
Algebra Review 2

1 Fields

A field is an extension of the concept of a group.

Definition 1. A field (F,+, ·, 0F , 1F ) is a set F together with two binary operations (+, ·) on F
such that the following conditions hold:

1. (F,+) is a commutative group, with identity the element 0F .

2. The · operation is associative, i.e., a · (b · c) = (a · b) · c for all a, b, c,∈ F .

3. The · operation is commutative, i.e., a · b = b · a for all a, b ∈ F .

4. The distributive law holds, i.e., a · (b + c) = (a · b) + (a · c) for all a, b, c ∈ F .

5. The element 1F is an identity for ·, i.e., 1F · a = a · 1F = a for all a ∈ F .

6. All nonzero element in F have an inverse under ·, i.e., for all a ∈ F, a 6= 0F , there exists an
element a−1 ∈ F such that a · a−1 = 1F . 2

Example 2. Q, R, C are fields, but Z is not a field. 2

Example 3. The set Z5 is a field, under addition and multiplication modulo 5. To see this, we
already know that Z5 is a group under addition. Furthermore, we can easily check that requirements
2 − 5 are satisfied. The non-trivial one to check is condition 6, but this can be verified on a case-
by-case basis (i.e., the inverse of 2 is 3; 4 is its own inverse).

However, the set Z6 is not a field, because the element 4 has no multiplicative inverse (try to
find one!). 2

Theorem 4. Zp is a field under addition and multiplication modulo p if and only if p is prime. 2

Remark 5. Some notations:

1. We sometimes abuse notation by writing 0 (resp. 1) instead of 0F (resp. 1F ) when explicit
from the context.

2. We sometimes use ab instead of a · b.

3. Subtraction a− b is defined by a + (−b), and division a/b by ab−1 for b 6= 0F .

4. We denote
m times︷ ︸︸ ︷

a + · · ·+ a by ma for m ∈ N, and also
m times︷ ︸︸ ︷

a · · · · · a by am. When we write −ma it
means m(−a), and a−m means (a−1)m.

5. The value a0 is defined to be 1F , and 0a to be 0F . 2
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Lemma 6. Let F be a field. Then, for all a ∈ F , and n1, n2 ∈ Z,

(an1)n2 = an1n2 an1an2 = an1+n2 .

2

Lemma 7. Let F be a field. If the elements a, b ∈ F are such that a 6= 0 and b 6= 0, then ab 6= 0.

Proof. Suppose towards contradiction that ab = 0. If a 6= 0 then a has inverse. So we have

0 = a−1 · 0 = a−1(ab) = (a−1 · a)b = 1 · b = b (contradiction).

By symmetry, if b 6= 0, then we have a = 0 (contradiction). 2

When, however, F is not a field the above lemma no more holds. Consider 4 · 3 in Z6.

1.1 Finding a multiplicative inverse in Z∗p
As we saw in class, we often need the inverse of a number in Z∗p . Therefore, it is essential to have
an efficient algorithm to find the inverse.

Algorithm 1 Calcuate a−1 mod p.
Input: (a, p)
Output: a−1 mod p

Compute x and y s.t.
ax + py = 1 .

This can be efficiently computed because gcd(a, p) = 1. See Problem Set 1 for the details.
return x mod p.

2 Polynomials

Definition 8. If F is a field, then a polynomial in the indeterminate (or formal variable) x over
the field F is an expression of the form

f(x) = anxn + · · ·+ a1x1 + a0

where each ai ∈ F and n ≥ 0.

- The element ai is called the coefficient of xi in f(x).

- The largest integer m which am 6= 0 is called the degree of f(x), denoted deg(f(x)).

- The element am for m = deg(f(x)) is called the leading coefficient of f(x).

- If f(x) = a0 (a constant polynomial) and a0 6= 0, then deg(f(x)) is 0.
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- If all the coefficients of f(x) are 0, then f(x) is called the zero polynomial, and deg(f(x)) =
−∞.

- The polynomial f(x) is said to be monic if the leading coefficient is 1. 2

Now we will define addition and multiplication of polynomials. For technical convenience, we
will write polynomials as an infinite sum

∑∞
i=0 aix

i with only finite number of the coefficients being
non-zero.

Definition 9. Given the two polynomials

f(x) =
∞∑
i=0

aix
i and g(x) =

∞∑
i=0

bixi ,

the addition of f(x) and g(x) is defined as

f(x) + g(x) =
∞∑
i=0

(ai + bi)xi ,

and the multiplication of f(x) and g(x) is defined as

f(x) · g(x) =
∞∑
i=0

 i∑
j=0

ajbi−j

 xi .

2

Definition 10. Let F be a field. The polynomial ring F [x] is the ring formed by the set of
all polynomials in the indeterminate x having coefficient from F . The two operations are the
polynomial addition and multiplication with coefficient arithmetic performed in the field F . 2

The set (R,+, ·, 0R, 1R) is called the ring when all the requirements of the Definition 1 except
the 6-th item are satisfied. It is easy to see F [x] is a ring.

Note 11. The indeterminate x in a polynomial f(x) ∈ F [x] is not an element of the field F . It
is just a “formal” variable. So we must not treat f(x) as just a polynomial function. In particular,
two polynomials are equal if and only if their coefficients are equal.

Example 12. Consider the polynomials a(x) = x2 + 3, b(x) = 4x3 + 2x + 1, c(x) = 5 = 0,
d(x) = 1 + x, e(x) = x, and f(x) = 4x3 in Z5[x]. Then We have

a(x)+ b(x) = 4x3 +x2 +2x+4, a(x) · b(x) = 4x5 +4x3 +x2 +x+3, c(x) ·d(x)+e(x) ·f(x) = 4x4.2

Lemma 13. Let f(x) and g(x) be polynomials in F [x] for a field F . Then, we have

deg(f(x) + g(x)) ≤ max (deg(f(x)), deg(g(x)))
deg(f(x) · g(x)) = deg(f(x)) + deg(g(x))
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Theorem 14. If f(x), h(x) ∈ F [x] with h(x) 6= 0, then polynomial division of f(x) by h(x) yields
polynomial q(x), r(x) ∈ F [x] such that

f(x) = q(x)h(x) + r(x), where deg(r(x)) < deg(h(x)).

Moreover, q(x) and r(x) are unique. 2

Definition 15. Let f(x) and h(x) be polynomials in F [x] for a field F . h(x) divides f(x), and
we write h(x)|f(x), if there exists a polynomial q(x) ∈ F [x] such that f(x) = q(x)h(x). 2

Definition 16. For a polynomial f(x) = anxn + · · ·+ a1x + a0 ∈ F [x] and an element α ∈ F , the
evaluation of f(x) at α (or substituting α for x in f(x)) is f(α) = anαn + · · ·+a1α+a0. Evaluation
is also denoted by f |x=a. 2

Note in the above definition that now we can do actual additions and multiplications in F , since
α ∈ F . We have of course f(α) ∈ F . Also, we can see for any f, g ∈ F [x], α ∈ F

(f + g)(α) = f(α) + g(α) and (f · g)(α) = f(α) · g(α) .

Definition 17. Let F be a field. An element α ∈ F is called a root of f(x) ∈ F [x] if f(α) = 0. 2

Lemma 18. Let F be a field. For f(x) ∈ F [x] and α ∈ F , we have f(x) = (x− α)q(x) + f(α).

Proof. By Theorem 14, there exist unique polynomials q(x) and r(x) such that

f(x) = (x− α)q(x) + r(x) with deg(r(x)) < deg(x− a) = 1 .

So, r(x) must be a constant β ∈ F . We find the exact value of β by substituting α for x:

f(α) = (α− α)q(α) + β = 0 + β = β.

2

Corollary 19. Let F be a field. For f(x) ∈ F [x] and α ∈ F , (x− α) divides f(x), if and only if
α is a root of f(x) 2

Example 20. Consider the polynomials f1(x) = x6 +x5 +x3 +x2 +x+1, f2(x) = x5 +x3 +x+1,
and h(x) = x4 + x3 + 1 in Z2[x]. Then, the divisions yield

f1(x) = x2h(x) + (x3 + x + 1) and f2(x) = (x + 1)h(x).

Therefore, h(x) divides f2(x). The evaluations are: f1(0) = 1, f1(1) = 0, f2(0) = 1, f2(1) = 0. The
element 1 is a root of f1 and f2. 2

Theorem 21. Let f(x) be a nonzero polynomial in F [x] of degree d for a field F . Then f(x) has
at most d distinct roots in F .
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Proof. The proof proceeds by induction on d. The result is clearly true for d = 0. For d = 1, the
polynomial will of the following form: ax + b = a(x + b/a), whose unique root is −b/a. Assume
now that d > 1 and that this theorem holds for all polynomials of degree less than d. Consider a
polynomial f(x) of degree d. Let α be a root (if there is no root, then we are done). Then we have

f(x) = (x− α)q(x).

The degree of q(x) is d− 1 (by Lemma 13). Suppose we have another root γ 6= α. Then we have

f(γ) = (α− γ)q(γ).

Since (α−γ) 6= 0, q(γ) must be 0 (by Lemma 7). This means all the roots of f other than α are also
the roots of q. Because, by induction, q has at most d− 1 distinct roots, f(x) has 1 + (d− 1) = d
distinct roots. 2
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