
Facts Related to Paillier Encryption

Fact 1. For any a, b relatively prime, φ(ab) = φ(a)φ(b).

Proof. Let A be the set of positive integers less than and relatively prime to a, let B be the set
of positive integers less than and relatively prime to b, and let C be the set of positive integers
less than and relatively prime to ab. We show that the Chinese Remainder Theorem establishes a
bijection between the sets A×B and C; hence C must have cardinality |A||B| = φ(a)φ(b).

Consider the mapping f : C → A×B which takes xC ∈ C to pairs (xA, xB) = (xC (mod a), xC

(mod b)). Note that xC = αa + xA = βb + xB for some integers α, β. We first prove the fact that
(xC , ab) = 1 ⇐⇒ (xA, a) = 1 and (xB, b) = 1. If some k|xA and a, then k|xC = αa + xA and k|a.
To see the other direction, note that if (xC , ab) = k then either (xC , a) = k or (xC , b) = k. WLOG,
assume the former: we have that (xC , a) = (xA, a) = 1 (we proved this for Euclid’s algorithm).
Now we have that f is well-defined, and the Chinese Remainder Theorem gives that it is a bijection
since any pair (xA, xB) ∈ A×B corresponds to exactly one solution xC ∈ C. �

Fact 2. For any n = pq where p and q are primes, φ(n2) = n · φ(n) = n(p− 1)(q − 1).

Proof. By the fact above we have that φ(n2) = φ(p2q2) = φ(p2)φ(q2). Since p is prime, all p2

residues except the multiples of p are relatively prime to p2. Thus φ(p2) = p2 − p and similarly
φ(q2) = q2 − q. This gives that

φ(n2) = (p2 − p)(q2 − q) = p(p− 1)q(q − 1) = n(p− 1)(q − 1) = n · φ(n).

�

Fact 3. Let n = pq for primes p and q and let k ≡ v (mod n). Then (1+n)v ≡ (1+n)k (mod n2).

Proof. By assumption v = αn + k for some integer α. Then

(1 + n)v = (1 + n)αn+k = (1 + n)αn(1 + n)k,

and we only need to show that (1 + n)αn ≡ 1 (mod n2). Applying the binomial theorem gives that
(1 + n)αn = 1αn +

(
n
1

)
1αn−1n + . . . and it is easy to see that n2 divides all the terms except the

first, so (1 + n)αn ≡ 1 (mod n2). �

Fact 4. Let n = pq for primes p and q, let r1, r2 ∈ Z∗n, and let k = r1r2 (mod n). Then (r1r2)n ≡ kn

(mod n2).

Proof. By assumption, r1r2 = αn + k for some integer α. Thus

(r1r2)n = (k + αn)n =
n∑

i=0

(
n

i

)
kn−i · (αn)i.

Now n2 divides each term for i > 0 so (k + αn)n ≡ kn ≡ (mod n2). �
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