Algebra Review 2

Fields 1

A field is an extension of the concept of a group.

Definition 1. A field $(F, +, \cdot, 0_F, 1_F)$ is a set F together with two binary operations $(+, \cdot)$ on F such that the following conditions hold:

- 1. (F, +) is a commutative group, with identity the element 0_F .
- 2. The \cdot operation is associative, i.e., $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ for all $a, b, c \in F$.
- 3. The \cdot operation is commutative, i.e., $a \cdot b = b \cdot a$ for all $a, b \in F$.
- 4. The distributive law holds, i.e., $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ for all $a, b, c \in F$.
- 5. The element 1_F is an identity for \cdot , i.e., $1_F \cdot a = a \cdot 1_F = a$ for all $a \in F$.
- 6. All nonzero element in F have an inverse under , i.e., for all $a \in F, a \neq 0_F$, there exists an element $a^{-1} \in F$ such that $a \cdot a^{-1} = 1_F$.

Example 2. $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are fields, but \mathbb{Z} is not a field.

Example 3. The set \mathbb{Z}_5 is a field, under addition and multiplication modulo 5. To see this, we already know that \mathbb{Z}_5 is a group under addition. Furthermore, we can easily check that requirements 2-5 are satisfied. The non-trivial one to check is condition 6, but this can be verified on a caseby-case basis (i.e., the inverse of 2 is 3; 4 is its own inverse).

However, the set \mathbb{Z}_6 is not a field, because the element 4 has no multiplicative inverse (try to find one!).

Theorem 4. \mathbb{Z}_p is a field under addition and multiplication modulo p if and only if p is prime. \Box

Remark 5. Some notations:

- 1. We sometimes abuse notation by writing 0 (resp. 1) instead of 0_F (resp. 1_F) when explicit from the context.
- 2. We sometimes use ab instead of $a \cdot b$.

m times

- 3. Subtraction a b is defined by a + (-b), and division a/b by ab^{-1} for $b \neq 0_F$.
- m times 4. We denote $a + \cdots + a$ by ma for $m \in \mathbb{N}$, and also $a \cdots a$ by a^m . When we write -ma it means m(-a), and a^{-m} means $(a^{-1})^m$.
- 5. The value a^0 is defined to be 1_F , and 0a to be 0_F .

Lemma 6. Let F be a field. Then, for all $a \in F$, and $n_1, n_2 \in \mathbb{Z}$,

$$(a^{n_1})^{n_2} = a^{n_1 n_2} \quad a^{n_1} a^{n_2} = a^{n_1 + n_2} \; .$$

Lemma 7. Let F be a field. If the elements $a, b \in F$ are such that $a \neq 0$ and $b \neq 0$, then $ab \neq 0$. *Proof.* Suppose towards contradiction that ab = 0. If $a \neq 0$ then a has inverse. So we have

$$0 = a^{-1} \cdot 0 = a^{-1}(ab) = (a^{-1} \cdot a)b = 1 \cdot b = b \quad \text{(contradiction)}$$

By symmetry, if $b \neq 0$, then we have a = 0 (contradiction).

When, however, F is not a field the above lemma no more holds. Consider $4 \cdot 3$ in \mathbb{Z}_6 .

1.1 Finding a multiplicative inverse in \mathbb{Z}_p^*

As we saw in class, we often need the inverse of a number in \mathbb{Z}_p^* . Therefore, it is essential to have an efficient algorithm to find the inverse.

Algorithm 1 Calcuate $a^{-1} \mod p$. Input: (a, p)Output: $a^{-1} \mod p$

Compute x and y s.t.

ax + py = 1.

This can be efficiently computed because gcd(a, p) = 1. See Problem Set 1 for the details. return $x \mod p$.

2 Polynomials

Definition 8. If F is a field, then a *polynomial* in the indeterminate (or formal variable) x over the field F is an expression of the form

$$f(x) = a_n x^n + \dots + a_1 x_1 + a_0$$

where each $a_i \in F$ and $n \ge 0$.

- The element a_i is called the *coefficient* of x^i in f(x).
- The largest integer m which $a_m \neq 0$ is called the *degree* of f(x), denoted $\deg(f(x))$.
- The element a_m for $m = \deg(f(x))$ is called the *leading coefficient* of f(x).
- If $f(x) = a_0$ (a constant polynomial) and $a_0 \neq 0$, then $\deg(f(x))$ is 0.

- If all the coefficients of f(x) are 0, then f(x) is called the zero polynomial, and $\deg(f(x)) = -\infty$.
- The polynomial f(x) is said to be *monic* if the leading coefficient is 1.

Now we will define addition and multiplication of polynomials. For technical convenience, we will write polynomials as an infinite sum $\sum_{i=0}^{\infty} a_i x^i$ with only finite number of the coefficients being non-zero.

Definition 9. Given the two polynomials

$$f(x) = \sum_{i=0}^{\infty} a_i x^i$$
 and $g(x) = \sum_{i=0}^{\infty} b_i x_i$,

the *addition* of f(x) and g(x) is defined as

$$f(x) + g(x) = \sum_{i=0}^{\infty} (a_i + b_i) x^i$$
,

and the *multiplication* of f(x) and g(x) is defined as

$$f(x) \cdot g(x) = \sum_{i=0}^{\infty} \left(\sum_{j=0}^{i} a_j b_{i-j} \right) x^i .$$

Definition 10. Let F be a field. The *polynomial ring* F[x] is the ring formed by the set of all polynomials in the indeterminate x having coefficient from F. The two operations are the polynomial addition and multiplication with coefficient arithmetic performed in the field F. \Box

The set $(R, +, \cdot, 0_R, 1_R)$ is called the *ring* when all the requirements of the Definition 1 except the 6-th item are satisfied. It is easy to see F[x] is a ring.

Note 11. The indeterminate x in a polynomial $f(x) \in F[x]$ is not an element of the field F. It is just a "formal" variable. So we must not treat f(x) as just a polynomial function. In particular, two polynomials are equal if and only if their coefficients are equal.

Example 12. Consider the polynomials $a(x) = x^2 + 3$, $b(x) = 4x^3 + 2x + 1$, c(x) = 5 = 0, d(x) = 1 + x, e(x) = x, and $f(x) = 4x^3$ in $\mathbb{Z}_5[x]$. Then We have

$$a(x) + b(x) = 4x^3 + x^2 + 2x + 4, \ a(x) \cdot b(x) = 4x^5 + 4x^3 + x^2 + x + 3, \ c(x) \cdot d(x) + e(x) \cdot f(x) = 4x^4 . \Box$$

Lemma 13. Let f(x) and g(x) be polynomials in F[x] for a field F. Then, we have

$$\begin{split} & \deg(f(x) + g(x)) \leq \max\left(\deg(f(x)), \deg(g(x))\right) \\ & \deg(f(x) \cdot g(x)) = \deg(f(x)) + \deg(g(x)) \end{split}$$

Theorem 14. If $f(x), h(x) \in F[x]$ with $h(x) \neq 0$, then polynomial division of f(x) by h(x) yields polynomial $q(x), r(x) \in F[x]$ such that

$$f(x) = q(x)h(x) + r(x), \text{ where } \deg(r(x)) < \deg(h(x)).$$

Moreover, q(x) and r(x) are unique.

Definition 15. Let f(x) and h(x) be polynomials in F[x] for a field F. h(x) divides f(x), and we write h(x)|f(x), if there exists a polynomial $q(x) \in F[x]$ such that f(x) = q(x)h(x).

Definition 16. For a polynomial $f(x) = a_n x^n + \cdots + a_1 x + a_0 \in F[x]$ and an element $\alpha \in F$, the *evaluation* of f(x) at α (or *substituting* α for x in f(x)) is $f(\alpha) = a_n \alpha^n + \cdots + a_1 \alpha + a_0$. Evaluation is also denoted by $f|_{x=a}$.

Note in the above definition that now we can do actual additions and multiplications in F, since $\alpha \in F$. We have of course $f(\alpha) \in F$. Also, we can see for any $f, g \in F[x], \alpha \in F$

$$(f+g)(\alpha) = f(\alpha) + g(\alpha)$$
 and $(f \cdot g)(\alpha) = f(\alpha) \cdot g(\alpha)$.

Definition 17. Let F be a field. An element $\alpha \in F$ is called a root of $f(x) \in F[x]$ if $f(\alpha) = 0$. \Box

Lemma 18. Let F be a field. For $f(x) \in F[x]$ and $\alpha \in F$, we have $f(x) = (x - \alpha)q(x) + f(\alpha)$. *Proof.* By Theorem 14, there exist unique polynomials q(x) and r(x) such that

$$f(x) = (x-\alpha)q(x) + r(x) \quad \text{with} \ \, \deg(r(x)) < \deg(x-a) = 1 \ .$$

So, r(x) must be a constant $\beta \in F$. We find the exact value of β by substituting α for x:

$$f(\alpha) = (\alpha - \alpha)q(\alpha) + \beta = 0 + \beta = \beta.$$

Corollary 19. Let F be a field. For $f(x) \in F[x]$ and $\alpha \in F$, $(x - \alpha)$ divides f(x), if and only if α is a *root* of f(x)

Example 20. Consider the polynomials $f_1(x) = x^6 + x^5 + x^3 + x^2 + x + 1$, $f_2(x) = x^5 + x^3 + x + 1$, and $h(x) = x^4 + x^3 + 1$ in $\mathbb{Z}_2[x]$. Then, the divisions yield

$$f_1(x) = x^2 h(x) + (x^3 + x + 1)$$
 and $f_2(x) = (x + 1)h(x)$.

Therefore, h(x) divides $f_2(x)$. The evaluations are: $f_1(0) = 1$, $f_1(1) = 0$, $f_2(0) = 1$, $f_2(1) = 0$. The element 1 is a root of f_1 and f_2 .

Theorem 21. Let f(x) be a nonzero polynomial in F[x] of degree d for a field F. Then f(x) has at most d distinct roots in F.

Proof. The proof proceeds by induction on d. The result is clearly true for d = 0. For d = 1, the polynomial will of the following form: ax + b = a(x + b/a), whose unique root is -b/a. Assume now that d > 1 and that this theorem holds for all polynomials of degree less than d. Consider a polynomial f(x) of degree d. Let α be a root (if there is no root, then we are done). Then we have

$$f(x) = (x - \alpha)q(x).$$

The degree of q(x) is d-1 (by Lemma 13). Suppose we have another root $\gamma \neq \alpha$. Then we have

$$f(\gamma) = (\alpha - \gamma)q(\gamma).$$

Since $(\alpha - \gamma) \neq 0$, $q(\gamma)$ must be 0 (by Lemma 7). This means all the roots of f other than α are also the roots of q. Because, by induction, q has at most d-1 distinct roots, f(x) has 1 + (d-1) = d distinct roots.