Algebra Review 2

1 Fields

A field is an extension of the concept of a group.

Definition 1. A field (F,+,-,0p,1p) is a set F' together with two binary operations (+, -) on F
such that the following conditions hold:

1. (F,+) is a commutative group, with identity the element 0.

2. The - operation is associative, i.e., a-(b-¢) = (a-b) - c for all a,b,c, € F.

3. The - operation is commutative, i.e., a-b = b-a for all a,b € F'.

4. The distributive law holds, i.e., a- (b+¢) = (a-b) + (a-c) for all a,b,c € F.
5. The element 1p is an identity for -, i.e., lp-a =a-1p =a for all a € F.

6. All nonzero element in F' have an inverse under -, i.e., for all @ € F,a # O, there exists an
element = € F such that a-a™' = 1p. O

Example 2. Q,R,C are fields, but Z is not a field. O

Example 3. The set Zjs is a field, under addition and multiplication modulo 5. To see this, we
already know that Zjs is a group under addition. Furthermore, we can easily check that requirements
2 — 5 are satisfied. The non-trivial one to check is condition 6, but this can be verified on a case-
by-case basis (i.e., the inverse of 2 is 3; 4 is its own inverse).

However, the set Zg is not a field, because the element 4 has no multiplicative inverse (try to
find one!). O

Theorem 4. 7, is a field under addition and multiplication modulo p if and only if p is prime. O

Remark 5. Some notations:

1. We sometimes abuse notation by writing 0 (resp. 1) instead of Op (resp. 1p) when explicit
from the context.

2. We sometimes use ab instead of a - b.

3. Subtraction a — b is defined by a + (—b), and division a/b by ab~! for b # 0p.
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4. We denote a + ---+ a by ma for m € N, and also @ -----a by a™. When we write —ma it

means m(—a), and a~™ means (a~1)™.

5. The value a® is defined to be 1x, and Oa to be Op. O



Lemma 6. Let I be a field. Then, for all « € F, and ny,ns € Z,
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Lemma 7. Let F be a field. If the elements a,b € F' are such that a # 0 and b # 0, then ab # 0.

Proof. Suppose towards contradiction that ab = 0. If a # 0 then a has inverse. So we have
0O=a'-0=a"'(ab)= (a7 a)b=1-b="b (contradiction).

By symmetry, if b # 0, then we have a = 0 (contradiction). O

When, however, F' is not a field the above lemma no more holds. Consider 4 - 3 in Zg.

1.1 Finding a multiplicative inverse in Z;

As we saw in class, we often need the inverse of a number in Z; . Therefore, it is essential to have
an efficient algorithm to find the inverse.

1

Algorithm 1 Calcuate a=" mod p.

Input: (a, p)
Output: a~' mod p
Compute x and y s.t.

ar +py=1.

This can be efficiently computed because ged(a,p) = 1. See Problem Set 1 for the details.
return x mod p.

2 Polynomials

Definition 8. If F is a field, then a polynomial in the indeterminate (or formal variable) = over
the field F' is an expression of the form

f(z) =apz™ + -+ a1z1 + ag
where each a; € F' and n > 0.

The element a; is called the coefficient of ' in f(x).

The largest integer m which a,, # 0 is called the degree of f(x), denoted deg(f(z)).

The element a,, for m = deg(f(z)) is called the leading coefficient of f(z).

- If f(x) = ap (a constant polynomial) and ag # 0, then deg(f(x)) is 0.



- If all the coefficients of f(z) are 0, then f(z) is called the zero polynomial, and deg(f(x)) =
—00.

- The polynomial f(z) is said to be monic if the leading coefficient is 1. O

Now we will define addition and multiplication of polynomials. For technical convenience, we
will write polynomials as an infinite sum >~ a;x* with only finite number of the coefficients being
non-zero.

Definition 9. Given the two polynomials
o ) oo
fla) =) aw' and g(z) =) b,
i=0 i=0

the addition of f(z) and g(x) is defined as

o)

f@) +g(z) = (ai+b)z’,

1=0

and the multiplication of f(z) and g(z) is defined as

f(x)-g(x) = Z Zajbi,j zt .

i=0 \ j=0
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Definition 10. Let F' be a field. The polynomial ring F|x] is the ring formed by the set of
all polynomials in the indeterminate z having coefficient from F'. The two operations are the
polynomial addition and multiplication with coefficient arithmetic performed in the field F. O

The set (R, +,-,0r,1g) is called the ring when all the requirements of the Definition 1 except
the 6-th item are satisfied. It is easy to see F'[z] is a ring.

Note 11. The indeterminate x in a polynomial f(x) € F|x| is not an element of the field F. It
is just a “formal” variable. So we must not treat f(z) as just a polynomial function. In particular,
two polynomials are equal if and only if their coefficients are equal.

Example 12. Consider the polynomials a(z) = 22 + 3, b(z) = 423 + 2x + 1, ¢(z) = 5 = 0,
d(z) =1+, e(x) = x, and f(z) = 423 in Zs[z]. Then We have

a(x)+b(x) = 423 + 2% 422 +4, a(z) -b(zx) = 42° + 423 + 22 + 2 +3, c(z)-d(z) +e(x)- f(x) = 42*.0

Lemma 13. Let f(z) and g(z) be polynomials in F[z] for a field F. Then, we have

deg(f(x) + g(x)) < max (deg(f(z)), deg(g(x)))
deg(f(z) - g(x)) = deg(f(x)) + deg(g(x))
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Theorem 14. If f(z),h(z) € Flz] with h(x) # 0, then polynomial division of f(z) by h(z) yields
polynomial ¢(z),r(z) € F[z] such that

f(z) =q(z)h(x) + r(x), where deg(r(x)) < deg(h(z)).
Moreover, ¢(z) and r(z) are unique. O

Definition 15. Let f(z) and h(x) be polynomials in F[z] for a field F. h(x) divides f(x), and
we write h(z)|f(x), if there exists a polynomial ¢(x) € F[x] such that f(z) = q(z)h(zx). O

Definition 16. For a polynomial f(z) = a,2” +---+a1x+ag € F|z] and an element o € F', the
evaluation of f(x) at a (or substituting « for x in f(x)) is f(a) = apa™+- - + a1+ ag. Evaluation
is also denoted by f|z—q- O

Note in the above definition that now we can do actual additions and multiplications in F', since
a € F. We have of course f(a) € F. Also, we can see for any f,g € Flz],a € F

(f+9)(a) = f(a) +g(a) and (f-g)(a) = f(a)-g(a) .

Definition 17. Let F be a field. An element o € F' is called a root of f(x) € F[z] if f(a) =0. O

Lemma 18. Let F be a field. For f(z) € F[z] and o € F, we have f(z) = (v — a)q(z) + f(a).
Proof. By Theorem 14, there exist unique polynomials ¢(x) and r(x) such that

f(z) = (z —a)q(x) +r(x) with deg(r(z)) < deg(z —a)=1.
So, r(x) must be a constant # € F'. We find the exact value of 3 by substituting « for x:
fla)=(a—a)g(a) + 8=0+5=p.
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Corollary 19. Let F be a field. For f(z) € Fz] and a € F, (x — «) divides f(x), if and only if
a is a root of f(x) O

Example 20. Consider the polynomials fi(z) = 25+ 25+ 23+ 22 + 2 +1, fo(z) = 2° + 23+ +1,
and h(x) = 2% + 23 + 1 in Zs[z]. Then, the divisions yield

fi(z) =2%h(z) + (2> +2+1) and fo(z) = (z + 1)h(z).

Therefore, h(z) divides fo(x). The evaluations are: f1(0) =1, f1(1) =0, f2(0) =1, fo(1) = 0. The
element 1 is a root of fi; and fo. O

Theorem 21. Let f(x) be a nonzero polynomial in F[z] of degree d for a field F. Then f(x) has
at most d distinct roots in F'.



Proof. The proof proceeds by induction on d. The result is clearly true for d = 0. For d = 1, the
polynomial will of the following form: ax + b = a(x + b/a), whose unique root is —b/a. Assume
now that d > 1 and that this theorem holds for all polynomials of degree less than d. Consider a
polynomial f(x) of degree d. Let a be a root (if there is no root, then we are done). Then we have

f(x) = (z = a)q().

The degree of ¢(z) is d — 1 (by Lemma 13). Suppose we have another root v # «. Then we have

f(v) = (@ =7)q(v).

Since (a—7) # 0, ¢(7y) must be 0 (by Lemma 7). This means all the roots of f other than « are also
the roots of gq. Because, by induction, ¢ has at most d — 1 distinct roots, f(z) has 1+ (d —1) =d
distinct roots. O



