
selects fonts, defines or redefines environments as needed, and initializes dynamic
state parameters. Document format definitions are sufficiently varied that one
example will not suffice; we will discuss the Letterhead and Thesis document type
definitions.

anion I SR SUy e —— - e 4 2 - . A o j

L The Database 65

8Comment(Times Roman
In this configuration, the following font segments must be mounted:
- Quadrant 1: Part #829-001A #1 P{ font
I Quadrant 2: Part #603-008A Helvetica Bold/Light
bl " Quadrant 3: Part #608-001A Times Roman Italic/Regular
Quadrant 4: Part #608-002A Times Roman Bol1d/Bold-Italic

}
' 8DefineFont(BodyFont,
D IsCascii "C021">,
re B=<ascti “C028">,

! Rs<ascit "CO2R">,
G=<ascii "C02G*>,

Fsasciti “CO2F™>,
Zs<ascii *C02Z">,
Y=<ascii "CO2Y">,
Ps<Cascii "CO02P*>,
T=<asci1 “CO2TL">)

— Tt e -

@Def1inefont(HeadingFont,
R=<Cascii "CO2TL">,
Bs{asci1 "C02TB™>)

Figure 21: A font family definition (Times Roman 10).

' (Id *1",wid $9,FiIm 5,Code §,Case L)
h- (14 *m",Wid 28,F1Im 8,Code 4,Case L)

: (Id¢ *n"~ ,Wid 19,F1Im 5,Code 3,Case L)
(1d “o" ,Wid 18,FiIm 5,Code 27,Case L)
(1d “p*,Wid 17,FiIm 5,Code 17,Case L)
(Id *"q",Wid 18,F11m 5,Code 34,Case L)
(1d *r" ,Wid 13,F{im 5,Code 29,Case L)
(1d "s" . Wid 14,F1Im 5,Code 8,Case L)
(1d "t~ ,Wid 10,F1lm 5,Code 2,Case L)
(Id "u",Wid 19,F1Im 5,Code 14,Case L)
{Id ®"v" Wid 16,Fiim 5,Code 31,Case L)
(Id “w" ,Wid 24,FiIm 5,Code 33,Case L)
(Id "x" ,Wid 18,Fiim 5,Code 11,Case L)
(1d "y",wid 16,Fiim 5,Code 41,Case L)
(1d *z" ,Wid 14,F1Im §,Code 7,Case L)
(Id "{".wid 14,F4Im 1,Code 26,Case U)
(Id *|~.Wid 2,.F{Im 5,Code 41,Case U)
(Id *}".Wid 14,Film 1,Code 27,Case U)
(Id "~",Wid 36,F1Im 1,Code 58,Case L)
(1d *--",Wid 36,Film 5,Code 18,Case L)
(I1d "f1".Mid 21,Film 5,Code 20,Case U)
(1d *f1",Wid 21,FiIm 5,Code 21,Case V)
(1d “fr~ wid 21,F1Im 5,Code 22,Case U)

Figure 22: Sample device font (Times Italic Bold).

hP Aot g

66 A Language and Compiler for Producing Documents

Figure 23 shows the document format definition for a letterhead format It
consists of some environment definitions, some @Style commands to set static
format parameters, a @Begin command to initialize dynamic state, and then some
manuscript text that will place the return address and the current date. The
manuscript file for the letter will contain a @Begin(Address)/@End(Address) and
@Begin(Body)/@End(Body) delimiting the address and body.

Figure 24 on pages 68 and 69 shows the document format definition for the CMU
Thesis format on a Xerox Dover printer. It consists of some static format parameter
declarations, a number of counter declarations, initialization for generated portions,
loading of several libraries (title page format library, math numbering Library, etc.),
but no canned text. The @Define(BodyStyle) and @Define(NoteStyle) at the
beginning set up “subroutine™ environments that are never explicitly referenced by
the writer, but are referred to in various environments later in the file. The @Font
command declares the default font for this document type to be Helvetica 10. The
@Style command declares a few static state parameters. The @Enable command
defines two generated portions, one for the document outline and the other for the
table of contents. (The generated portions for the list of figures and list of tables are
declared in the library file loaded by the @LibraryFile(Figures) command on the
second page of the figure.) The @Send commands initialize the table of contents
portion, setting it up with the correct page number and numbering style, and then
giving it the heading “Table of Contents”. The mechanism by which the table of
contents is generated is described in more detail in Section 7.1.

The @Define commands that follow define environments HDO through HD4,
and TCO through TC4. They are used for level-0 through level-4 body heads and
table of contents heads, respectively. The @Counter declarations that actually
define @Chapter, @Section, and the like use these environments explicitly in their
numbering templates. There are two templates associated with each counter, one
called its “Numbered” template and used for printing the actual number, the other
called its “Referenced” template and used for printing cross references to the
generated number (the cross-reference mechanism is defined in Section 7.2). The
three @LibraryFile commands load the standard definitions for figures, equation
numbering, and title pages.

The @Modify commands that follow change the numbering on equations and
theorems from that found in the standard library file into a style wherein equations
and theorems are numbered within the current chapter. The @Equate command
defines a few abbreviations, and finally the @Begin(text) marks the entry to the
outermost environment in which the basal text for the document will be formatted.

Uy S

LELIL DR e Sg &/t s S SN SR S0 AU A 4
. - . " -

| MR
-

The Database 67

@string(Phone="(412) 578-2565",Departments"Computer Science Department®)
8String(Psychology="Department of Psychology”.
Maths="Department of Mathematics®.
EE="Department of Electrical Engineering”)
8String(CSD="9q(@8)",PSI~"0 0 8 @ @ @ 8J(Y)8 ~,
None="g{0 2 0 3 0 Q008 8 a0])
eString(Logo=CSD)
8DefineFont(LetterHeadFont,Q=<asci1 “CMUlogo18"> ,R=»<ascti "Helveticalls"),
H=<asc1i "Helvetical14B8"), Jelascit "Hippo18MRR"))
SFont(Helvetica 10)
Define(Q,Facelode Q)
8Dsf 1ne(H,FaceCode H)
@Define(J,FaceCode J)
@Style(TopMargin 0.31n,WidowAction Force)
8Define(Address,Nofi11, LeftMargin 0,Break,Use R,Spacing 1,Spaces Kept,
Sink 2.21n, above 0, below 0)
S0ef1ne(Body,F111,Justification, Uss R,LeftMargin 0,E0fOK,
Spacing 1,Spread 1,Spaces Compact,BlankLines Break,
TopMargin 11in, '
Sink 3.2%n, Above 1 1ine,Below 0.51n, Break)
efine(Ends,NoT111,LeftMargin 3.31a,Spread 0,Bresk,Use R,
Above 1.81nm,
RightMargin 0,81ankLines Kept,Spacing 1)
8Equate(ReturnAddress = Comment)
8Define(Signature, use Ends, sbove 0)
8Define(Notations Nofi11,LeftMargin 0,Spread 0,8reak,81ankLines Kept,
RightMargin 0,Spaces Kept,Sink 9.31n)
SDefine(LogoFormatsFormat,Font LetterHeadFont,FaceCode R,Break,Above 0,
Below 0,.NoF{11.Spacing G.21n,LeftMargin -0.231n ,RightMargin -0.231n,
Initialize "@iadClear()")
@Define(PS=Body,.Sink ¢ . Above 0,Below O)
80efine(Greeting=Flushieft)
8Equate(PostScript=PS,PostScripts=PS,Closings=Notations,Inttials=Notations)
OLibraryFile(Math)
98egin(Text,Justification,Font BodyFont,FaceCode R,LeftMargin 1.01n,
Indent O,LineWidth 8.31n,BottomMargin 1in,TopMargin 1.31n,
Spacing 1)
@TextForm(NewLetter={8Set(Page=0)8NewPage()
@begin(LogoFormat,Fixed 0.6251n)
@vilue(Logo)@|é!Onf@value(Department)]@>8h[Carnegieo-Mellon University]e\
Send(LogoFormat)
Sbegin(LogoFormat,Fixed 1.21n)
8/8value(phone)@>Pittsburgh, Pennsylvania 152136\
@/8>@value(Date)@\
@end(LogoFormat)
})
8NewLetter()
@Begin(Ends,Eofok)
@PageHeading(left "@value(Date)",right "Page Gvalue{Page)”)

Figure 23: Document format definition for a business letterhead.

=B

¢
f

A gl LN 4

A Language and Compiler for Producing Documents

8Comment{
This file defines the format for Ph.D. theses in the Comput.r Science
Department at Carnegie-Mellon University.

}

@0efine(BodyStyle.Font BodyFont,Spacing 1.5,Spread 0.8)
8Define(NoteStyle,Font SmaliBodyFont,FaceCode R,Spacing 1)
8font(Helvetica 10)
@Style(DoubleSided,BindingMargin=0.51nch,LeftMargin=1.25 1in,
WidowAction Force . References=STDalphabestic)

@Enable(Outline,Contents)
8Send(Contents 'Oﬂo-Pago(0)OSQt(Pago-LastProContontsPago)'
~Contents “@Set(Page=+1)",
Contents “8Style(PageNumber <21>)")
8Send(Contents “"8PrefaceSection(Tadle of Contents)”)
8String(LastPreContentsPage=0)

8Def1ne(HDX,LoftMargin 0,Indent 0,F111,Spaces compact,Above 1,Below O,
break,Need §,Justification Off)
80ef1ne(HdO,Use HdX,Font TitleFont5,FaceCode R,Above 2,Below 0.51inch,
Coentered,AfterEntry “8TabClear()",.Sirk 41in,PageBreak Unt110dd,
Spacing 1.8)
@Define(Hdl,Use HdX,Font TitleFontS5,FaceCode R,Sink 21n,
PageBreak Unt110dd,Below 0.5inch)
8Def1ne(HD1A=HD1,Contered AfterEntry "8TabClear()")
@Define(Hd2,Use HdX,Font TitieFontl, FaceCode R,Above 0.41nch,Below 0.31n,
Need 1.5 1n)
@Def1ne(Hd3,Use HdX, Font TitleFontl, FaceCode R,Above 0.41nch Below 0.31n)
80efine(Hd4,Use HdX Font TitleFontl, FaceCode R,Above 0.31inch,Betow 0.251n)
8Define(TcX,LeftMargin 5,Indent -5 ,RightMargin 5,Fi11,Spaces compact,
Above 0,Spacing 1,Below 0,Break,Spread 0)
@Def1ne(TcO=TcX,Font TitleFontd, FaceCode R,Above .3in,Need 1 inch)
8Define(TcisTcX,Font TitleFontl, FaceCode R,Above 0.11inch ,Need 0.6 inches,
Below 0.11nch)
6Define(Tc2=TcX,LeftMargin 8,Font TitleFont0,FaceCode R)
@Define(Tc3=TcX,LaftMargin 12,Font TitleFont0,FaceCode R)
@Def1ne(Tcé=TcX,LeftMargin 16,Font TitleFont0,FaceCode R)
8Counter(MajorPart,
Numbered [@I],Referenced [81],Tit1eForm
{8begin(Hd0)Part 8parm(Numbered)8*dSkip(6 pts)@*@parm(Title)8end(HDO)),
ContentsForm
{8Begin(TcO)PART @parm(Referenced):8*drfstr(8parm(page))@parm(Titie)@end(Tc0)}.
IncrementedBy Use,Announced)
@Counter(Chapter,TitleForm
{9begin(HdiA)Chapter 8parm(Numbered)@°@Skip(6 pts)9°Oparm(T1tlo)Oond(HdlA)}
ContentsForm
{8Begin(Tci)@rfstr(@parm(page))dparm(Referenced)@®.@ Sparm(Titie)Bend(Tcl)),
Numbered [@1],.IncrementedBy Use,Referenced [81],Announced)

Figure 24: Document format definition for CMU thesis.

v ey

1T
-

3
]

A Ad i Ak A Ak S D SRS it L Ee Ll L i S
. .. ‘ . B

— YTV TV YTy

b Slne At cher

The Database 69

#Counter(Appendix,TitleEnv HD1,ConteatsEnv tcl,Numbered [BA.],
ContentsForm “8Tci(Appendix @parm(referenced)d.@
orfstr(@parm(page))@parm(Title))",
TitleForm "@Hd1(G=Appendix 8parm(referenced)@*
0=8Parm(Title))",

IncrementedBy,Referenced [8A],Announced,Al1as Chapter)
@Counter(UnNumbered,Tit1eEnv HD1,ContentsEnv tcl,Announced,Alias Chapter)
9Counter(Section,Within Chapter,TitleEnv HD2,ContentsEnv tc2,

Numbered [8#@:.81),Referenced [8#0:.01], IncrementedBy Use,Announced)
8Counter{AppendixSection.Within Appendix,TitleEnv HDZ,ContentsEnv tc2,

Numbered [8#9:.081],Referenced [040:.01],IncrementedBy Use, Anrounced)
8Counter(SubSection Within Section,TitleEnv HD3,ContentsEnv tcd,

Numbered [8#8:.91],IncrementedBy Use . Referenced [8#0:.01])
8Counter(Paragraph,Within SubSection,Tit1eEnv HD4,ContentsEnv tcd,

Numbeced [8#0:.81],Referenced [84#9:.081],Incrementeddy Use)

8Counter(PrefaceSection,TitleEnv HD1A,AT1ias Chapter)

OLidraryFile(Figures)
9LibraryFile(Math)
SLibraryFile(Titlepage)

8Modity(EquationCounter Within Chapter,Numbered <(8#9:.81)),
Referenced "(@#0:.81)")
SModify({TheoremCounter,Within Chapter)

9Equate(Sec=Section,Subsec=SubSection,Chap=Chapter , Para=Paragraph,
SubSubSec=Paragraph,AppendixSecsAppendixSection)
98egin(Text,Indent 1Quad,TopMargin 0.91inch,BottomMargin 1.21nch,
LineWidth 6 in,Spread 0.0751nch,
Use BodyStyle,Juatification, FaceCode R,Spaces Compact)
8Set(Page=0)
@PageHeading{Center "@value(page)”)

Figure 24: Document format definition for CMU thesis, continued.

A oA e CRLARE R ROGL MEls SO MM Rt S et e e A adhi . ates necs oo

k:‘ 70 A Language and Compiler for Producing Documents

6.4 Libraries

Certain database files amount to “subroutine packages”; they define environ-
ments or facilities that are used in several document formats. One library defines
tile page environments, another defines figures and tables, and so forth. These
libraries reduce the redundant storage of duplicate information in the database,
making the database maintenance task simpler, but increasing the amount of I/0
overhead involved in initializing the compiler.

:
'
r
|
F
k

N - el el ‘ 2 3 LY ’
" - - - oa [N SR N N S N }

F— =T e W, WTTWS Tr— T T W R T e T T TS

VYTV

A Writer's Workbench 71

Chapter 7
A Writer's Workbench

The Scribe system in toto provides a rich environment for the development of
documents. Borrowing the name from Evan Ivie’s system called “Programmer’s
Workbench” [21], I call the full set of support facilities the “Writer's Workbench™.

The goal of the writer's workbench is to provide an integrated set of tools that
automate as much as possible the clerical work involved in the preparation of a
document. Some of these tools are implemented within the Scribe compiler, others
are separable programs that operate on the manuscript file. In this chapter, only
those facilities that are implemented as part of the compiler are described in any
detail.

Many of the facilities in the Scribe Writer's Workbench were styled after those in
various other document compilers, notably Troff and Pub. One difference is that
these facilities are built directly into the Scribe compiler, while they were imple-

" menird as extensions to the other systems, usually by persons other than the original

implgmentor. The Scribe Writer's Workbench facilities are more smoothly inte-
grated with the overall system, but less flexible and redefinable.

7.1 Derived Text

Many of the Scribe Writer's Workbench tools have to do with collecting together
in one part of the document various text that also appears elsewhere. Tables of
contents, indexes, and glossaries are examples of derived text.

To facilitate the collection of various kinds of derived text, the Scribe compiler
provides a mechanism whereby text can be saved during the processing of the
manuscript file and then processed as manuscript text in its own right at specific
“collection points” or when the end of the primary manuscript file is reached. Each
such generated portion, as it is called, is built sequentially in a format determined by
the document type, and then closed and processed automatically.

Tables of contents, tables of figures, lists of maps, and other “directory”

T Ty

72 A Language and Compiler for Producing Documents

information are summaries of all objects of a certain type that are in a document.
The table of contents is a directory of all of the numbered chapter and section
headings that appear in a document. The table of figures is a directory of all of the
numbered figures in a document. These directories are in the same order as the
objects appear in the document.

The database language (see Chapter 6) allows a document format designer to
specify that all objects of a certain type will be recorded in a specified portion. The
standard document types normally produce a table of contents, a list of figures, and
a list of tables. It is possible to attach to any numbered object an attribute that will
cause instances of that object to be recorded in one or more tables.

7.2 Bookkeeping and Numbering

Another theme common to several Scribe Writer's Workbench tools is is the use
of symbolic names to stand for cross reference numbers that will later be assigned by
the compiler. Used directly, this facility allows the writer to mark objects for
numbering without worrying about what the numbers will be in the finished
document, but to be able to make cross references to the numbers so assigned by
referring to a symbolic cross-reference label. This facility is styled after the counter
and referencing mechanism used by L. Tesler in PUB [43].

7.2.1 Cross Referencing

The fundamental building blocks of the numbering and cross referencing facility
are counters, labels, and symbolic references. A counter is a register that gets
incremented by various events, and which contains a printing template that controls
the conversion of the number in the register to a character string suitable for use in
text. A label command binds a cross-reference identifier to the current value of a
counter, recording the information in a symbol table and in the auxiliary file
(Section 8.3). A symbolic reference command refers to a cross-reference identifier,
and causes its recorded counter value to be included as text in the document in place
of the command. '

There are two distinct kinds of cross referencing, and several variations un one of
them. The original design of the Scribe manuscript language did not take these
distinctions into account properly, and as a result the manuscript language is
unnecessarily baroque with respect to the subtle differences among them. A cross
reference is a request to the compiler to fill in the actual number for something for
which you know only the symbolic name. Unfortunately, there can be many

- R)

A Writer's Workbench . 73

different “actual numbers™ associated with a given symbolic name. One can refer to
the identity of an object—"Figure 4"—or to0 the location of the object—"the figure
on page 23" or “the figure in Section 2.4”. Unfortunately, one can refer to section
markers as either objects—“Section 2.4 on page 23"—or as locations—*the figure in
Section 24”. There is no way to precisely determine the object that a cross
reference marker is marking simply by considering its location, as there are no
syntactic ties to link a marker to an object. The language therefore defines two
different commands, @Tag and @Label, to indicate the marking of sections as
objects or as locations. This is a defect in the manuscript language—there is no way
to express non-spatial links between two objects—but it actually manifests itself as
an irritating property of the cross reference mechanism.

7.2.2 Indexing

Although the production of an index is tedious and “egs automation, a satis-
factory index cannot in general be produced entirely by the compiler. In the
introduction to his work on indexing, G. V. Carey states “The true aim of an indexer
is to be methodical rather than mechanical” [9]. An index is much more than just a
list of the words that appear in the manuscript. An index lists ideas, not words, and
a mechanically-produced index based only on the words will have superfluous
entries and be missing entries.

Although indexing is conceptually trivial—find out what is covered in the
manuscript, arrange it in alphabet.cal order, and add page or section numbers—the
creation of a usable index is a higher art. Robert Collison, author of one of the
definitive works on manual indexing, asserts that most authors are temperamentally
incapable of making their own index, for they are t0o close to the matenial to see it
the way the reader will [11].

Figure 25 lists Collison’s twenty basic rules for indexers. Very few of these rules
are specified rigorously enough that a computer program could follow them to
produce the index mechanically. A program would have special trouble with items
8,9, 10, 11, and 17, since they require a deep understanding of the text.

The unfeasibility of a perfect solution to automated indexing should not discour-
age an approximate or partial solution. There is general agreement amcng the
authors of the classic treatises on indexing that the easiest books to index are those
that deal with facts, and that the indexing of these is largely a mechanical
operation [9, 11, 46]. Books of facts, such as reference manuals, comprise a good
fraction of the expected problem domain for a computer document preparation
system, and it is certainly feasible to include an indexing mechanism that will be of
use only for them.

w—

o - - T e R R R T e T R N T N T T ———
- 3 . . . ard d ™ 2 g ™ ——

4
E : 74 A Language and Compiler for Producing Documents
f

1. Index evervthing useful in the book—text, i]lustrauons appendices, foreword, notes,
bibliographies. etc.

2. Include all index entries in one alphabetical sequence.

3. Choose popular headings, with references from their scientific equivalents, except where
fﬂ a specialist audience is addressed.

4. Be consistent in choosing one form of spelling—seismography or seismology: ae or e, et.
Use a standard dictionary as your authority.

S. Choose the most specific headings which describe the items indexed: Steam-Boilers, not
Boilers; Finance—Haiti, not Finance or Haiti alone, etc. Use phrases as headings if
generally accepted: Training within industry; Social life and customs; but not Disposal of
surplus stores; Rights of the human person, etc.

6. Be consistent in the use of singular or plural terms.

7. Combine the word and the action which describes it, where it is useful and possible:
Banks and Banking: but not Fish and Fishing, etc.

;‘ 8. Invert headings, where necessary, to bring significant word to the fore: Agriculture,

3 Cooperative; Sociology, Christian, etc.

i 9. Check for synonyms and make suitable references from forms not used: Clothes, with
references from Dress, and from Costume, etc.

N 10. Check for antonyms and combine where suitable: Employment and Unemployment, etc.

- 11. Where words of the same spelling represent different meanings, include identifying
phrase in brackets: Race (sport); Race (ethnology), etc.

12. Where possible, give full names of persons quoted: Darwin, Erasmus; not Darwin, etc.

13. Omit the name of the country in which the book is pubiished in favor of direct entry
under the subject: Trade, Board of: not Great Britain—Board of Traae, etc.

14. Use capitals for all proper names. and where the usage of foreign languages demands
them: Aristode; Menelaus; but silage; quantum theory. Ruhe; Zweifel; but paix, guerre,
etc.

15. Make references from main subjects to subdivisions of these subjects, and to related
subjects: Costume, see also Gloves; Shoes; Hats, etc. But avoid a ‘vicious circle’ of
references leading the reader back to the first heading.

16. Subdivide alphabetically by aspects wherever possible, to avoid long lists of page
numbers.

17. In the case of historical and biographical works. substitute chronological for alphabeucal
subdivision. where this will definitely assist the reader.

18. Spell out symbols and abbreviations, except where the meaning of the abbreviations is

. generally known. United Nations, not U.N.; but UNESCO, not United Nations

. Educational Scientific and Cultural Organization, etc.

19. Avoid the use of bold type wherever possible: use instead italics, capitals, parentheses,

'@ and any other legitimate typographic devices for distinguishing items.

20. If references are made to paragraph numbers and not to page numbers, include a note to
this effect at the foot of every page of the index.

Yy

Figure 25: Twenty basic rules for indexers, from Collison [11)].

i 7= Sne R

- T‘W“‘T.

P
A

Y T I"‘. .

I S A . A A

I A R S e T, mEm ey B w

TF e R T oW o T W T

A Writer's Workbench V 75

The compiler should therefore be able to provide as much support as possible for
the indexer, filling the role nommally played by boxes of index cards. Perhaps the
best compromise is for the human user to select the set of topics to be indexed, by
consulting a list of the words found in the document, and then to place index marks
in the manuscript noting the topic that is to be indexed there. The compiler will fill
in the correct page number, and generate and sort the index, coalesce identical
entries, and so forth.

The current Scribe compiler provides two different indexing facilities. The firstis
an “@Index” command that makes an index entry, complete with page number,
from the text argument to the command. At the end of the manuscript, all entries
made via @Index are sorted into alphabetical order and formatted into a one-level
index, whose format is controlled in part by the document type. This facility is
adequate for short or simple material. The second facility is a low-level primitive
command that can be used to build higher-level indexing schemes. This alternative
command allows a programmer to write macros that will independently control the
text, the sort key, and the page or section reference number. This @Indexentry
command is called from within a macro, which is the only interface that a writer
would ever see. Various macro packages defining multi-level and cross-references
index formats exist, and a document format designer can include one of those
packages in his format definition file.

Even more intricate indexes can be constructed by the simple escape of redefining
the @Index command so that instead of placing its argument into the index, it
writes its argument into a generated portion file. That file can then be sorted, edited.
or processed into an index by various means external to the Scribe compiler. When
this method is used the compiler serves only as the data-gathering piece of the
indexing facility.

7.3 Document Management

Several of the facilities in the Scribe compiler have the common purpose of
helping the writer (or writers) manage large documents. This help consists of
various tools for helping him better see the structure of large documents, a means of
breaking large documents up into manageable pieces, and a means of synchronizing
the work of multiple authors on the same document.

76 A Language and Compiler for Producing Documents

7.3.1 Division into Parts

During the development of a large document, it is rare for the entire document to
be Emder active development by the same author at the same time. In the interest of
saving time and paper. an author usually prefers to edit, process, and print only the
section of the document that he is actively working on. The Scribe compiler permits
a manuscript to be divided into numerous small files, which are structured into a
tree to build the actual document.

‘File 4 Document
\
File 2 / \ File 11 \ rile 13
First pan Second part Third part
1 \
Introduction File 8 .
Fiel Chapter 2 Conclusion J
Chapter 4 File 14
Chapter 1 -
[File 10
File 3
/ Chapter 3 Chapter S
File 9 File 12
Sec. Sec. Sec.
21 22 2.3
File 5 File 6 File 7
First part Second part Third part
Chapter 2

T

Introduction Chapter 1 Sec. 2.1 Sec22 [Sec 23 Chapter 3 Chapter 4 Chapter 5 jConclusion

Figure 26: Decomposition of a document into a file tree.

Figure 26 shows a document partitioned into numerous subfiles.. The partitioning
is hierarchical, and corresponds to the logical structure of the document. The
sequence in which the files will be combined to produce the finished document is 1,
3,5 6,79 10, 12, 14. If there is text in non-leaf nodes 2, 8, 11, or 13, it will be
included mixed among the leaf text. This sequence amounts to a depth-first
traversal of the file tree, and is equivalent to the sequence of text that would be used
if each pointer to a sub-file were replaced by the entire text of that subfile,

T i rrvrﬁ'}'.

N |

LA e e o e e o
- . -t -

e \ SEae ot Al s Ah S aude Sl g

o

A Writer's Workbench 77

recursively until no pointers remain. All text would then be in file 1, in the sequence
shown above,

This mechanism is very ordinary, and has been used in document processors and
other compilers for many years. The Scribe multifile partitioning mechanism is
essentially identical to that used by most production compilers. Because it is so
ordinary, this facility was only mentioned in passing in the first edition of the
manual. I was quite surprised to notice that very few users made proper use of it to
partition their big documents, so later editions of the manual described it as one of
the major features of the Scribe compiler. While by itself this partitioning
mechanism is convenient but not interesting, its presence in the compiler permits
the implementation of a very interesting “partial compilation” mechanism, which is
described in the next section.

7.3.2 Separate Compilation

When the compiler is invoked to process the root (file #4) of the file tree shown
in Figure 26, it produces the entire document, as discussed above. However, when it
is invoked to process some non-root piece of the manuscript file tree, it produces
only that portion of the document that corresponds to the branch that was compiled.
Page numbe-s chapter numbers, footnote numbers, cross references, and all of the
other cu.upiler-generated text will be correct, even if the cross references refer to
labels in parts of the manuscript not included in this compilation. For example, if the
compiler is invoked to process file #7, then only the text of Section 2.3 will be
produced, and the first page produced will be numbered according to the position of
Section 2.3 in the document the last time the whole tree was compiled. If the
number of pages in Section 2.3 changes, the global record of page numbers will be
adjusted accordingly, so that if file #11 is now compiled, its first page number will
be one greater than the last page in Section 2.3. If the document has an index, or
other derived portion that is not in the same sequence as the document, then the
final copy must be produced by a full-tree traversal. The mechanism by which this
is made to work is discussed in section 8.3.

A variation on this “partial compilation” facility allows a manuscript to be
simultaneously a complete document in its own right and a part of a larger
document. Whether the compiler treats a file that looks like a root as a complete
document or as a part of a larger one is determined by the presence or absence of a
“@Part” declaration that contains a back pointer to a containing root: if the root
pointer is present, the manuscript file is compiled as part of a larger document; if the
root pointer is absent, then it is compiled as a full document in its own right.

78 A Language and Compiler for Producing Documents

Referring once again to Figure 26, if file #8 (Chapter 2) does not contain a @Part
command linking it to file #4, then when the Scribe compiler is invoked to process
file #8, it will produce a complete document beginning with page 1, in a format
determined by the declarations in file #8. When the compiler is invoked to process
file #4, and in the course of its processing encounters the declarations in file #8,
they will be completely ignored because they are not in the root.

7.3.3 Document Analysis Aids

One way to help a writer manage a large document is to provide him with reports
of its current status and structure. To this end, the Scribe compiler can produce a
directory and cross-reference summary of any document that it compiles. The
directory is similar to the table of contents, in that it is in the same sequence as the
document. It shows the structure—all of the headings and their relationship to one
anothe:—without showing any of the text. It also shows all of she labels and tags
defined for cross referencing. The cross-reference summary is a chart in alpha-
betical order by cross-reference label name, showing for each name the manuscript
file location where it is defined, the value assigned to it, and the number of
references to it.

Figures 27 and 28 show part of a sample cross-reference directory and listing
produced by the Scribe compiler. Figure 27 is part of the directory, and Figure 28 is
part of the cross-reference directory.

7.3.4 Draft Editions

Many documents are produced in draft dozens of times before a finished version
is ready. When a compiler-based document production system is used, the compiler
can just as easily produce a draft version of the document as a final version, and the
format of the draft document can be completely different from the format of the
finished document.

“Draft mode™ is a state variable whose value can be interrogated in the database
language so that a document type will yield a different format when draft mode is
enabled. Document type designers typically make their formats have a slightly
different appearance in draft mode, and usually add diagnostic information to the
running heads or index. Together they deliver a useful draft capability that
simplifies the management of the document during its development. Rather than
having a draft mode and conditional code in the document format definitons, one
could also define a separate document type for draft mode. Experience with both

Dk S 40 %2 S ach o
- . a -

A Writer's Workbench 79

Sec # and Title Page # MSS file location
2.1.3 Domain 4 PROBLE.THS, 00100/4
2.2 Language Goals 4 PROBLE.THS, 00100/5
2.3 Compiler Goals § PROBLE.THS, 00100/6¢
2.4 Documentation Goals 6 PROBLE.THS, 00100/7
3 Typography and Formatting 7 ISSUES.THS, 00200/1
IssuesChapter 7 ISSUES.THS, 00300/1
3.1 Letter Placement and Spacing in Text 8 ISSUES.THS, 00100/2
3.1.1 Letter spacing and kerning 8 ISSUES.THS, 00600/2
. MatrixCompression 3-1 9 ISSUES.THS, 05500/2 -
3.1.2 Ligatures 9 ISSUES.THS, 00100/3
RiversOfWhite 3-2 S ISSUES.THS, 0180073
NEB 3-3 9 ISSUES.THS, 01800/3
LigaturePicture 3-4 9 ISSUES.THS, 02100/3
AccentCases 3-§ @ ISSUES.THS, 02300/3
3.1.3 Diacritical Marks 9 ISSUES.THS, 0450073
3.2 Lineation and Word Placement 13 ISSUES.THS, 00100/4
KernFigure 3-8 13 ISSUES.THS, 00500/4

Figure 27: Sample document directory.

Alphabetic Listing of Cross-Reference Tags and Labels

Tag or Label Name Times Ref. Page Label Value Source file Location
ACCENTCASES 1 12 3-5 1ISSUES.THS, 02300/3
AUXFILE 0 37 7.3 SYSTEM.THS, 00200/4
BASICENVS 2 24 5-3 LANGUA.THS, 11800/5
BASICFONTENVS 2 24 5-2 LANGUA.THS, 06800/5
CHARACTERSETISSUES 1 25 5.5 LANGUA.THS, 00200/9
COMPILERSTRUCTURE 0 38 8 COMPIL.THS, 00300/1
DATAFLOW 0 41 8.3 COMPIL.THS, 00200/4
DATAFLOWFIG 1 43 8-86 COMPIL.THS, 01500/
ENTERLEAVEFIGURE 1 42 8-5 COMPIL.THS, 06000/3
ENVIRONMENTREP 2 48 8.3.2.3 COMPIL.THS, 05700/8
ENVIRONMENTScC 1 38 8.2 COMPIL.THS, 00200/3
FILETREE 1 a3 6-1 WORKBE,.THS, 03700/3
FLOWF IGURE 0 38 7-1 SYSTEM.THS, 01800/2
FORMATTER 2 50 8.5 COMPIL.THS, 00200/10
GLOBORG 1 39 8-1 COMPIL.THS, 00400/2
GOALCHAPTER 1 2 2 PROBLE.THS, 00300/1
GRAMMARFIGURE 1 49 8-7 COMPIL.THS, 02300/9
ISSUESCHAPTER 1 7 3 ISSUES.THS, 00300/1
KERNF IGURE 2 14 3-6 ISSUES.THS, 00500/4

Figure 28: Sample cross-reference summary.

,,,.,,7”
o
P C .

oY

4,

2 'H"-'
:'/ .

PRy

.1,(.
f

80 A Language and Compiler for Producing Documents

styles has indicated that database maintenance is a serious problem when the
number of formats in the database gets too large, and as soon as there are two
document formats that are supposed to be nearly identical, the database maintainer
must be extremely careful to maintain them in parallel. It is bad engineering
practice to design a system that requires its users to exercise extreme care during a
routine operation.

Document types having a draft mode typically adopt wider margins and wider
line spacing, and disable double-sided format effects such as alternating page
headings or margins and odd-page chapter openings. The compiler in draft mode
provides extra diagnostic information about cross referencing and indexing, and
depending on the document type, places it directly into the finished document
Cross reference label definitions in the manuscript appear explicitly in the docu-
ment, and the generated index includes not only page numbers, but back pointers to
the particular spot in the manuscript file that contains the index text. All index
entries in the text appear as special footnotes in addition to being included in the
index. :

7.4 Database Retrieval

Many documents are valuable not because of the originality or uniqueness of the
information that they contain, but because they have assembled. in the right order
various disparate pieces of information whose agglomeration is worthwhile. Exam-
ples of this sort of document are bibliographies, buyer's directories, and technical
specification/repair manuals. The production of a document of this kind consists
mostly of retrieving the necessary information from the appropriate place. A
primitive version of this kind of document assembly can be had using the sub-file
constructs explained in Section 7.3.2.

Support for more sophisticated automation of document assembly must include
the interfacing of the document compiler with a database manager; the compiler
will determine which records are to be retrieved from the database, then perform
the retrieval itself, and include the retrieved text as part of the finished document.

The Scribe compiler contains a simple special-purpose database retrieval mech-
anism built to be a test bed for the more general task of generalized database
retrieval from within a formatting compiler. Briefly, the author in preparing a
manuscript makes citations to various bibliographic entries that he knows are stored
in a bibliographic data base. The compiler collects the text of the bibliographic
references, sorts them into an appropriate order, formats them into an appropriate
format, and includes the resulting table in an appropriate place in the document,

WX ammemw— T L = AL g WS, weamw [W, v L W W W e, W w = —— - w0 v - = N T o W e N w

4 A Writer's Workbench ' 81

—

then matches up the generated citation numbers with the citation markers in the
text. M. Lesk of Bell Laboratories has implemented a very similar bibliography
system that functions as a preprocessor to Troff [26, 34].

For example, the introduction to Chapter 3 of this thesis contains references to a
pamphlet by Stanley Morison entitled “First Principles of Typography”, and to a
textbook by Arthur Tumbull and Russell Baird called The Graphics of
Communication. The actual text of the manuscript file corresponding to the text on
page 19 of this thesis contains the sequences

. and that all other factors are secondary@cite(Turnbull).

. people recognize its novelty''Gcite(Morison ", p. 7").
The names “Turnbull” and “Morison” used in the @Cite commands are the
retrieval identification keys from the bibliographic data base for those two refe-
rences. The compiler has retrieved the appropriate entry, sorted the collectve
entries into alphabetical order by author's last name, and assigned reference
numbers 44 and 31 to them. The citation style used in this document type specifies
that references be put in square brackets, so the Scribe compiler produced entries in
the finished document on that page that read:

v T EEEC A~ QLR

” .ﬁ—vrz:‘v—rfj Lot am ame g i

... and that all other factors are secondary [44].
5 ... people recognize its novelty” [31, p. 7].

If the citation style used in the formatting of this thesis had been other than the
standard numeric citation style, then the examples above could have come out as:

... and that all other factors are secondary (Turnbull, 1975).
... people recognize its novelty”(Morison, 1967).

or perhaps as

Ll s gt

... and that all other factors are secondary [TUR75).
... people recognize its novelty” [MOR67a].

Y

t or perhaps as

q .. and that all other factors are secondary3!.
.. people recognize its novelty” 4.

The database mechanism built into Scribe to handle this bibliography task has all
of the properties of an ordinary database system except generality: it selects, sorts,
reformats, and configures, but only on bibliography data. Within this scope,

B i il i s S el e ot .

T

e P - cos A ' A A i U Sl oGl g et - g T

82 A Language and Compiler for Producing Documents

however, it is completely general—the Scribe format database includes definitions
for several dozen different bibliography formats, including those required by major
journals. A future writer's workbench system should certainly include a more
general database retrieval mechanism, to allow retrieval tasks of this complexity to
be used for other purposes than bibliography.

7.5 Summary and Prospectus

The Scribe Writer's Workbench was not so much designed as evolved. With the
excepton of the cross reference and bibliography mechanism and the index facility,
all of the tools on the Writer's Workbench evolved to meet specific needs for specific
projects, during critical periods in the activity of those projects. The flavor of some
of the facilities comes from the relatively primitive support facilities that the host
operating system and file system can deliver. Nevertheless, there are several
common themes in the Writer's Workbench facilities: facllities for collecting and
processing derived text, facilities for numbering and crossv referencing objects in
the text, facilities for assisting with the management of large documents, and
facilities for helping to automatically assemble documents from external databases.

Fruitful topics for further work include the development of a set of tools that is
integrated with the host operating system and file system as well as the text editor,
and integration of the compiler and text editor with a database system. With
cooperation from the text editor, which would need to be able to read the Scribe
databases and understand Scribe manuscript language syntax, facilities like the
cross-reference summary chart would no longer be needed (the editor could serve as
a query system for answering questions about the structure of the document) and
various new facilities, such as automatic generation of “revision bars” would be
possible. Close cooperation with a database system would permit more facile
generation of documents such as form letters or statistical summaries.

The Compiler 83

Chapter 8
The Compiler

The Scribe compiler is a one-pass processor, written in Bliss [49], which processes
manuscript files into finished documents. This chapter is a survey of its design,
organization, and construction.

8.1 Overall Organization

Figure 29 shows the global structure of the compiler; it indicates the various
interface layers between the compiler and the host computer. As the diagram
indicates, the compiler proper is implemented to run on a mythical high-level
machine running a mythical high-level operating system; an appropriate implemen-
tation exists for each real operating system that supports Scribe. The percentage
figures on the various blocks of Figure 29 indicate the percent of the total object
code size of the compiler represented by that block. The compiler proper occupies
45% of the code space, and the database manager and environment control
mechanisms occupy another 18% of the code space. The remaining 37% of the code
space is occupied by support routines that one might envision belonging in a
subroutine library: they are not directly specifically oriented towards the Scribe
compiler.

The various support modules are built on top of the data-type support, which in
turn interfaces with the virtual operating system for memory management. Each of
these pieces is discussed in more detail later in this chapter.

- 4 34 A Language and Compiler for Producing Documents

Word

— L

Lex \ Dev
9.7% ommd 14.2%
A \] 12.8% A

—_Bibliograph;
___l Hyphenation
L__ Symbol Table
E — jﬂ(ex

‘ Cross Reference
532

Environment
Control 13% *

N\

A—-omun x0T Cw

©O—HOmM~ m=>—u|

Database Manager
5.1%

Database File Access Data Structure Management
4.2%

wvi",‘A..

Virual Operating Sy stem 12.3%

VTV VTY
e

e 17
N e

Actual Operating System/Actual Machine

Database Files Manuscript Files Document File Error reporting
& secondary files

Figure 29: Conceptual structure of the compiler.

- Module group Size Percent
- Low-level support 16397 31.7%
o Command/Environment processing 13676 26.4%
' Lexical Analysis, Error Reporting 7559 14.6%
- Device drivers 7361 14.2%
_ Justification and formatting 4165 8.0%
[Database management 2638 5.1%
]

'_ Total 51796 100.0%
= Figure 30: Code space distribution.

()

%

o

1T

3

The Compiler ' 85

8.2 Information Flow

To a first order, the data flow through Scribe is trivial: the user prepares a
manuscript file in the document specification language and processes it with the
compiler to produce a device-specific document file. That file is then printed on the
appropriate printing device. To the unsophisticated user, this model is adequate.

Looking at a finer resolution, more data paths emerge. Figure 31 shows the
minor data paths. The manuscript file may be supplemented by an auxiliary file,
which was generated by a previous run of the compiler. a hyphenation dictionary
that provides hyphenation information specific to this document, and a root file,
which provides definitions global to the entire document of which the current
manuscript is a part.

H:phen
\ dictionany
s
Scribe
compiler

N

Root MSS

Figure 31: Scribe data flow paths.

During the compilation, the compiler retrieves device and font information from
the “device” portion of its database, and retrieves format, style, and layout
information from the “format design™ part of its database. In addition to the
intended document file, the compiler can generate an updated auxiliary file, an
outline file, a vocabulary digest file, and a hyphenation dictionary update. These
few derivative files are not crucial to the workings of the compiler, but are

Beado o e - e e P D G G T N WY . PR nattionn

86 A Language and Compiler for Producing Documents

bookkeeping aids to help either the author or the compiler with management of the
document. '

All files except the final document file that are read or written by the compiler are
Ascii text files. In particular, all of the database files are text files. At the price of
compiler speedup—they must be reparsed every time the compiler is run—this
scheme offers flexibility and self-documentadon. The fixed overhead time needed
to locate and parse all of the database files needed by the compiler in a given run is
about one second of processor time on a 1-MIP KL10 processor. Troff, by
comparison, takes 10 to 20 seconds on a 0.6-MIP PDP-1/70 processor to read in its
macro definition files. Implementation of a cache to permit the compiler to retain
preparsed copies of database files would be relatively straightforward, though the
current compiler does no such thing. Cache invalidation would need to be by
creation time of the database file, since cooperation from the text editor used to edit
the file cannot be guaranteed.

8.3 The Auxiliary File Mechanism

One of the most important characteristics of the system organization is its use of
auxiliary files to simplify what would otherwise be iterative or multipass processing
into a single-pass scheme. The essence of the scheme is straightforward: at the
beginning of each compilation, the compiler reads in an auxiliary file that was
produced by the previous compilation. The auxiliary file contains an edited dump
of the compiler’s symbol table, including information about forward references and
the file structure of the document.

The auxiliary file contains;

o Information about the definition of every cross-reference label that has
been defined, even if there is no reference to it.

o Information about the correspondence between manuscript files and
compiler-generated data like chapter numbers or page numbers.

o A list of the fonts used in the document.

» A record of the tree structure of the document, if any, showing how the
various part files are combined.

When a document is broken up into multipie files, each perhaps holding a chapter
or a section, the auxiliary file contains enough information to allow a subfile to be

R e i

The Compiler 87

separately compiled, yet have all of the page numbers, section numbers, footnote
numbers, and so forth, be correct.

As the document evolves under development by the writer, the auxiliary file used
for each compilation will be slightly in error. Page number references will be wrong
by the number of pages that have been added or removed, section number
references will be wrong by the number of sections that have been added or
rémoved, and so forth. If there is ever a need for a draft with all of the cross
references correct, the author can compile the manuscript twice in succession
without intervening changes. Otherwise the cross references will be syntactically
correct—a page number wherever a page reference is expected, a section number
wherever a section reference is expected—even if the correct values do not appear.
The compiler always notifies the user if the document contains incorrect cross
references. Since most drafts of a document do not have to be perfect, and since the
rate of substantial change slows down as a document nears perfection, one very
rarely finds the need to recompile a document for the sole purpose of getting the
cross references to come out right.

8.4 Data Structures and Data Flow

Figure 32 shows the compiler data flow in block form. Each block has an
indication of its relative code size in the compiler. There are numerous minor data
paths within the compiler that are not shown in Figure 32; for example, the word
assembler informs the hyphenator if a word being processed contains an optional-
hyphen mark, and the command evaluator can send specific instructions to almost
any module in the entire compiler.

8.4.1 Low-level data Types

The Bliss language is typeless. It provides typeless scalars, vectors, and records.
The programmer must build the types and structures that he needs out of those
primitive parts.

8.4.1.1 Simple Types

Scribe low-level support recognizes and supports 7 simple scalar types. Some are
quite ordinary—integers and characters—while others are very specific to the
problem domain of text formatting. The support for these types consists of routines
to do input and output translation on them, to coerce them intn other types, and

T T Yy

TTYTyTYTY ,m',‘ Ty

~—>
. A

T
4

.-Vivvvvﬁv—z -

"Y'Yrm

vy

Vv

T

38

.....

A Language and Compiler for Producing Documents

Input
P19
marku Scan text
MArkup 5.7% '
Driver
ECO{"mand 4% Word Font
-2luato —_— - Veznage
\aulzr A Assembli% ¢ esL
Exca:\'xronr?enn L
ontro
Style . yphenator
‘ Assembl 0.8%
ir_TT_—A —~TT Comruég% Eg[-c c
Control Y
L——\ C)c;‘xg‘tzrrol P}Generated Y
1.6% o~ Column &
Biblio File Bibliographw Text Page Control
Control = 0 HO8T8PIY | Manager 1.4%
2.4% [
Qe orT | Device
OTL File TofC 1%
Contro! / Manager ° | Manager
|
| Device Drivers 825 |
7 | N
l_'mc Phote tic. i
Printer Compuser |
Error Data Structure Operating Syste
i g System
Reporﬁt‘x.gghC Managementﬁ% ?merfaccp -

Figure 32: Major data flow paths within the compiler.

The Compiler 89

sometimes to create and destroy objects of that type if they occupy more than one
machine word and therefore cannot be simple Bliss variables. The simple types
supported are integer, character, file-character, vertical distance, horizontal distance,
Jont-relative vertical distance, font-relative horizontal distance, and 1ype (the token
for type integer is of type type). Type character is a subrange type of file-character.
File-character includes a special end-of-file character whose index value is 1 larger
than the largest character.

8.4.1.2 Records and Storage Management

The Bliss language does not support records, but it does support tvpeless pointers
that can be used to implement primitive record structures. The record system in
Scribe is the means of dynamic storage allocation: memory is allocated by creating
a record, and deallocated by destroying a record. No garbage collection of any kind
is available in Bliss and no reference counts are kept. The intimate support from the
compuler that is necessary in order to impiement even a simple garbage collector was
not available, and modification to the compiler was not a reasonable option. The
absence of a scan/mark garbage collector was a serious impediment to the speedy
development of the Scribe compiler.

8.4.1.3 Strings

The strings used in the Scribe compiler are variable-length objects built on top of
the record svstem. A string consists of two parts: a token reccrd and a buffer record:

type String Token = record
Buffer: pointer to String_Buffer:
String size: integer;
Left_pointer: Character_index:
Right pointer: Character_index
end

type String Buffer = array {1:N\] of character:
type Character_ index = 1:N:

Sting_Buffer has a varying length, and Character_index is an index into
String Buffer. The basic operations defined on strings are:

e Create:String_Token: Create a new empty string.

e Destroy(S:String_Token) Destroy string S and release its space

e Right_Append(S:String_Token;C:Character) Append C to the right
end of S.

...................

...........

90 A Language and Compiler for Producing Documents

o Loft_Remove(S:String_Token):Character Remove the leftmost char-
acter of S and return its value, or the null character if S is empty.

e Longth(S:String_Token):Integer Return as a value the number of
characters in the string S.

o Erase(S:String) Make string S be empty.

Note that a string is not randomly addressed or edited, and that all changes to a
string other than right-append or left-remove must be accomplished by copying.
Note also that a string is defined out of characters and not file-characters, so it
cannot contain the end-of-file character.

8.4.1.4 Association Lists

An association list, or pair list, is a list of pairs of typed values. Each cell of the
list carries two values, with an explicit record of the type of each. These pair lists are
sometimes used as property lists—one list for each object with its contents being
attribute/value pairs, and sometimes as associations—one list for each attribute with
its contents being object/value pairs. A list of N cells consists of N+1 list_cell
records.

type list pointer = pointer to list_cell;
type list cell = record

next cell: list pointer;

value 1: any;

type_l: type;

value 2: any;

type.2: type

end

The basic operations defined on lists are:

o Create:List_Pointer: Create an empty list and return a pointer to it.

e Destroy(P:List_Pointer): Destroy a list and deallocate all storage
assigned to it.

e Insert_Before(P:List_Pointer;C:List_Cel1): Inserts the cell C in
front of the list denoted by P. The pointer P will have a pointer to the
newly-inserted cell after the Insert_Before operation.

e Delete_Cel1(P:List_Pointer): Deletes the cell at the head of the list
pointed to by P. After the Delete_Cell operation, P will point to the new
head of the list.

o Next__Cel1(P:List__Pointer):List_Pointer: Returns the cell fol-
lowing P in the list pointed to by P.

e Find_Cel11(P:List_Pointer,V:Any,T:Type):List_Pointer: Returns

o

The Compiler ' 91

a pointer to the first cell in the list that has an attribute (first field) of V
with type T.

All other list support functions are built from these.

8.4.2 High-Level Data Structures

The Scribe compiler proper deals with manuscript files, fonts, environments,
word buffers, line buffers, text buffers, and various dictionaries and tables. Each of
these structures is built from one or more of the low-level data types described in
the previous section. The high-level data structures are described here in some
considerable detail to impart a better sense of the operation of the compiler than
could otherwise be had without reference to the code.

8.4.2.1 Manuscript Files

As a manuscript file is processed, it is represented as a sequence of records, each
corresponding to one line of the manuscript file:

type Manuscript line = record
Line name: string;
Text of line: string;
Processing cursor: integer
end;

When the manuscript line is processed, it is read nondestructively by advancing the
processing cursor so that the error message reporter will be able to display the entire
text of the manuscript line as part of an error message. Most strings are processed
glestmctively because it is more convenient.

8.4.2.2 Fonts

The Scribe compiler keeps font information for several purposes, which are
discussed in more detail in Section 3.1.1:

e To know the sizes (widths and heights) of letters and symbols for the
purpose of deciding how many words to place on a line.

e To know ligature combinations that are available in a font (since
ligatures are font-specific).

...

A Language and Compiler for Producing Documents

o To know the codes to send to the printing device in order for it to be
able to print or draw the desired letter. ’

Font information for various printing devices is kept in Scribe's database. When
ready to use, a font has the following structure:

type font = record

Font name: string;

Font size: vertical distance;

Character widths: array [1:127] of horizontal_distance;
Character_displacements: array [1:127] of horizontal_distance;
Character_contsructions: array [1:127] of string;
Ascii_translation: array [1:127] of integer;

Draw_codes: array [1:127] of string;

Ligatures: pairlist of (name: string, code: integer); .
Special symbols: pairlist of (name: string, code: integer)
end;

8.4.2.3 Environments

Environments are implemented as pair lists used as property lists. An envi-
ronment is an unordered set of pairs of dynamic parameter names and the changes
to be made to those parameters. The mechanism of environments is described in
Chapter 5. The structure is: '

type Environment = pointer to Environment _Pair;

type Environment Pair = record

Next Cell: pointer to Environment Pair;

Parameter Name: integer;

Change_value: any;

o Change type:-type

N end;

The value in Change_value is used to update the dynamic parameter value of the
parameter identified by Parameter_Name, according to the particular coercion rules
for values of type Change_type. '

e

A B B B B

The Compiler

8.4.2.4 Text Buffers

The manuscript text is assembled by the formatter (Section 8.6) into words, lines,

boxes, and pages. Each of these is kept in an appropriate record. Word records are
assembled into line records; line records are assembled into box or page records.
When the assembly is complete, a2 device driver is called to write the assembled page
image to the device file.

A word buffer holds one word:

type word_buffer = record

Text: string;

Bounding width: Horizontal distance;
Bounding height: Vertical distance;
Left spacing: Horizontal distance;
Right spacing: Horizontal distance;
Top.spacing: Vertical distance;
Bottom spacing: Vertical distance;
Footnote_box: Text_box;

end;

A line buffer holds one line:

type line buffer = record

Text: string;

Next line: pointer to (Line_buffer or Box_Buffer);
Parent box: pointer to Box_buffer;

X _origin: Horizontal distance;

Y origin: Vertical distance;

Bounding width: Horizontal distance;
Bounding height: Vertical distance;
Left_spacing: Horizontal distance;
Right spacing: Horizontal distance;
Top.spacing: Vertical distance;
Bottom _spacing: Vertical distance;
Footnote_box: Text_box; end;

The text of the line buffer is the concatenation of the text strings from all of the
words in the line, and the various box widths and heights are the maxima (not sum)
of the widths and heights of the corresponding fields of all of the words in the line.
The X_origin and Y._origin fields are the X and Y distance of the lower left comner of
the bounding box of this record from the lower left comer of the bounding box of
the containing box record, or else are absolute coordinates if there is no containing

box record. The use and contents of the other fields is described in Section 8.6.

o

4 A Language and Compiler for Producing Documents

A box buffer is similar to a line buffer, but instead of a text field, it has a
Child_box field, which points to a list of line records that contain the actual text.

type box_buffer = record

Child_box: pointer to (Line_buffer or Box_Buffer);
Next line: pointer to (Line_buffer or Box_Buffer);
Parent box: pointer to Box_buffer;

X origin: Horizontal distance;

Y origin: Vertical distance; '

Bounding width: Horizontal distance;

Bounding height: Vertical distance;

Left spacing: Horizontal distance;

Right spacing: Horizontal distance;
Top_spacing: Vertical distance;

Bottom_spacing: Vertical distance;

Footnote box: Text box; '

end;

8.4.2.5 Symbol Table

The compiler uses a very standard block-structured symbol table. All commands,
environments, user-defined names (except cross references), and file names are kept
in the symbol table. ’

8.4.2.6 Dictionaries

The compiler maintains a number of dictionaries, in addition to the symbol table.
A dictionary is a table of words, with some sort of value information stored for each.
For example, the hyphenation dictionary is a table of words to be hyphenated, and
the value is the list of the legal hyphenation points. The cross-reference dictionary is
a list of cross-reference names, and the value is the page number and section
number on which each is defined.

These dictionaries are maintained in association list data structures with the text
word as the attribute field and the associated value as the value field.

..............................

L e - . [P . .
ai ol .. P . A e and, MDA S S S Y. S T U YU SN

The Compiler 95

8.5 Parsing and Error Reporting

The Scribe manuscript specification language is not a programming language, and
one of the ways in which this difference is most manifest is the structure of the

parser. There are no syntactic restrictions on the location or context of text or well-

formed copymarks, though several semantic restrictions are enforced.

The specification language is syntactically trivial; its entire grammar is shown in
Figure 33. The parser is therefore conceptually trivial. The considerable size and
complexity of the parser implementation (there is more code in the parser than in
the formatter) is due entirely to its error detection and recovery algorithms and its
error reporting.

8.6 Formatting and Justification

The formatting section of the Scribe compiler receives as input from the parser a
stream of words and word fragments, and produces as output a 2-dimensional image
of the finished page. When the page buffer is full, or when some external agent
requests a new page, the device driver is called to output the entire page to the
output device. During the page assembly process, the formatter sometimes
interrogates the device driver about certain properties or requests it to perform
certain device-specific formatting functions; it is otherwise device-independent.

8.6.1 Word Assembly

The innermost loop of the formatter is the word assembler. Its job is to look up
character widths, find and substitute ligatures, and perform any translation or
capitalization requested in the current state. Ultimately it produces a word token,
which is passed to the line assembler. This word token contains

¢ The text of the word

o Dimensions of a bounding box that bounds the word (i.e., the height
and width of the word)

o Dimensions of a spacing box that surrounds the bounding box, to be
used for positioning that word relative to other words '

o All necessary font and magnification information about text within the
word.

vy
P

N 19~ AOOCAANOMR|

.........

<word break> :: =
{sentence break>::=
<closure sequenced .: =
<copymark>::=

<punctuation character> :: =

<named command> :: =

{delimited argument> :: =

<argumend ::=
<text argument) :: =
<keyword argument> ::=

<keyword ::=
<valued =
<delimited string> :: =

<typed value) ::=

<unit named ::=
<vaiuename) ::=

A Language and Compiler for Producing Documents

(<tex© | <copymark>)*
((<word> <word break>)* <sentence break>)*

(Any printing character but ‘@")* | <word><copymark>Xword> |
<mulD>

(Any nonprinting character)*

(.’ 17| '1") <closure sequenced <space> <space> (<spaced)*
(t)t l 0]0 ' (Y11 l "y n)‘ l <nuu>

‘@’ (<punctuation character> | <named command>)
.!oll@plo#- IQSOl;%'IIf)lo&"t.vlt)i'c.iIt:vIn~9|¢rlu|tlo\n|
o:' I t:n ' ‘>| I l.’ I t/h

(Kletter> | <digiv)* <delimited argument>

‘C <argument> ‘)’ | ‘<’ <argumen®> *>’ | T <argument> T |*{" -
(amulnent) l}l I [1] (zr‘“mcno (1 1) l wier (ar‘nment) L 1] ' ree
<argument> ™"

<text argument) | <keyword argument>

{tex> | <texO> <copymark> <text> | <nulD

<keyword> (‘=" <space> ‘/") value | <keyword argument> *,
<kevyword argument>

(<letter>)*
<{delimited string> | <typed value>

‘C (€any character but *)'>)*)’ | /¢’ (Cany character but D")* >’
| ‘T (Kany character but >)* ‘T | *{’ (Cany character but ‘}>)*
'} | (<any character but ")* " | ™" (€any character but

nnv))‘ "ot

(<integer> | <real>) | ¢value name> | (<integer> | <real>) <unit
name>

inches | points |cm |mm | ...

true | false | <some keyword>

Figure 33: Document specification language grammar.

The Compiler 97

Some sample word tokens, with their bounding and spacing boxes indicated, are
pictured in Figure 34 next to the fragment of manuscript text that generated them.

8.6.2 Line Assembly

As the word assembler tentatively finishes each word, its token is passed to the
line assembler for inclusion in a line record. The word completion is tentative
because the line assembler might signal “that word does not fit, so try to hyphenate
it". In this case, the word assembler must begin the assembly process anew,
replacing ligatures by their unligated text and regenerating pairs of word tokens if

the word can be hyphenated.

One way or another, the line assembler builds an output line by concatenating
word tokens. The spacing boxes are not abutted, but overlap: the assembler places
two words next to one another as shown in Figure 35. The bounding box of one
word and the spacing box of the next are not permitted to overlap.

When a word occurs at the left end of a line, the left end of its spacing box is
ignored, and the left edge of the bounding box is aligned with the left margin of the
line. Similarly, the right end of the spacing box of a word at the right end of a line is

also ignored.

The “stretchable glue” concept used by Knuth in TEX is a more general
realization of this bounding box/spacing box concept. TEX needs to keep on hand
more information about each character than does Scribe, but it is able to do a better
job of line assembly because of the more general “glue” mechanism [24].

8.6.3 Box and Page Assembly

When the line assembler finishes a line, its record token is passed t the box
assembler for inclusion in a box. Box tokens and line tokens are structurally
identical, so that a box containing several lines can be recursively passed to the box
assembler for inclusion in a larger containing box. The page output buffer is just a
box with a restricted size.

The algorithm for vertical assembly of lines into boxes is essentially the same as
that for horizontal assembly of words into lines. The spacing boxes of two vertically
adjacent lines are overlapped, but the spacing box of one line is never allowed to
overiap the bounding box of another.)

When lines contain characters of radically mixed sizes, as for example in the line
with the integral sign on page 47, there are two different strategies that the page

S

A Language and Compiler for Producing Documents

Al oo (5o

_ — — 1

Figure 34: Word tokens, showing bounding and spacing boxes.

| e— |
(5T

Figure 35: Use of bounding and spacing boxes in line assembly.

ﬁ The Compiler 99

assembler can use. The first is to iet the line spacing remain constant, regardless of
the characters that are in the line; this is in fact how the text on page 47 was spaced.
The second is to let the line spacing be increased until there is no actual overlap of
characters, or possibly even until there is some minimum amount of space between
characters on adjacent lines. One of the dynamic state parameters, Line push (item
32 on page 137) selects between these two modes. In general it is best to set Line
push false in ordinary text environments and true in environments containing
formulas or built-up characters.

8.6.4 Hyphenation

The Scribe compiler uses a dictionary-based hyphenator, with no rules of any
kind used by the compiler when checking words in the dictionary. The hyphenation
dictionary is handled as a sort of auxiliary file. During compiler initialization, the
hyphznation dictionary or dictionaries associated with the document are read in. As
the formatting progresses, any word that needs to be hyphenated but cannot be
found in the hyphenation dictionary is recorded in the error log. At the end of the
compilation, the error log contains an alphabetized list of the words that could not
be hyphenated. A simple merging program is used to update the document-specific
hyphenation dictionary by looking up the unhyphenatable words in a master
dictionary and copying the results into the document’s own pocket hyphenation
dictionary. The user can manually enter into the hyphenation dictionary any
specialized words that he needs to use as well as any words whose standard
hyphenation he disapproves of.

Even though no purely syntactic hyphenator can guarantee perfect results (this
problem is discussed in Section 3.2.3), dictionary hyphenation is perfectly adequate
in practice. Scribe’s pure-dictionary scheme works equally well for most Western
languages, although it is not particularly convenient for any of them. The use of a
master hyphenation dictionary to which the compiler would always refer when it
could not hyphenate a word, and the automatic updating of the document-specific
hyphenation dictionary whenever such a word is looked up (thereby making the
document-specific hyphenation dictionary a cache of words from the master
dictionary) would improve the convenience of the hyphenator at the expense of a
little extra code in the compiler.

T -/ .t el (U R N S AP S PGP G W W W P P PP SR R S SH. PV WY S Y —B o de i a

100 A Language and Compiler for Producing Documents
8.6.5 Footnotes

As noted in Section 8.4.2.4, every text assembly record has the potential for an
attached footnote box. When a footnote is found in the manuscript, the formatter is
called recursively to produce a box record that contains the body of the footnote.
This footnote box is then attached to the footnoted word. When the footnoted word
is placed on its line, its attached footnote box is placed in the line’s footnote box.
When a line containing footnotes is placed in a page, its footnote box is inserted (as
a line) into the page’s footnote box. When a page box with attached footnotes is
passed to a device driver for output, its footnote box is “anchored” by being inserted
into the page box as a line record.

Footnotes that occupy a substantial fraction of a page present an especially sticky
problem in page assembly. The usual style conventions for footnote placement
specify that the footnote appear on the same page as its callout, but good page
assembly also mandates that the bottom margins of pages be reasonably consistent
When a footnote is so large that moving it and its associated text line to the next
page causes a large amount of white space to be left behind, the correct solution is to
put the text line and the first few lines of the footnote on one page, then continue
the footnote on the next page. The Scribe compiler makes no attempt to break long
footnotes across page boundaries.

8.6.6 Floating, Grouping, and Page Break Control

Good page layout requires that certain sets of lines be kept together on a page,
possibly by “floating” ther. «0 a convenient nearby page top or bottom. Objects
requiring this kind of treatment include equations, tables or figures, and some kinds
of displaved text.

One of the dynamic parameters is a “clustering” value that, if set, denotes that all
text generated while it is set must be made to satisfy certain requirements of
pagination. The details of the pagination requirements—grouping or floating—are
indicated by the value of the clustering attribute,

An environment whose text must be clustered must specify as part of its
definition a value for the cluster attribute. When the change analyzer (Section 5.1)
is called during processing of the environment entry, it will notice that the value of
the cluster attribute has changed from one that does not specify clustering to one
that does. The change analyzer will therefore allocate a new assembly box so that all
lines passed from the line assembler will be placed not in the page box but in this
new box. When the environment is exited, the change analyzer will discover the

T T - T e vl

-

Landh e e 2 N T e Y Y T Y W

The Compiler 101

reverse situation, and place that box into the page box or delay it for a later page, as

needed.

Widow and orphan elimination is accomplished by a crude set of special-purpose
teses in the box assembler, which monitor incoming lines and force various lies to be
told by the routines that determine whether or not a line will fit on a page.

Al oo min.

______ - AR A et i St it Mo VI ML A At e M TR
SN B - e W . . -

~~~~~~~~

Results, Conclusions, and Future Directions 103

Part i

Results, Conclusions, and Future Directions

An operable Scribe compiler, with moderately complete databases, was released
in February 1978 for use within Carnegie-Mellon University and several other
laboratories. On the basis of that experience numerous small changes were made to
the compiler and language, and the need for various larger changes was noted. The
compiler was almost completely rewritten during the summer of 1978 to take those
needs into account. This last part of the thesis details the experience gained from
the user community, evaluates the finished product, and reflects on the original
goals and principles in the light of this experience.

Chapter 9 outlines the chronology of the project, including occasional setbacks
and redesigns, and comments on the effectiveness of the finished product from the
point of view of a user. Chapter 10 is a critical retrospective on the project’s goals
and principles, with an eye towards more ambitious future work.




An Evaluation of the System 105

Chapter 9
An Evaluation of the System

9.1 Chronology

Work on the language design began in Spring 1976 after extensive discussions
with W, Wulf, M. Shaw, and D. Lamb about the nature of the problem. Lamb and
Shaw surveyed the habits of users of existing document preparation systems. The
study revealed that there was a relatively small number of fundamentally different
formatting effects that users were trying to achieve, but that there were a large
number of minor variations of each of them. We therefore concluded that there was
sufficient uniformity of usage style to make an environment-based language prac-
tical with a small number of basic environments provided that there was a simple
mechanism for making small changes to their behavior—the number of funda-
mentally different styles of formatting seen in Lamb and Shaw’s survey was small,
but almost no two documents used quite the same set of details.

Lamb, Shaw, and I then designed a prototype language that allowed users to
express directly the formatting effects that they were trying to achieve rather than
the procedures necessary to achieve them. I then implemented this language as a set
of Pub macros. Following a suggestion by G. Yuval, the language was named Cafe
(a civilized pub). These macros came into reasonably general use in the Carnegie-
Mellon computer science department community, but they were error-prone,
extremely slow, and had unpleasant semantics that masked the simplicity of the
language that they were trying to implement. I then launched upon the ambitious
project of implementing an entirely new compiler that would process the Cafe
language directly. During the course of planning for that implementation, I devised
a new language, sufficiently different from Cafe to warrant a new name: Scribe.

— SIS . SLIUTR W XS W S WG T WY W W WY Y W SN W Aencndhamadin Beads




106 A Language and Compiler for Producing Documents

9.2 Evolution of the Compiler

The original goal for the compiler was to produce a body of code that was
portable among all computers in the CMU environment, namely PDP-10's, PDP-
11's, and the C.mmp multiprocessor. For this reason, the implementation was
begun in Bliss [49], since it was the only language system available on all of these
machines. Bliss proved to be an extremely difficult language in which to get started
on such a project, since it has utterly no low-level support for any data types besides
scalar words and stack-allocated vectors.

I began an implementation on the PDP-10 in September 1976, spending the first
six months building a programming environment in which the rest of the devel-
opment could take place. This programming environment included runtime and
diagnostic support for strings, lists, and heap-allocated vectors, as well as an
operating-system interface intended to be portable to other machines. I began work
on the actual compiler in May 1977, and had a system producing output for line
printers by November 1977. XGP support was completed by January 1978, and the
first release of the compiler was in February 1978. Development effort was
suspended while I attended to passing my qualifying exams. ’

The first Scribe compiler had device drivers for line-printer-class and XGP-class
devices, a database with five document types, and a number of serious restrictions
on the manuscript. '

The first Scribe compiler implemented an option for “idempotent update” of the
manuscript file so that its line and page breaks corresponded to the line and page
breaks in the final document. This manuscript update also placed generated text—
chapter and footnote numbers, values of string expansions—into the manuscript file
as comments. While convenient, this idempotent manuscript update facility had
two serious drawbacks that led to its being removed from the second compiler: it
led to manuscript files that could not be edited easily on ordinary monofont
terminals, and it made all compiler bugs become major, since the manuscript file
itself would be damaged by any mistake in the formatting. Manuscript file update is
a valuable facility, but for it to be practical, experience with Scribe leads to the
conclusions that:

1. The interactive editing device must be no less powerful than the printing
device with respect to line widths and fonts available.

2. The file system must support multiple versions of a file, so that the
original manuscript is never lost in case of a compiler failure.

ERAAERARS




An Evaluation of the System 107

3. The file format for the file representation of the manuscript must be rich
enough to be able to represent text that will not appear in the output—
comments, false conditional branches, etc.—in such a way that it does
not interfere with line lengths and page size computations.

A second compiler was begun in June 1978 and released in January 1979. It
shared low-level support routines with the first compiler, but most of the substantive
code was completely redesigned and rewritten. Various defects in the first compiler
motivated this rewrite,

The first compiler placed severe restrictions on the relative placement of declara-
tions in the manuscript file; the placement sequence corresponded to phase
sequences within the compiler. This proved to be too restrictive, and was a constant
source of difficulty for users. A sort was added to the second version of the compiler
so that mansucript declarations could be in any order; the compiler sorted them
before actually processing them. This technique has been entirely satisfactory,
except that semantic eirors in declarations are not piinted in the same order as the
declarations appear in the manuscript file.

The first compiler did not have the bibliography facility (see Section 7.4), and also
did not have a macro facility. Macros were omitted from the initial compiler to
encourage more creative use of the environment mechanism; the presence of
familiar procedural macros would be too much of a temptation for a programmer
learning to use the system. No way of implementing the bibliography formatting
templates without the use of parameterized macros was ever devised, and so the
second compiler had the macro facility to support the bibliography mechanism.
Macros remain a painfully clumsy and error-prone mechanism for most text
processing applications, but nothing that is clearly superior has evolved.

9.3 Evolution of the Manuscript Language

While the compiler has evolved in the direction of increasing complexizy and
sophistication, as do all maintained software systems, the document specification
language has evolved in the opposite direction. The final published language has
fewer commands, fewer restrictions, and a smaller number of predefined names than
did the earlier editions. On the other hand, the number of environment attributes in
the mechanisms used to implement language constructs in the database has doubled.

All of the language simplification has happened as a direct result of field
experience: when users were unable to comprehend the difference between two
similar language constructs, they were merged into one. For example, the earliest




AR ARG . R ————p———

’] 108 A Language and Compiler for Producing Documents

versions of the manuscript language had a @Font declaration 1o specify font family,
in addition to the @Style declaration 10 specify other style parameters. Users found
the distinction incomprehensible, so the @Font declaration was eliminated in favor
of a @Style keyword named Font.

The first version of the manuscript language had separate commands for
retrieving the values of user-defined strings and system-defined strings. The
motivation for this distinction was that it permitted users to define string names for
their own use without needing to worry about whether or not their names collided
with system names. In practice all users who were sophisticated enough to use the
string definition facility were able to remember the list of predefined string names,
and occasionally wanted to redefine system strings. The two commands were
merged into one.

9.3.1 Evolution of the Databases

The databases have undergone the most substantial evolution, both in terms of
their content and the database language used to express that content. The database
language is still relatively weak, but it has been enhanced slowly in order to learn
what sort of expressiveness is actually needed. Initirlly the database language
permitted only environment and counter definitions and static parameter values.
The ability to place manuscript text in a database file was added to permit the
description of document formats with constant text, siich as letterheads. It was next
found necessary to add to environment definitions the ability to specify initialization
and wrapup text with them.

The database language currently lacks a means of event recognition, i.e. triggering
specific action upon the first or every instance of certain events, such as counter
incrementation or page completion. The trap mechanism used in Troff is a good
example of an event trigger for spatial events such as line or page completion [34].

Many sophisticated users, especially those who define their own document types,
have requested that the database language be expanded to include a Turing-
equivalent programming language, allowing arbitrary computations to be per-
formed. I have avoided the installation of such a facility for two reasons. The first
reason is that a procedural language will reduce the amount of feedback that I get
from users about the kinds of formatting that they find themselves unable to do in
Scribe. Although their goals are to design document formats and to produce
documents, my own goals are to learn about the requirements of document formats.
If users in the field were given an algorithmic database language, they could
program around deficiencies in the design of the system, thereby preventing me




An Evaluation of the System 109

from ever finding out about those deficiencies. The presence of this algorithmic
language capability would improve the usability of the compiler to demanding
users, but decrease its usefulness as a data-gathering tool. The second reason for the
continued absence of a procedural basis for the database is that in the absence of
enforcement mechanisms or user training, programmability invariably leads to a
diversity of style, which makes documents harder to read, harder to merge or
combine, and harder to transport. Furthermore, a programmed system imple-
mented by a diverse variety of people without central control, namely the union of
the procedural extensions with th basic system, will invariably be more obtuse and
difficult to understand and use than a more unified one.

CHN @ Ararht

W
-

ey

e

TR I TR TN W R R RN Y Iw Y wsow Y m - - -




...........

Critical Retrospective 111

Chapter 10
Critical Retrospective

The Scribe system in toto is a resounding success, though no software system
pleases everyone. My estimate of the size of the user community in September
1980, based on sales of the user's manual, distribution of the code, and rates of
complaints received, is five to six thousand active users. The majority of them
appear to be reasonably satisfied with it. Nevertheless, it is our responsibility as
systems designers to understand the weaknesses as well as the strengths of a system,
so that we can learn from it as much as possible for similar future systems. This
chapter is a narrative discussion of the various successes and failures of the Scribe
project with respect to the goals stated in Chapter 2 and the expectations of its users.

10.1 Language Goals

The goals for the document specification language were that it be nonprocedural,
syntactically trivial, and easily parsable. During the development of the compiler
and especially during the initial release period, there was strong temptation to warp
the language somewhat in order to make it easier for the compiler to handle some
difficult construct properly. Once the language has decayed by the addition of some
new construct whose purpose was the solution of a specific problem, it is politically
difficult to remove that construct from the language once the compiler has been
enhanced to no longer need it: there is always a community of users who have come
to depend on the full set of features, good and bad, of the language.

10.1.1 General Language Issues

Many of the worst problems remaining in Scribe are actually language design
problems, even though most users see them as bugs in the compiler. Once Scribe
was in heavy use in the field, problem reports trickling in showed that various
changes in the language, some small and some radical, were needed. On the other




RIROA RO

o D R aliCan;
DRI T TR
LA A AP -
PR

Il
!

P,

Vs

RO SV A S

LW g —

112 A Language and Compiler for Producing Documents

hand, the very community of users whose feedback helped locate those problems
makes it difficult to repair them, since they have built up a large investment in
source files in the old language, and will be seriously disrupted by incompatible
changes in it. As a result, many problems that would best have been fixed by
incompatible changes to the document specification language were instead fixed, or
at least ameliorated, by changes to the compiler.

Sometimes language problems could be solved by the addition of new declara-
tions, which would allow users to patch specific problems themselves. As a result,
the document specification language is slightly impure. Although largely nonpro-
cedural, there are various procedural commands in it that allow users to overcome
other shortcomings. The @Newpage command is an example of this: the original
document specification language did not include any mechanism whereby users
could modify eavironments to fall automatically on a new page. The @Newpage
command was therefore added so that users could explicitly request a fresh page.
Later a dynamic state parameter (“Page break”, item 27 on page 136) was
introduced, allowing environments to be set up so that they automatically started on
a new page. By this time the @Newpage command was in use by most of the user
community, so that it could not be removed without inconveniencing them.

The document specification language does not include any clean way for passing
multiple text arguments to a declaration, or even for passing a single text argument
at the same time as or.e or more identifiers or scalar parameters. While this property
has made the language much more robust—users are never confused about the
correct delimiters to use for a text argument—it has the side effect of making certain
declarations clumsy or incorrect. The most glaring example of this is the @Tag vs.
@Label confusion in the cross reference facility, which is discussed in Section 7.2.
To unambiguously attach a cross reference label to a section number, in order that
the compiler can know that it is referring to that section number as an object and not
as the location reference for a nearby object, the cross reference label needs to be
attached to the section marker.

The Scribe user currently defines a section and labels it for cross referencing it
with two consecutive commands:

@Section(Numbering and Cross Referencing)
SLabel(XrefSection)

He should instead be able to define the section and give it a cross reference label all
in a single operation. By contrast, the GML system [13] performs this same operation
with the “:h2"” command, which defines a second-level heading:

:h2 1d='XrefSection’ .Numbering and Cross Referencing
In this case the beginning of the command is the colon character in the first column
and the end of the command is the end of the manuscript line. A Scribe syntax for
the same sort of combination command might be something like:

B et Mo s B M B i s e s R oo b S A~ 4l w

T T Ty




LT S GO Sy

Critical Retrospective ' 113

. @8Section(Numbering and Cross Referencing@,XrefSection)

This syntax. however, implicitly assumes that the field after the “@," separator is an
identifier. It would be more general, but less convenient, to allow a syntax such as
this:
@Section(Numbering and Cross Referencing®,Label=XrefSection)

The document specification language could be redesigned around the notion that
declarations can have one or more keyword arguments in addition to a single text
argument. This would substantially increase the complexity of the language, and is
therefore probably not worth doing.

One of the goals for the document specification language was simplicity—the user
should specify as little information as possible, and the compiler should be able to

Timre out what 1o do. One constant source of ambiguities in the document

gcification language is the disposition of spaces and carriage returns (end-of-line
characters) in the manuscript. The ambiguity is in whether or not the spaces or
carriage returns that follow a command in the manuscrip®. are actually part of that
command—and therefore should be ignored—or are actually text, and should be
processed as such. In the following example, the carriage returns after the @Index
commands are part of the commands themself, and should not be processed as text.
The user cannot be expected to understand this obscure distinction, and most are
reduced to trial and error in attempts to get it right.

Fi11 the crankcase with 30-weight motor oil.

@Index(crankcase, f1111ng)

®Index(o1l, crankcase)

@Index(motor 011)

Now start the engine.
In the following example, however, the carriage returns after the @B commands are
intended to be text, and should not be discarded:

Begin the assembly with the following parts
@display(

ob[4 sections of pipe]

@db[1 can of pipe joint compound]

@b 1 hacksaw]

]
Begin by opening the can of pipe joint compound.

No syntactic clue can be used to distinguish these two cases. Only the semantic
difference between the two commands tells us how to handle them. Such tasks as
handling of carriage return characters should be handled by the lexical analyzer, and
this need for semantic information in the lexical analyzer substantially increases the
complexity of the compiler. Many other systems get around this problem by
favoring consistency over convenience. TEX, for example, always discards all blank
spaces and carriage returns after a command, and if the user wants them to be pant




.............

......................

114 A Language and Compiler for Producing Documents

- of the text, he must place an explicit marker specifying that. The equivalent feature

applied to Scribe syntax would require that the @; noop code be used after every
command for which the following carriage return is text:

Begin the assembly with the following parts
@display[

@b[4 sections of pipe]e;

@b[1 can of pipe joint compound]®;

@b[1 hacksaw]@;

]
Begin by opening the can of pipe joint compound.

Instead of requiring this more-complicated syntax in the document specification
language, the Scribe compiler goes to great and complicated lengths to handle
carriage returns properly. It sometimes gets them wrong.

10.1.2 Portability

Another goal for the document specification language was portability, of all
kinds: device portability, site portability, and computer-type portability. By and
large this goal was successfully met, though there were a few problems. An unstated
aspect of the portability goal was that the specification language was supposed to0
Jorce users to produce portable manuscript files, whereas in reality it only encour-
ages them to do so. A clever user can always find ways, usually by misuse of the
@Modify command, to make a manuscript be committed to a particular device.

One of the most difficult aspects of device portability was the treatment of
overlong lines. No two printing devices seem to have quite the same set of fonts or
maximum paper widths, and in frequently occurs that a line that fits within the
margins on one device must somehow be truncated, wrapped, or shrunk on another
device. Tabular or unfilled lines that just barely fit within the margins on one
printing device will go far beyond it on another, so that the lines need either to be
broken, compressed or printed in a smaller font. In order to do an acceptable job of
any of these, the compiler must know not only that they are nofill lines, but why
they are nofill lines. If they are computer program text, then there are certain rules
that can be applied, a kind of prettyprinting, for breaking up the overlong lines into
several shorter lines. If they are tabular material, then perhaps the inter-column
spacing can be reduced or the table split into two parts or tumed on its side. If they
are mathematical formulae, then there are standard (though complex) ways of
breaking formulae across lines.

In general there is always a “reasonable” way to break long lines, but the
compiler does not necessarily know what it is. The solution to this problem would
be to create a large number of specialized environments, each corresponding to a




Critical Retrospective 115

different kind of material with a different breaking rule, and then to add a lot more
knowledge to the compiler about how to break overlong lines in various kinds of
environments. It is worth nothing that this problem of overlong lines is not peculiar
to computerized text formatting. The correct disposition of lines too long to set in a
textbook format is a constant source of dispute between editors and authors of
manually-produced books.

A more serious problem with device portability of a manuscript is its character
set. As discussed in Section 4.4, there is no absolute identification for characters
outside the standard set (whether that standard set is Ascii or BCD or Chinese), and
therefore no standard manuscript conventions can exist for specifying those charac-
ters. The Scribe document specification language completely ignores the whole
issue of character sets, leaving the user to fabricate his own special-character
schemes from a set of primitive low-level tools. A proper treatment of special
characters would associate with each document a directory of non-standard charac-
ters used in it, giving each a symbolic name for use within that document. The
directory would provide for each symbolic name a definition or description of the
character, possibly in the form of a digitized picture of the character or an output-
device-specific command sequence that will construct that character. In the worst
case, the directory would provide an alphabetic name or description of the character
that the compiler could use to construct some sort of surrogate for it.

Site portability—the ability to transmit a manuscript from one computer site to
another and have the receiving site be able to print it reasonably—requires device
portability and more. Certainly if the sending and receiving site do not have the
same printing device, then the manuscript must be device-portable before it can be
site-portable. Site portability requires that the versions of the compiler used at the
two sites be compatible, that the versions of the database used at the two sites be
compatible, and that the document be device-portable.

Since the compiler has been centrally maintained, by me, and distributed in an
immutable object form to essentially all sites that have received distribution, the
problems of divergent versions of the compiler have been minor. This central
maintenance has undoubtedly led to poor responsiveness to user complaints at all
sites except Carnegie-Mellon, but it has made site portability possible. The database
compatibility probiem, on the other hand, is not solved. I produced about 15
different document types for the initial release of the compiler, and all of the sites
that received copies of the initial release of the compiler immediately set out to
develop their own document types. While most of the document types developed
by people other than me are more attractive and better documented than my own
designs, they do not in general tend to be environment-name-ccmpatible with the
“standard” set of document types or with each other. This has led to a situation in

PO P g FALIY PR AT SN WS WL WU S W RPN - -~ PP S S T A U SN N S NN SN Y




MASNMDRAJ gl "
DS ,ld' O
L s L
- ' DRI

G N e e om0 0 0 Y -
," LR PLY . LA e e N Lot
g AU I PR R S R

116 A Language and Compiler for Producing Documents

which each of the major installations using Scribe has its own set of document types,
none of which are entirely compatible. It is relatively simple to convert a document
from dependence on one format definition to dependence on another, but it is not
automatic, and therefore complete site portability is not achieved.

A more subtle problem in site portability of documents is the use of the
partitioning facility described in Section 7.3.1. If one part of a document is
transmitted to another site, but not all of the parts that it refers to are transmitted to
that site, then the piece is useless out of that context. The bibliography database
files used in the automatic bibliography facility are different from one site to
another, which means that the retrieval keys used in @Cite commands will not be
the same at any two sites. It is probably not practical to maintain a centralized
bibliographic database with standardization of retrieval keys, but unless that is done
or unless bibliography database files are transmitted along with the manuscript
source (not a difficult task), then site portability is lost.

10.1.3 Domain

Scribe has been successfully applied to a very wide range of documents. I am
aware of four hardbound books for which camera-ready copy was produced entirely
with Scribe; one a biography [10], one a computer science textbook [50], one a
monograph on an operating system [51}, and one a monograph on
multiprocessors [39]. Dozens of theses (including this one, of course), hundreds of
manuals, and thousands of shorter documents have been produced at CMU, and [
am certain that useful documents of other varieties have been produced at other
.stes.

As predicted, it is extremely difficult to bludgeon Scribe into producing a format
that it was not designed to produce. C. Leiserson has succeeded in getting it to
produce respectable mathematical formatting, but to do so he has had 10 abandon
all pretenses of portability. A system designed with mathematics in mind, such as
EQN or TgX, can be completely portable for mathematical expressions, and there is
no reason why such a facility could not be added to Scribe, or why a system could
not be built that combines the document portability achievable in Scribe with the
equation portability achievable in EQN or TEX.

. A programmable manuscript language, or even a programmable database lan-
guage, would greatly increase the domain flexibility of the Scribe compiler. I discuss
in Section 9.3.1, on page 108, why such programmability was carefully left out of the
Scribe language or database language.




Critical Retrospective 117

10.2 Compiler Goals

The goals for the compiler were that it work well enough for people to use it
voluntarily, and that it be sufficiently mutable that the majority of its users would be
able to achieve the format variations that they wanted. An unstated goal, perhaps
not realized soon enough during the implementation, was that I had to have
something running and released to the department community within about 6
months of when [ started the implementation.

It actually took about 15 months to get the first compiler running; about 6 of
these 15 months were spent implementing the low-level data type support and
operating system interface that should have been a part of the programming
language support system. The decision to use BLISS was made in large part because
we wanted to be able to carry the compiler to our experimental PDP11-based
multiprocessors, and the only language common to both machines was BLISS. The
complete lack of runtime support or data typing probably made the debugging task
a whole order of magnitude more difficult, and as I look back on the implementation
and reflect on the nature of the debugging task, I am completely amazed that the
compiler works at all. The largest single source of implementation problems, by at
least a 2:1 margin, was management of pointers to heap-allocated objects. All
dynamically-created objects must be explicitly erased, and it is far too easy to
acciden®.ily hide away a pointer to an object that is subsequently erased and then
reallocated, with the result that the pointer now points to some entirely different
object. Strong typing, preferably with complete garbage collection, would have
made this debugging more tractable. On the other hand, the implementation takes
considerable advantage of the typelessness of BLISS structures to build an almost
LISP-like symbol manipulation environment that was crucial to the environment
mechanism and the definition-by-analogy mechanism.

Since I was the only programmer involved in the implementation effort, and since
its implementation was not my primary goal in the project, my interest in proper
software maintenance often left something to be desired. After the initial release,
which hardly worked at all, the compiler went through two periods of intense
instability, each following a switchover to a new release of the compiler. Although
the user community was greatly inconvenienced by these periods of instability, and
may never forgive me for it, a significant piece of data emerged from watching three
complete cycles of the redesign-rebuild-restabilize loop. That result is that it is
much more important for a compiler that is trying to be smart to actually be so than
it is for a compiler that is trying to be obedient to actually be so. The whole Scribe
approach is based on putting all of the intelligence in the compiler, and keeping the
manuscript language relatively simple. A byproduct of this approach is that when




.....

e L Eaa-am R T ———— g —ryy

118 A Language and Compiler for Producing Documents

the compiler is not properly debugged—which it almost never was—the users had
essentially no mechanism for circumventing compiler bugs. More traditional
algorithmic compilers, whether for programming languages or document produc-
tion, make it much easier for a user to circumvent bugs by programming around
them.

Besides reliability, the other major goal for the compiler was that it support a
definition-by-analogy mechanism that would make it easily mutable by casual users.
This goal was met almost perfectly. The @Modify and @Define commands work
well in practice, and users have tended not to go overboard in defining new
environments just because the definition mechanism exists.

There are two difficulties with the mutation scheme, both minor, that nevertheless
bear mention. The first is that there is no simple way to remove an attribute from an
environment definition—the @Modify command permits only the addition of new
attributes or the alteration of existing attributes. This was not a serious problem,
because one sould always look up the existing definition and copy it exactly, minus
the attribute to be removed. The second difficulty with the mutation scheme turned
out to be that many users did not understand the difference between static and
dynamic state, and could never form a working mental model for when to use the
@Style command, which changes static state parameters, or the @Modify/@Define
commands, which change the dynamic state parameters. Probably no more than
15% of the user community understocd the distinction well enough to be able to use
the commands without consulting the manual every time; this indicates that the
distinction between the two kinds of modification mechanism is either too obtuse or
too arbitrary and should be eliminated.

10.3 Documentation Goals

Nobody ever reads manuals, or so it would seem to the people who write them.
Nevertheless, a good manual is an integral part of any software system, and as
mentioned in Chapter 2, the manual is actually an informal specification of the
intended behavior of the system, and is therefore available as a tool for finding
problems in the design.

The documentation goals were to produce a tutorial, an advanced manual, and a
pocket reference. A very abbreviated 40-page tutorial was released with the first
version of the compiler in February 1978. By August 1978 I had finished the first
genuine edition of the tutorial, and began work on the advanced manual.

As I began to produce drafts of the advanced manual, which I had tentatively
titled the Scribe Expert’s Manual, | noticed that often people would steal them from




Critical Retrospective ' 119

the printer before I had a chance to go downstairs and pick them up. Everybody
wanted to be an expert, and owning a copy of the Expert’s Manual put you halfway
there, even if it was a bootleg copy. As various drafts of the advanced manual got
into circulation one way or another, I found that people immediately started using
the features described in that manual, even if they didn’t need to, just because the
features were there. When I subsequently made changes to those “expert” features,
such as the database language, people objected violently that their documents
suddenly didn’t work any more.

I then embarked on a campaign 10 destroy all extant copies of the Expert’s
Manual, in order that I could do further work on the design of the database
language without disrupting people’s work. Most of them were actually purged, but
enough people had memorized its contents that there were still a number of people
busily making their own document format definitions and filling their documents
with just the sort of low-level commands that I didn’t want people using directly in
their documents.

The second compiler called for a second edition of the tutorial, and together with
J. Walker of Bolt Beranek and Newman, I produced a second edition of the manual
only six months after the second compiler was released. Walker and I also
collaborated on the third edition of the tutorial, which did not contain much new
material but which was very much reorganized according to what we had learned
about how to present the material from a year of experience with the second edition
of the manual.

We have found that people who have no particular background in computer
science or programming can in an hour or two of reading the tutorial manual learn
enough about Scribe to be able to produce simple but useful documents. On the
other hand, those people who have a programming background, especially those
who have extensively used procedural document preparation languages, have much
more trouble getting started because they seem not to believe the explanations in the
manual and keep reading until they learn how to program it, and in the process
building a completely incorrect mental model of how the system works.

There is still no adequate documentation on the database language or the macro
facility, primarily because 1 wanted the freedom to continue to make changes to
them. A pocket reference guide was printed in August 1979, but it is very slightly
too wide to fit in some pockets.




References 121

SO
- . . .
R

.

Y ey

References

' "I’ L
o P T R
O E

[1]  Addison-Wesley Publishing Company.
Principles to Observe in Paging.
Addison-Wesley internal memorandum.

ey
L

2] Wm. Akins (editor).
The Art and Practice of Printing.
New Era Publishing Co. Ltd., Holborn, London, W.C.2, 1915.

[3] N.A. Badre and C. H. Thompson.
Yorktown Mathematical Formula Processor User's Guide
IBM T. J. Watson Research Center, Yorktown Heights NY, 1977.

{4] M.P. Bamett, D. J. Moss, D. A. Luce, and K. L. Kelley.
Computer Controlled Printing.
In Proceedings of the Spring Joint Computer Conference, Vol. 23. AFIPS,
1963.

[S] M.P.Barmett.
Computer Typesetting: Experiments and Prospecis.
MIT Press, 1965.

[6] N.Edward Berg.
Electronic Composition.
Graphic Arts Technical Foundation, Pittsburgh, 1978.

[71  JohnR. Biggs.
Basic Typography.
Faber and Faber, London, 1968.

[8]  Sir Cyril Burt.
A Psychological Study of Typography.
Cambridge University Press, 1959.

- k. SN NP ST S U N S Sy Sy S Sy P . L VP, W [P, Y L Y LIPS Y NEY ST S G W S S S S A B




v i""' Dl B
" .

T TR T T T T ey e ey
oo e . Y &8 AR
- o e e

- A . . - - N . . .

122
9]

[10]

[11)

12)

(13]

(14]

[15]

(16]

(17]

A Language and Compiler for Producing Documents

Gordon V. Carey.

Cambridge Authors’ and Printers’ Guides. Volume 3: Makmg an Index
(Third Edition).

Cambridge University Press, 1963.

B. Cohn.
The End is Just the Beginning: the life of U. A. Whitaker.
Carnegie-Mellon University Press, 1980.

Robert L. Collison.

Indexes and Indexing: Guide to the Indexing of Books, and Collections of
Books Periodicals, Music, Gramophone Records, Films and other Material,
with a Reference Section and Suggestions for Furiher Reading.

John de Graff, Inc., New York, 1959.

G. F. Coulouris, I. Durham, J. R. Hutchinson, M. H. Patel, T. Reeves, and
D. G. Winderbank. ‘

The Design and Implementation of an Interactive Document Editor.
Software—Practice and Experience 6:271-279, June, 1976.

Charles Goldfarb.

Document Composition Facility' Generalized Markup Language (GML)
User’s Guide.

Technical Repon SH20-9160-0 IBM General Products Division, 1978.

M. Gorlick, V. Manis, T. Rushworth, P. van den Bosch, and T. Venema.

Texture User's Manual

Department of Computer Science, University of British Columbia, Van-
couver, B.C. V6T1WS5, 1975.

Edward M. Gottschall.

Communications Typographics.

IEEE Transactions on Professional Communication PC21(1):18-23, March,
1978.

U.S. Government Printing Office Style Manual
Revised edition, Washington, D.C., 1973.

Word Division Supplement to the Government Printing Office Style Manual
Seventh edition, Government Printing Office, Washington, D.C., 1976.

A m.m A e




Y, ™ - T

PR . a‘; A

[ PRI . .
’
‘

References

(18]

(19]

20]

21)

2]

23]

[24]

[25]

[26]

27]

John Guutag and J. J. Horning.

Formal Specification as a Design Tool.

In Conference Record. Seventh Annual ACM Symposium on Principles of
Programming Languages, ACM/SIGPLAN-SIGACT, January, 1980.

Allen V. Hershey.
A computer system for scientific typography.
Computer Graphics and Image Processing 1:373-385, 1972.

IBM SCRIPT/370 Version 3 User’s Guide, manual SH20-1857-0
IBM Data Processing Division, White Plains, NY, 1976.

Evan L. Ivie.
The Programmer’s Workbench - A Machine for Software Development.
Communications of the ACM 20(10), October, 1977.

Paul E. Justus.
There is more to typesetting than setting type.
IEEEPC PC-15(3):13-16, March, 1972.

Brian W, Kernighan and Lorinda L. Cherry.
A System for Typesetting Mathematics.
Communications of the ACM 18(3):182-193, March, 1975.

Donald E. Knuth.

TEX: A System for Technical Text.

Technical Report AIM-217, Stanford University, November, 1978.

Republished by Digital Press as Chapter 2 of TEX and METAFONT, new
directions in typesetting, 1979.

Butler Lampson.
Bravo Manual
Xerox Corporation, Palo Alto, CA, 1978.

M. E. Lesk.
UNIX Programmer’s Manual, p. REFER(1)
Bell Laboratories, Murray Hill, NJ, 1979.

M. V. Mathews and Joan. E. Miller.

Computer Editing, Typesetting, and Image Generation.

In Proceedings of the Fall Joint Computer Conference, Vol. 27, pages 389-398.
AFIPS, 1965.




124
(28]

(29)

(301

31)

(32

33]

[34]

[35]

[36]

(37)

A Language and Compiler for Producing Documents

John McCarthy.

LISP 1.5 Programmer’s Manual.

Technical Report, MIT Computation Center and Research Laboratory of
Electronics, Cambridge, MA, 1962.

Douglas C. McMurtrie.
The Book: the Story of Printing and Bookmaking (Seventh Edition).
Oxford University Press, London, 1943.

The Monotype Machine Book of Information
Monotype Corporation, Leeds, England, 1946.

Stanley Morison.

Cambridge Authors’ and Printers’ Guides. Volume 1: First Principles of
Typography (Second Edition).

Cambridge University Press, 1967.

Allen Newell, Fred M. Tonge, Edward A. Feigenbaum, Bert F. Green Jr, and
George H. Mealy.

Information Processing Language-V Manual,

Prentice-Hall Inc., Englewood Cliffs, N. J., 1964.

William M. Newman.

Page Makeup and Editing.

In James Foley (editor), Introduction to Raster Graphics. Sixth Annual
Conference on Computer Graphics and Interactive Techniques,
ACM/SIGGRAPH, May, 1979,

J. F. Ossanna,
TROFF User’s Manual,
Computing Science Technical Report 54, Bell Laboratories, 1977.

John Pierson.
Computer Composition Using PAGE-L
Wiley-Interscience, 1972,

Jess Stein (editor).
The Random House Dictionary of the English Language.
Random House, New York, 1970.

Brian K. Reid and Janet H. Walker.
Scribe User’s Manual, Third Edition
CMU Computer Science Department, 1980.

. e s .o L < P . . . - CRPUN P GRS




.

> a4

——

T ey "'.-'. R e 4
P L e e

References

[38]

[39]

[40]

[41)

[42)

[43]

[44]

[45]

[46]

[47]

Robert P. Rich.
Information Handling. .
Methodik der Information in der Medizin 1V(4):159-163, December, 1965.

M. Satyanarayana.
Multiprocessors: A Comparative Study.
Prentice-Hall, 1980.

Kem E. Sibbald.
DPS User’s Guide.
Technical Report CN-16.0, University of Maryland, April, 1976.

S. H. Steinberg.
Five Hundred Years of Printing.
Penguin Books, Harmondsworth, England, 1974.

Will Strunk and E. B. White.
The Elements of Style, Second Edition.
Macmillian, 1972.

Lawrence Tesler.

PUB: The Document Compiler.

Technical Report ON-70, Stanford University Artifical Intelligence Project,
September, 1972.

Arthur T. Turnbull and Russell N. Baird.
The Graphics of Communication (Third Edition).
Holt, Rinehart, and Winston, New York, 1975.

Daniel Berkeley Updike.
Printing Types: their History, Forms, and Use (4 Study in Survivals).
Harvard University Press, 1937.

Henry B. Wheatley, F.S.A.
How to Make an Index.
Elliot Stock, London, 1902.

Hugh Williamson.
Methods of Book Design (Second Edition).
Oxford University Press, London, 1966.

L




126
[48]

[49]

(501

[51]

A Language and Compiler for Producing Documents

N. E. Wiseman, C. I. O. Campbell, and J. Harradine.
On making graphic arts quality output by computer.
The Computer Journal 21(1):2-6, February, 1978.

Wm. A. Wulf, D. B. Russell, and A. N. Habermann.
BLISS: a Language for Systems Programming.
Communications of the ACM 14(12):780-790, December, 1971.

Wm. A. Wulf, M. Shaw, P. Hilfinger, and L. Flon.
Fundamental Structures of Computer Science.
Addison-Wesley, 1980.

Wm. A. Wulf, Roy Levin, and Sam Harbison.
Hydra/C.mmp: An Experimental Computer System.
McGraw-Hill, 1980.




. v
) L3

——

CRR

Acknowledgments 127

Acknowledgments

I would like to thank my advisor, Bob Sproull, and my reading committee, Brian Kernighan, Mary
Shaw, and Bill Wulf, for all of the help they gave me in making this thesis be reasonably coherent.
David Lamb, Chris van Wyk, and Don Knuth also provided valuable critical feedback on
intermediate drafts.

Scribe was a big project, and its design. development, debugging. and documentation have
involved a lot of people. It's impossible 1o thank them all, but ['d nevertheless like to ry. 1 am
certain that | have forgotten to include people who have made contributions as significant as these.

Thanks to Bill Wulf, David Lamb, Mary Shaw, and Paul Hilfinger for solid design principles and
getting me started in the right direction. They deserve full credit for the original ideas behind Scribe
and the language design principles that guided it Thanks to Larry Tesler and Les Earnest for
inventing PUB, without which I never would have had the design tools for Scribe. To Doug Clark
and Roy Levin, whose unflinching insistence on quality raised my consciousness about automated
document formatting. To Gideon Yuval, for offering mad suggestions often enough that | stopped
thinking they were mad.

In the implementation of Scribe, two years of programming in Bliss, my feeble programming skills
were supplemented by the awesome wizardry of Craig Everhart more times than I can count. The
job of exporting Scribe to other laboratories was made easier because of the assistance of Dwight
Cass, Benjamin Hyde, Janet Waiker, Chris Rvland, Chuck Weinstock, Wayne Gramlich. and Gary
Baczkowski.

Jan Walker consistently played the role of The User. She helped me build more realistic models
of how users perceived the Scribe systemn, she helped me understand how the system could be made
more conceptually uniform in order to assist those users. She wrote half of the Second Edition of the
manual and most of the Third, and also makes incredibly good Chinese food.

Dan Lynch and the SRI Computer Resources group sponsored the original development of the
GSI photocomposer interface, and Tim Basinski generously made a photocomposer available o me
at CMU for followup development. James Adams and Lawrence Butcher helped immeasurably in
coping with the cantankerous photocomposer, and Jim Gasbarro designed and built the clever
interface that connects it to our computer.

Many kind people helped with the debugging. Ivor Durham was Scribe’s first user, and without
his legendary patience the debugging effort might not have succeeded at all. The entire Computer
Science department at CMU has suffered through two years of having Scribe constantly changing out
from under them, with new bugs replacing the old. Special thanks to those people who were
unusually helpful in pinpointing problems for me: Bruce Leverett, Philip Lehman, Paul Hilfinger,
James Gosling, David Lamb, Chuck Weinstock. Les Lamport, Joe Newcomer, Lee Cooprider, Bill
Brantley, Bob Schwanke, Walter Tichy, and John Nestor. Bruce Leverett and Kevin Brown put
many hours into the creation and standardization of bibliography formats.

Finally, very special thanks to my wife, Loretta Guarino Reid. whose skills'as a systems designer,
debugger, proofreader, cook. and counsellor have helped me in every aspect of the Scribe project.




Glossary 129

Glossary

Collected definitions of terms that are peculiar to the typography or printing field,
and that are used in the text.

Ascender The parts of lowercase letters that protrude above the basic body
heightin thelettersb d £ h k [ and ¢.

Descender The parts of lowercase letters that protrude below the baseline in
the letters g p, ¢, and y, and in certain fonts for some capital

letters as well.
Diacritical An accent mark.
Face Meaning varies. As used in this thesis, face is the attribute that

determines the style of letter to be used within a particular font.
Typical values of face include italic, bold, small capital. Cf. font.

Filling Placing as many words on one line as will fit, in an attempt to
make line lengths approximately even; ¢f “justification™.

Font Meaning varies. As used in this thesis, a font is a family of
alphabets whose letters are stylistically similar. Within a font,
various faces can be selected and various sizes of letters can be
made. This thesis is set in the Times Roman font, in the 12-point
size.

Justification The expansion or contraction of spaces within a filled line so that
the line is exactly the prescribed length, in order that the right
margin will be even.

Kerns Parts of a type slug for italic or slanted letters that protrude past
the edges of the type slug. See the diagram on page 21.

Keming Fine adjusting of the horizontal spacing between letters in a word
" s0 as to take into account the nuances of their geometry.




130 A Language and Compiler for Producing Documents

Leader A row of some punctuation character, usually periods or dashes,
to fill white space in atable. '

Ligature A single letter that takes the place of a group of two or more,
such as f1 for 11 instead of the 1 that appears when the
individual letters are simply abutted.

Markup Instructions to a typesetter written on a typescript by a copy
editor. In discussing Scribe, the markup is used to describe all of
the uses of the “@" character to pass special information to the
compiler.

Mechanical spacing
Horizontal spacing of letters within a word that is identical to the
spacing that would be had when metal type slugs are used, even if
there are no physical restrictions on letter spacing.

Optical spacing  Horizontal spacing of letters within a word such that the space
between two letters depends on their shape. Optical spacing is
achieved by kerning from mechanical spacing.

Orphan The first line of a paragraph placed by itself at the bottom of a
page. Cf. Widow.

Pagination Division of running textual material into pages, taking simulta-
neously into account the placement of footnotes, figures, head-
ings, and other non-textual material.

Point A unit of distance approximately equal to 1/72" of an inch.

Running heads The portion of a page that contains the page numbers and other
information. The running heads in this thesis include the name
of the chapter.

Serif Serifs are the difference between f and f. They are the small
horizontal and vertical lines that characterize Roman type faces.

Slug See type slug.

Type slug A rectangular piece of metal used in classical hand typesetting. A
drawing of a type slug appears on page 21.

Widow The last or first line of a paragraph left by itself at the top or

bottom of a page. Also called widow line or widowed line.
Sometimes the word orphan is used to describe a last-line-of-page

——— v -~




A .’-'i'?'-
3 . .
v, .'-‘
‘4

v e L2 2 I e } v .o g
. R P
5 Vo L
. R ) -

widow.

{ MAN oa WOMAN

BOY or GIRL

FOLLOWS
3 TIMES

| SHALL FALL ASLEEP
AN HUNDRED YEARS

[Jow © BATTEN OREw THiS & Aue 16 I8Cl

& Lo0 - MIENT.




The State Parameters 133

Appendix A
The State Parameters

Chapter 5 discussed the environment mechanism, and explained the difference
between static and dynamic state parameters in the context of the environment
mechanism. This appendix lists those parameters, with a brief explanation of their
semantics. The type names used in this chapter are explained in Section 5.2 on page
54,

A.1 Dynamic State Parameters

Dynamic parameters are those that may change during a run of the compiler.
Static parameters are fixed during compiler initialization, or remain constant for the
entire compilation.

Dynamic parameters are classified into two groups, inheriting parameters and
non-inheriting parameters. The inheriting parameters obey the binding stack
protocol discussed in the previous section. The non-inheriting parameters do not:
if an environment entry does not specify a value for a non-inheriting parameter,
then a default value is used rather than an inherited value.

For purposes of this explanation, the parameters are also classified as either
Jformat control paramelers, manuscript language interpreiation paramelers, and
bookkeeping parameters. These classes do not have significance in the actual
implementation of the compiler.

Remember that the type of the value specified for a state parameter need not be
the same as the type of the parameter; wherever meaningful, the necessary type
coercion will be made when the environment specifying that value is actually
entered. This means, for example, that a font-relative distance can be specified as the
value for a parameter whose type is horizontal distance. The environment-entry
processing will perform the necessary multiplication.




;Ti 134 A Language and Compiler for Producing Documents
Format Control Parameters

) 1. Font family: the identity of the current font family. Inheriting. Type:
tﬂ symbol. Typical values: “Heading Font”, “Body Font”, etc. Font
- family names are declared in font definition files in the database.

2. Face code: the face code within the current font family. Inheriting.
Type: character. Typical values: “R”, “I”, “B”. Face codes select a

P particular font from a font family.

3. Font size: Inheriting. Type: Absolute distance. The size of the letters to

be generated in the font selected by the previous two parameters. The
: precise meaning of the font size with respect to the geometry of letters in
[‘ the font depends on the font designer’s measurements. It is usually the
height of a box that is guaranteed to be tall enough to contain any letter
in the font while its baseline is at a fixed point in the box. The box
height is therefore the sum of the maximum above-baseline height of
characters in the font and the maximum below-baseline height of
characters in the font.

4, Spacing: the vertical spacing between ordinary text lines, measured from
the baseline of one line to the baseline of the next. Inheriting. Type:
vertical distance. '

S. Paragraph spread: the additional spacing, over and above spacing, that is
placed between text paragraphs. Inheriting. Type: vertical distance.

6. Left margin: the distance between the left edge of the paper and the left
edge of the text lines. In justified text, the left margin applies to all lines
but the first in a paragraph. Inheriting. Type: horizontal distance.

7. Indention: the horizontal distance between the left margin and the left
edge of the first line of a paragraph. An ordinary indented paragraph
has a positive value for indention; a block paragraph has a zero value.
Outdented paragraphs have negative indentions. Inheriting. Type:

.L . horizontal distance.

‘e 8. Right margin: the distance between the right edge of the paper and the
P right edge of justified text lines. Inheriting. Type: horizontal distance.

o

;;_ 9. Top margin: the distance between the top edge of the paper and the top
f edge of the first line of actual text on a normal page. Inheriting. Type:
'. l vertical distance.

‘e

PR A S S T S Sy P S S S Sy - o " ]




B A=y ke

D0 & LA

The State Parameters

10. Bottom margin: the distance between the bortom edge of the paper and
the bottom edge of the last line of actual text on a normal page.
Inheriting. Type: vertical distance.

11. Fill mode: Inheriting. Type: Boolean. True if the compiler is to “fill”
text lines, i.e. to put as many words on each as will fit. False otherwise.

12. Line disposition: Inheriting. Type: enumerated from {flushlefi,
Slushright, centered, justified}. After the line has been closed, and
possibly filled, what full-line processing is done with it as it is placed
onto the page.

13. Transformation: Inheriting. Type: enumerated from {none, capitalized,
initial capitalized}. Dictates capitalization transformation performed on
text before width computation.

14. Sink margin: Inheriting. Type: vertical distance. Specifies a distance
from the top edge of the paper such that the first line of this envi-
ronment is permitted to be no closer than sink margin to the top edge of
the paper. If the position on the page is already farther from the top
edge of the paper than sink margin, then it has no effect.

15. Fixed location: Type vertical distance. Specifies a distance from the top
edge of the paper to which the first line of this environment is forced,
regardless of context. Used for page headings and other running
material.

16. Script displacement: Type vertical distance. The amount by which the
text in this environment is displaced from the current baseline, for
superscripting or subscripting. Positive values generate superscripts, and
negative values generate subscripts. '

17. Underlining: controls underlining in the text. Inheriting. Type: enu-
merated from {none, all, nonblank, alphanumeric}.

18. Overbar: controls generation of overbars on the text. Type same as
underlining.

19. Widest blank: the largest amount to which a blank can be expanded by
the justifier before the formatter will try to hyphenate. Inheriting.
Type: horizontal distance.

135




136

20. Narrowest blank: the smallest amount to which a blank can be com-
pressed by the justifier before the formatter will try to hyphenate.
Inheriting. Type: horizontal distance.

21. Hyphenation: Inheriting. Type: Boolean. Set true if hyphenation is
permitted in this environment, else false.

22. Columns: the number of columns into which the text is to be set.
Inheriting. Type: integer.

23. Column margin: the horizontal spacing between columns. Inheriting.
Type: horizontal distance.

24, Running heads: permit running headers. Inheriting. Type: Boolean.
Set true if any new pages opened during this environment are to have
running headers.

25. Resume paragraph on exit: Type: enumerated from {No, Required,
Permitted}. Non-inheriting; default Permirted. When an environment
is exited back to the outer containing environment, this parameter
controls whether or not the outer environment is resumed in the same
paragraph or whether a new paragraph is begin.

26. Line break: Controls line break upon entrance and exit to and from the
environment. Type: enumerated from {break on entry, do not break on
entry} cross {break on exit, do not break on exit}. Non-inheriting;
default: do not break.

27. Page break: Controls page break upon entrance to and exit from the
environment. Type: enumerated from {page break before entry, break
until even page before entry, break until odd page before entry, do not
break on entry} cross {break on exit, do not break on exit}. Non-
inheriting; default: [do not break on entry, do not break on exit}.

28. Block disposition: Controls the disposition of the entire environment’s
text. Type: enumerated from {none, group, float, footnote}. Non-
inheriting; default: none. If the value of this parameter is other than
none, then its text will be clustered and handled as a unit. The various
values allow for figure floating, equation clustering, and note placement.

29. Float disposition: Type: enumerated from {none, float down, float up,
Sfloat defer, floar whole page, float 1o line end}. If the value of block

A Language and Compiler for Producing Documents




q The State Parameters 137

disposition is float, then the value of float disposition controls the
floating process. Non-inheriting; default: none.

m' 30. Minimum above spacing: Type: vertical distance. Non-inheriting;

default: 0. Specifies that the first line of text of this environment can be
placed no closer to the bottom of the last line of the previous envi-
ronment than the indicated value,

E 31. Minimum below spacing: Type: vertical distance. Non-inheriting;
- default: 0. Specifies that the last line of text of this environment can be
placed no closer to the top of the first line of the following environment
than the indicated value.

{ | 32. Line push: Type: boolean. Inheriting. If true, then line spacing is
& increased to accomodate oversize characters. If false, then line spacing is
left constant regardless of the characters on that line. See section 8.6.3
for a discussion of this effect.

33. Page need: Type: vertical distance. Non-inheriting; default: 0. Specifies
that the first line of this environment can be placed no closer to the
bottom of the paper than the sum of the indicated value and the page
bottom margin.

Manuscript File Interpretation Parameters

34, Carriage-return action: action to be performed on a carriage return/line
feed pair in the manuscript file. Inheriting. Type: enumerated from
{paragraph-break, spaces, ignored}. The carriage return is treated as a
paragraph break, a word break, or ignored completely depending on the
value of this parameter.

35. Blank line action: action to be performed on a blank line in the
manuscript file (two or more consecutive carriage returns). Inheriting.
- Type: enumerated from {paragraph break, word break, keep line, keep
and hinge}. The value word break means to treat a blank line in the same
way that multiple blank spaces are handled, which is controlled by the
Space action parameter, below. The paragraph break value means to0
cause a paragraph break at a blank line (this is the usual case). The keep
line value means to retain an actual blank line in the produced
document, after performing a paragraph break. The keep and hinge
value means to permit a grouped environment to hinge at this blank
line. Grouping is one of the block disposition options; see item 28.




36. Space action: how to treat blank spaces in the manuscript file. Inher-
iting. Type: enumerated from {retained, compressed, normalized, dis-
carded, retained significant}. A retained significant space is treated as a
letter, and can never cause a word break.

37. Leading space action: like space action, but applies to leading spaces on
manuscript lines.

38. Overlong line action: action to be performed when a line in the
manuscript file is too long for the margins, and the formatting param-
eters do not specify line filling. Inheriting. Type: enumerated from
{chop, wrap, keep}. The line is either truncated at the right margin,

allowed to extend past the right margin, or wrapped to a following

;‘ output line.

39. Newpage disposition: disposition- of “new page” characters in the manu-
script file. Inheriting. Type: enumerated from {ignored, text, start-new-
page}.

Bookkeeping parameters

40. Attached counter: Inheriting. Type: symbol. If non-null, the symbol
table name of a counter defined for numbering objects in this envi-
ronment.

41. Number location: Selection of where to put a generated number for
generated objects in this environment. Inheriting. Tvpe: enumerated
from {beginning, end} cross {flush lefi, flush right}.

42. Process text after entry: A string of manuscript text to be processed
immediately on entry to the environment. Type: string. Non-
inheriting; default: null.

; 43, Process text before exit: A string of manuscript text to be processed
immediately before exit from the environment. Type: string. Non-
‘ inheriting; default: null.

*,' 44, Process text after exit: A string of manuscript text to be processed
immediately after exit from the environment. Type: string. Non-
inheriting; default: null,

45. Tab export: Type: Boolean. Non-inheriting; default: False. If true, then

138 A Language and Compiler for Producing Documents




Tl

r«
»
[
»
s
Lo
e
.
]

i { RARSRARAP A
D ! R Lttt

AR S

r.!‘.’.'.'.j.'.'ﬂ st A

Bl S A A B i B S e S S - - .. Cov . . - - - . G S g ——

The State Parameters ‘ 139

tab stops set within this environment are to be exported to the outer
containing environment.

A.2 Static State Parameters

Static state parameters are fixed during compiler initialization, and do not change
during a compilation. Their values are read in from various database files.

Device Parameters

1 Paper width: Type: horizontal distance. The physical width of the paper
in the printing device.

2 Paper height: Type: vertical distance. The physical height of each page
of paper in the printing device.

3. Horizontal width increment: Type: rational number. The number of
horizontal width units in a centimeter, expressed as a quotient of two
integers. '

4. Vertical width increment: Type: rational number. The number of
vertical width units in a centimeter, expressed as a quotient of two
integers.

5. Can backspace: Type: Boolean. True if the printing device is capable of
executing a backspace command; faise otherwise.

6. Bare carriage return: Type: Boolean. True if the printing device is
capable of executing a carriage return without a corresponding line feed,
to move to the leftmost printing position on the page.

7. Bare line feed: Type Boolean. True if the printing device is capable of
executing a bare line feed, without corresponding carriage return, to
move to the same printing position on the next line.

8. Has fonts: Type: Boolean. If the printing device is capable of changing
font, then true, else false.

9. Has lens: Type: Boolean. If the printing device can change font size or
scale without changing font, then true, else false.




v -vjf ~

w"rv«vﬂf —

|~ (ESottes woo

S o T AR IS A A A R ——

140 A Language and Compiler for Producing Documents

10. Overstrike: Type: Boolean. If the printing device is able to overstrike
characters then true, else false. '

11. Paged: Type: Boolean. If the printing device operates on discrete pages,
then true, else false.

12. Underline: Type: Boolean. If the printing device is capable of under-
lining, then true, else false.

Static Format Parameters

13. Double sided printing: Type: Boolean. If the document is being
prepared for double sided reproduction, then true, else faise.

14. Binding margin: Type: horizontal distance. When a docur.ent is printed
doublesided and bound, a certain amount of the inside margin is used
up by the binding. The value of the binding margin parameter should be
equal to the amount that is covered by the binding. It will be added to
the left margin on odd pages and to the right margin on even pages.

15. Font family: Type: Symbol. The name of the font family to be used for
typesetting this document. A font family is a selection of fonts chosen
by a designer to look harmonious when used together. It provides the
bindings for the Aeading font and title font names used in the dynamic
font parameter.

16. Note disposition: Type: enumerated from {inline, end of chapter, end of
document, botiom of page}. Disposition of footnotes in the text.

17. Widow disposition: Type: enumerated from {ignored, forced give
warning}. How the compiler is to treat widow lines.

Static Bookkeeping Parameters

18. Generic Device: Type: String. Used as a common retrieval key for
database entries shared by several device types.

19. Page numbering: Type: symbol. A pointer to a counter to be used for
numbering pages.

20. Note numbering: Type: symbol. A pointer to a counter to be used for
numbering notes.

PR VS VLAY VU SRy VPSS N U T S ) P PSP - e 8o PR PR S VL S .
a _— e o aaen . om

—‘—11']




- . ,|.l‘

e

L N B - ooy o8
b, e

PN NN NN
PN T A
N L

g LA A oy LI S 00 g
. « a3 e MR PARNERSRE AR
. e T N e e

| aanan:

The State Parameters

L e iR Bt ‘Rt S Rt M e e She e Jean (A e are 2

21. Bibliography type: Type: symbol. The name of the database file to be
used as the format definition for the bibliography and citations in this

document.

a'a At eNotihe s maal omeoa

141




Compiler Implementation Details 143

Appendix B
Compiler Implementation Details

B.1 The Generic Operating System Interface

The Scribe compiler was coded to deal with a generic operating system; various
specific operating systems are used by means of an operating system interface. This
Scribe Generic Operating System is a minimalist system; it is the simplest possible
OS that was reasonably able to support the compiler without it seeming alien to
users experienced in the behavior of the host operating system. It offers no
surprising or innovative services, and is worth recording because of its simplicity.

The Scribe GOS supports files, terminals, address space management, and
environment inquiry. It has no notion of processes, synchronization, interrupts, or
communication. All I70 is synchronous.

A text file is a stream of bytes. It is read sequentially, one byte at a time. Every
file has a name and a creation date/time. Its text can optionally be divided into
named zones, pages, lines, or records. These names are used in error messages
generated by the compiler, for the purpose of tying errors to particular locations in
the file. A binary file is a vector of bytes, which are read or written by position

within the file. A binary file can be opened for input or output, but not both .

simultaneously. A terminal is a text file that can be opened for input and output
simultaneously. When non-printing characters are written to a terminal, the
operating system either honors them as control characters or else translates them
into some appropriate sequence of printing characters.

The GOS manages the computer’s address space. The compiler is not permitted
to reference a memory address that has not been allocated to it by the GOS. The
compiler can request blocks of memory from the operating system and also can
return them if it so desires. The overhead of requesting space from the operating
system is large enough that the compiler is expected to retrieve large chunks of
address space and subdivide them itself.

The client program can request environment information of various limited kinds
from the operating system, including the date and time of various events, the name
of the current user, and so forth.

[
o |




vy
RN

Sl et

:

-

d ,’j T T T

v o
-t b

ladm

------

.....................................

144 A Language and Compiler for Producing Documents

B.1.1 The File System

An open file is represented by an Open File Descriptor Record, or OFDR:

type OFDR = record

client’s_name: string;

true_name: string;

short_ name: string;

open_type: {in,out};

location_name: string

end;
When a file is opened, the GOS is passed a string that contains the client’s name for
the file. The GOS locates the file, creates an OFDR, and returns a pointer to it.
One of the fields of the OFDR is the “true name” of the file. The true name may
differ arbitrarily from the client’s name—it might just be a sequence number—but
the expected property of the trie name is that it be a copy of the client’s rame, -
expanded by the addition of supplementary text.

The remainder of this section details the file-related services provided by the
Generic Operating System.

B.1.1.1 Open for Text Input

The function Open_For_Text_Input(Client’s_name: string) returns a pointer to an
OFDR. The GOS locates the requested file, opens it for sequential text input,
creates an OFDR record, and returns a pointer to that record. The GOS goes to
considerable effort to ensure that some file will be found. If the file named by the
client cannot be found, the GOS engages in a dialog with the user at the terminal to
find a replacement file name, and uses that name instead. If the user refuses to
provide a substitute file name, or if there is no terminal available, then an OFDR 1o
a zero-length nameless file will be returned.

B.1.1.2 Open For Text Qutput

The function Open_For Text Output(Client’s name: string) returns a pointer to an
OFDR. The GOS creates a new file with the requested name, opens it for
sequential cutput, creates an OFDR record, and returns a pointer to that record. If
the GOS is unable to create or open such a file, then it engages with a dialog with
the user at the terminal, as above. If there is already a file with the requested name,
the GOS is permitted to delete it at this time, but not required to.




| SRR e R N e T e R e T s o I L

L‘! Compiler Implementation Details 145
B.1.1.3 Check For Text Input

The function Check_For_Text_Input(Client's_name: string) returns a Boolean
value. It checks to see whether or not an “open for input™ request would succeed if
issued. If a call to Open_For_Text_Input of Client's_name would succeed without
needing to interrogate the user, then Check_For_Text_Input returns True. In any
other circumstance, it returns False.

B.1.1.4 Check For Text Output

The function Check_For_Text_Output(Client’s_name: string) returns a Boolean
value. The function checks to see whether or not an “open for output™ request
would succeed if issued. If a call to Open_For_Text Output of Client’s name would
succeed without needing to interrogate the user, then Check_For_Text_Output
returns True. In any other circumstances, it returns False.

B.1.1.5 Open Unique Text Qutput

The functon Open_Unique_Text_Output takes no arguments, and returns a
pointer to an OFDR. It is identical to Open_For_Text Output, save that it invents a
file name, and returns the name so invented in the Client's_name field of the
u returned OFDR. The invented file name is guaranteed not to duplicate or interfere

with any existing file.

AL

B.1.1.6 Close File

The function Close_File(File_record: pointer to OFDR) closes the file whose
OFDR is pointed to by File_Record, and then destroys that record. If the file was
open for input, there are no side effects. If the file was open for output, the
Close_File operation must perform any housekeeping operations related to deleting
or inactivating old versions of the file.

B.1.1.7 Close and Delete

The function Close_And_Delete(File_Record: pointer to OFDR) closes an open
file and deletes or suppresses it. No value is returned. If the indicated file is open
for input, then it is closed as by Close_File, above, then deleted. If the indicated file
is open for output, then it is closed as by Close_File, except that (a) the indicated file
is not created, (b) no housekeeping or deleting of old versions of the file is
performed, and (c) any deleting or modification of files that was performed by
Open_For_Text Output is undone.




"""‘v'v'i"’" — T

e 3 o e AaC Briammeee e . T r——— e

146 A Language and Compiler for Producing Documents
B.1.1.8 Rewind

The function Rewind(File_Record: pointer to OFDR) returns a pointer to an
OFDR. It accepts as input a file that is open for input or output, and returns an
OFDR to the same file open for input, ready to read the first character of the file.

B.1.1.9 Read Text Character

The function Read_Text_Character(File_Record: pointer to OFDR) returns a
value of type File_Character. It reads one character from a file and returns it as the
value of the function.

B.1.1.10 Write Text Character

The function Write_Text_Character(File_Record: OFDR, Char:Character) writes
the designated character 1o the designated file, which must be open for output.

B.1.2 Address Space Management

The GOS provides a heap protocol for allocating and deallocating blocks of
memory. A simple quickfit algorithm is used to manage space. When the GOS runs
out of space, it negotiates with the actual host operating system for more memory.
The released memory is periodically compacted into larger blocks during the release
process. The algorithms used for free-list management and allocation strategy are
not specified, and the GOS is free to manage them however it chooses.

B.1.3 Environment Inquiry

The Scribe compiler needs very little information about its environment. The
GOS provides these service routines.

B.1.3.1 Determine Date

The function Determine_Date:integer returns the number of whole days that have
elapsed since Sunday, March 0, 1948, in local time, as of the start of execution of the
program. All calls to Determine_Date made during the same compiler run will
return the same value,




>

.y T’Y'H... CaacRsan
e e Y s S

Compiler Implementation Details 147

B.1.3.2 Determine Time

The function Determine_Time:integer returns the number of minutes that have
elapsed since Midnight, local time, as of the start of execution of the program. All
calls to Determine_Time made during the same compiler run will return the same
value,

B.1.3.3 Determine File Date

The function Determine_File_Date(OFDR):integer returns the creation day
number of the file currently open for input that is pointed to by OFDR.

B.1.3.4 Determine File Time

The function Determine_File_Time(OFDR):integer returns the creation time of
the file currently open for input that is pointea to by OFDR.

B.1.3.5 Determine User Name

The function Determine_User_Name:String returns a string that somehow
identifies the current user to the host operating system.

B.2 The Generic Device Interface

The Scribe compiler is able to produce documents for a wide range of printing
devices, from line printers to photocomposers, using the same formatting routines.
This exceptional breadth is achieved by the interaction of several phenomena:

o The formatting routines contain absolutely no assumptions about the
properties of any printing device. They interrogate various device
parameters from the data base to determine the capabilities of the device
currently in use.

o The formatting routines do not drive the output device directly; rather,
they prepare output for a “generic” printing device. The generic device
has a set of control codes that are similar to the control codes used by
real printing devices. :

- e A complete page image is assembled in memory by the formatting
routines, with control, font, and position coded for the generic device.




148 A Language and Compiler for Producing Documents

The device driver for a specific output device is then called to output
that page to the device. It may perform any sorting by vertical or
horizontal position, or any transformation of the text, before writing the
text to the device file.

The g’enéric device interface thus consists of two parts: a set of parameters that
describe the capability of the current printing device, and a set of routines that
translate the generic codes into control codes for the real device.




