
Algebra Review

1 Finite Groups

The study of algebra is motivated by a desire to abstract away from the familiar notions of arith-
metic, numbers, and algebra to develop a theory that is general and applies to different structures
which share similar properties. For example, we will study structures called groups and prove
general results about them that may be applied to the structures we are already familiar with, such
as the integers {0, 1, . . . , p−1} under modular arithmetic for p a prime. Texts in Algebra: Abstract
Algebra by Herstein, A First Course in Abstract Algebra by Fraleigh,

Definition 1 (Group). A group 〈G, ∗〉 is a set G, closed under a binary operation ∗, such that:

1. (associativity) for all a, b, c ∈ G, we have

(a ∗ b) ∗ c = a ∗ (b ∗ c);

2. (identity) there is an element e ∈ G such that for all x ∈ G,

e ∗ x = x ∗ e = x;

3. (inverse) for every a ∈ G, there is a element a′ ∈ G such that

a ∗ a′ = a′ ∗ a = e.

A group is abelian or commutative if for every a, b ∈ G, a ∗ b = b ∗ a.

Example 2 (non-finite). N+ (without zero) is not a group under addition–there is no identity
element. N including zero is still not a group under addition, since 3 has no additive inverse. Is
N a group under multiplication? The sets Q+ and R+, as well as Q∗, R∗, C∗. are commutative
groups under multiplication. The set Mm×n(R) of all m × n matrices under matrix addition is
a commutative group. The set Mn(R) of all n × n matrices under matrix multiplication is not a
group. The n×n matrix with all entries 0 has no inverse. The set GL(n, R) of all n×n invertible
matrices with matrix multiplication is a non-commutative group!

Example 3. The set GL(2, 3) of all 2× 2 invertible matrices over a field of 3 elements is a finite,
non-commutative group. Example of non-commutativity.

Example 4. For a prime p, Zp is a group under addition, and Z∗
p is a group under multiplication.

Verify that for p = 7, both Zp and Z∗
p are groups, and verify for general p a prime.

For Z∗
p associativity holds, and the identity is 1. Take any x ∈ Z∗

p. To compute the inverse,
note that gcd(p, x) = 1, and hence there exist integers x′ and b such that

x ∗ x′ + pb = 1.

Then x ∗ x′ − 1 = −pb, i.e. p|x ∗ x′ − 1 which implies x ∗ x′ ≡ 1 (mod p).
There are certain properties that it will be helpful to remember about groups. Let G be a group

with binary operation ∗, and a, b, c ∈ G. Then:
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1. the left and right cancellation laws hold in G: a ∗ b = a ∗ c implies b = c and b ∗ a = c ∗ a
implies b = c;

2. a ∗ x = b and y ∗ a = b have unique solutions in G;

3. any group only has one identity;

4. (ab)−1 = b−1a−1.

2 Subgroups, Cyclic Groups and Generators

We will sometimes abuse notation and refer to a group 〈G, ∗〉 as G when the operation is implied
or understood. We will also omit the operator between elements of the group, i.e. ab will be used
to denote a ∗ b. The inverse of a group element a will often be referred to as a−1. The exponent
over a group element denotes repeated group operation, so that a3 = aaa. Using this notation, we
may add exponents for group operations, i.e. a2 ∗ a3 = a5 and a2 ∗ a−3 = a−1 and so on.

Definition 5. A subset H of a group G is a subgroup of G, denoted H � G, if H is closed under
the binary operation of G and H with the induced operation from G is itself a group.

Thus Q+ is a subgroup of R+ under multiplication, and Z is a subgroup of R under addition,
but 〈Q+, ·〉 is not a subgroup of 〈R,+〉.

Definition 6. The order of a finite group G, denoted |G|, is the size of the set G.

Consider an element a of G. What if we would like to build a subgroup of G containing a? For
closure, we must include aa, aaa, etc. We also need the identity, and an inverse a−1 for a. Then
we also need a−1a−1a−1 and so on.

Definition 7. The set H = {an : n ∈ Z} with the induced operation of G is the smallest subgroup
of G containing a. We say that H is the cyclic subgroup of G generated by a, and is denoted 〈a〉.
We say that an element a of a group G generates G if 〈a〉 = G. A group is cyclic if G = 〈a〉 for
some a ∈ G, i.e. some element generates it.

Example 8. The groups Z and Zn under addition are cyclic.

Example 9. The group Z∗
p (for p a prime) under multiplication is cyclic. A generator of Z∗

p is
also called a primitive element mod p. Show this for p = 7.

Fact 10. Any cyclic group of order n is isomorphic to Zn.

Definition 11. If the the cyclic subgroup 〈a〉 is finite, then the order of a is the order |〈a〉| of this
cyclic subgroup. Otherwise, a is of infinite order.

If G is finite, cyclic, and a generates G, then the order of a ∈ G is the smallest positive integer n
such that an = e. To see this, note that if G is finite and cyclic, then aj = ak for some j, k ∈ Z with
j > k. Let n be the smallest positive integer such that an = e. Then 〈a〉 = {e, a1, a2, . . . , an−1} has
order n. Thus a has order n, the smallest n > 0 such that an = e.
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3 The Theorem of Lagrange

We are now going to prove an elegant and powerful theorem that has a very simple proof. We will
then look at some of its applications, such as the proof of Fermat’s little theorem.

Definition 12. Let H be a subgroup of a group G. The subset aH = {ah|h ∈ H} of G is the left
coset of H containing a, while the subset Ha = {ha|h ∈ H} is the right coset of H containing a.

Theorem 13 (Theorem of Lagrange). Let H be a subgroup of a finite group G. Then the order of
H is a divisor of the order of G.

Proof. We prove this in two steps. First, we show that G can be partitioned into left cosets of H.
Then we show that every left coset of H has size |H|. The theorem clearly follows.

To prove the first part, we show that every element g ∈ G can be placed in exactly one coset.
Since H � G, it must contain the identity of G, so we know that g is in the coset gH. Thus it
suffices to show that if g is in a coset aH then gH = aH. First observe that for any coset aH,
g ∈ aH ⇐⇒ a−1g ∈ H. Assuming g ∈ aH, we have that a−1g ∈ H. We need to show that for
any x ∈ G,

x ∈ aH ⇐⇒ x ∈ gH,

in other words,
a−1x ∈ H ⇐⇒ g−1x ∈ H.

We show the first direction; the opposite direction is similar. Using the fact that H is a group we
have a−1x ∈ H implies x−1a ∈ H, since every element of H has an inverse. Since H is closed and
a−1g ∈ H, we then have x−1aa−1g = x−1g is in H as well. Finally the inverse of this is in H, so
g−1x ∈ H.

Now it remains to show that every coset of H contains |H| elements. To see this, for any coset
aH, consider the map φ : H → aH defined as φ(h) = ah. By definition the mapping is onto. Now
if φ(h1) = φ(h2) then ah1 = ah2 and h1 = h2, so the mapping is one-to-one as well. �

Now we can easily prove Fermat’s little theorem:

Theorem 14. If p is a prime, for any integer a relatively prime to p:

ap−1 ≡ 1 (mod p).

Proof. Consider Z∗
p which has order p − 1. By Lagrange’s theorem, the order of the cyclic group

generated by a must divide p − 1, i.e. if a has order m then there exists an integer k such that
mk = p− 1. Then amk = (am)k = 1k (mod p). �

Another easy consequence of Lagrange’s theorem is that every group of prime order is cyclic,
and furthermore that every element (except the identity) of such a group is a generator. To see
this, take any a 6= e ∈ G. Again, the order of a must divide p. Since a 6= e 〈a〉 contains at least
two elements, so the order of a must be p.

Example 15 (groups of prime order). Sophie Germain primes are primes p such that 2p+1 is also
prime. For example p = 5 is a Germain prime since 2p+1 = 11 is also a prime. The largest known
Germain prime is 48047305725 · 2172403 − 1, though it is conjectured that there are infinitely many
such primes. Anyways, recall that the set of quadratic residues in Z2p+1, H = {a2 : a ∈ Z2p+1},
has size (2p+1)−1

2 = p. One can verify that H forms a subgroup; since H has order p a prime, it is
cyclic.
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