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Loss of biological diversity because of extinction is one of the most
pronounced changes to the global environment. For several de-
cades, researchers have tried to understand how changes in biodi-
versity might impact biomass production by examining how bio-
mass correlates with a number of biodiversity metrics (especially
the number of species and functional groups). This body of re-
search has focused on species with the implicit assumption that
they are independent entities. However, functional and ecological
similarities are shaped by patterns of common ancestry, such that
distantly related species might contribute more to production than
close relatives, perhaps by increasing niche breadth. Here, we
analyze 2 decades of experiments performed in grassland ecosys-
tems throughout the world and examine whether the evolutionary
relationships among the species comprising a community predict
how biodiversity impacts plant biomass production. We show that
the amount of phylogenetic diversity within communities ex-
plained significantly more variation in plant community biomass
than other measures of diversity, such as the number of species or
functional groups. Our results reveal how evolutionary history can
provide critical information for understanding, predicting, and
potentially ameliorating the effects of biodiversity loss and should
serve as an impetus for new biodiversity experiments.

community ecology ! ecosystem function ! phylogenetic diversity !
biodiversity experiments ! metaanalysis

The modern era has come to be defined as a period of rapid
environmental change. One of the most prominent changes

taking place globally is a reduction in the number of genes,
species, and functional groups of organisms that comprise the
biological diversity of natural and managed communities. Wide-
spread loss of biodiversity has prompted scientists from an
increasing number of disciplines to begin studying the social,
economic, and environmental impacts of diversity change (1–5).
For example, seminal experiments in the 1990s suggested that
species loss might reduce the amount of biomass produced by
plants (6–9), possibly translating to a loss of important ecological
services such as the ability of natural habitats to absorb CO2
from the atmosphere. These experiments stimulated 2 decades
of research detailing the functional role of plant diversity in
ecosystems. Recent summaries of this body of research have
confirmed that systems with fewer species generally produce less
biomass than those with more species (10–14).

However, why changes in the number of species cause eco-
systems to be less productive is still not entirely clear. Is it
because less diverse communities tend to be missing genes,
metabolic pathways, or traits that would otherwise allow a more
complete utilization of local conditions (4, 15)? To answer this
question would require that researchers quantify the biological
traits that drive resource use and biomass production. However,
because a multitude of traits are potentially associated with the
ecological differences among species that drive patterns of
resource use, knowing the evolutionary relationships of the
members of a community can serve to quantify patterns of trait
diversity (16).

Here, we present results from a formal metaanalysis of
experiments performed in locations around the world to show
that phylogenetic diversity is the single best predictor of how
community biomass is altered by changes in species diversity.
Our dataset is derived from 29 experiments that manipulated the
number of species of terrestrial angiosperms in experimental
plots, pots, or garden beds in fields or greenhouses and then
measured the impacts of plant species number on the production
of plant biomass [for a summary of studies used, see supporting
information (SI) Table S1]. For each of the experimental units
that contained more than one species for which constituent
monocultures were measured, we standardized the diversity
‘‘effect size’’ of the biomass produced in a polyculture to the
mean of the constituent species in monoculture, as the log
response ratio (LRmean; see Materials and Methods). The pool of
species used includes 177 taxa that span all major functional
groups of grassland ecosystem plants (C3 and C4 graminoids,
legumes, etc.). We calculated not only the number of species in
a plot, but also the number of functional groups (for functional
group definitions, see Materials and Methods) and the amount of
phylogenetic diversity in a community (PDC) in a plot (Fig. 1).
PDC measures the magnitude of the divergences among species
that have evolved since a common ancestor, calculated as the
sum of phylogenetic branch lengths separating species on a
phylogeny. We estimated the phylogenetic relationships among
species by using Bayesian inference with Ultrametric rate
smoothing for 143 of the 177 species for which nucleotide
sequences from 4 genes (5.8s, atpb, matk, and rbcl) were available
in GenBank [National Center for Biotechnology Information
(www.ncbi.nlm.nih.gov); for details, including support metrics,
and for comparisons with other phylogenetic methods, see SI
Text and Figs. S1 and S2]. We were able to estimate PDC in 78%
of all experimental polycultures (i.e., 1,315 experimental units).

Results and Discussion
Similar to prior summaries (6, 12, 17), our analyses confirm that
both the number of species and the number of plant functional
groups in an experiment are significant predictors of plant
biomass production (Table 1, Model A, and Fig. 2 A and B). The
finding of our analysis is that phylogenetic diversity is also a
highly significant predictor of biomass production (Table 1,
Model A, Fig. 2C). Given that we have data on the number of
plant species, the number of plant functional groups, and the
phylogenetic diversity in an experimental unit, it is possible to
ask which of these metrics of biological diversity best explains
variation in biomass production among experimental commu-
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nities. Such information would potentially be useful for conser-
vation and management where it is often beneficial to predict
how community composition affects ecologically important pro-
cesses. When we compared single-variable models that included
the different measures of diversity as explanatory variables, PDC
was a significantly better predictor of variation in plant biomass
than either the number of species or functional groups (Table 1,
Model A).

When productivity was modeled as a function of species
number (the form of diversity directly manipulated in these
studies), PDC, and their two-way interaction, we found that PDC
was not only a significant predictor of plant biomass, but that
there was a highly significant interaction between species num-
ber and PDC (Table 1, Model B). Thus, the impact of plant
species number on biomass in past experiments is at least
partially explained by the amount of phylogenetic diversity
represented in an experimental unit. Further, because PDC and
species number are positively correlated (Fig. 2D), we examined
the impacts of PDC on production within species number treat-
ments. We found that the effects of PDC on production were
most pronounced at lower numbers of species where studies
typically included many different combinations of species (2
species: F1,439 ! 4.813, P ! 0.029; 4 species: F1,277 ! 10.435, P !
0.001), whereas the impacts of PDC became less pronounced at
higher levels of diversity (6 species: F1,106 ! 0.026, P ! 0.873; 8
species: F1,90 ! 3.077, P ! 0.083), probably because researchers
tended to use far fewer combinations of species, resulting in less
variation in PDC.

The number of functional groups of plants was also signif-
icantly related to PDC among species within experimental units
(F1,1262 ! 1016.61, P " 0.0001, also see Fig. S3). This rela-
tionship raises the possibility that the explanatory value of PDC
might simply be a result of its correlation to the number of
functional groups. However, when we ran a mixed effects
model that included a hierarchical effect of the number of
functional groups used in an experiment and the effects PDC,
species number and the species number–PDC interaction, PDC
and the interaction were both significant predictors of plant
community biomass (Table 1, Model C). Thus, given that
controlling for the effect of the number of functional groups
does not diminish the productivity–PDC relationship, we con-
clude that existing definitions of functional groups are too
coarse and do not correspond well to true functional trait
differences in communities (also see ref. 18).

Although the Rpseudo
2 (see Materials and Methods) values from

the mixed effects models ranged from 0.181 to 0.211 (Table 1),
individual experiments were highly variable in the amount of
variation explained. The within-experiment R2 for the effect of
species number on biomass ranged from "0.001 to 0.62, and
ranged from 0.01 to 0.69 for PDC and 0.03 to 0.78 for the full
model, including species number, PDC, and their interaction.
Although there are strong overall effects of PDC and species
number on community biomass production, environmental or
experimental context seems to be a major factor determining the
magnitude of these effects within individual experiments. How-
ever, the explanatory power of PDC appeared unchanged even
after we accounted for the fact that a small number of species are

Crepis tectorum

Outgroups

Ranunculus acris
Ranunculus repens

Quercus alba
Quercus rubra

Bituminaria bituminosa
Anthyllis vulneraria

Amorpha apiculata
Amorpha fruticosa

Dalea pulchra
Dalea purpurea

Lotus corniculatus
Lotus pedunculatus

Ornithopus compressus
Securigera varia

Astragalus canadensis
Onobrychis montana

Medicago sativa
Vicia hirsuta

Vicia tetrasperma
Vicia sativa

Lathyrus pratensis
Vicia cracca

Medicago lupulina
Trifolium subterraneum

Trifolium repens
Trifolium pratense

Trifolium hybridum

Symphyotrichum cordifolium
Centaurea alba
Tragopogon porrifolius

Lupinus perennis

Vicia villosa

Solidago gigantea
Conyza canadensis

Bellis perennis
Symphyotrichum foliaceum

Achillea millefolium
Symphyotrichum novae angliae

Senecio vulgaris
Leucanthemum vulgare

Lasthenia californica
Coreopsis palmata

Calendula officinalis

Microseris douglasii
Sonchus oleraceus

Crepis capillaris

Leontodon hispidus
Picris echioides

Taraxacum officinale

Hieracium lactucella

Hypochaeris radicata
Leontodon autumnalis

Scabiosa columbaria

ea
ec

ar
et

s
A

ea
ec

a b
a

F

15

12

48

6

2
2

4

A B

cirte
M ytisrevi

D

C1 C2

Community

N

F

PD

12

3 3

0.24 0.05

Branch Scale: 0.1 subs./site

Fig. 1. Summary of phylogenetic results. (A) Illustrated is the majority rule consensus from a Bayesian MCMC search, with several clades collapsed because of
space considerations. Triangles represent collapsed clades, with numbers of species per clade indicated. Two clades (Fabaceae and Asteraceae) representing
different functional groups are highlighted for illustrating different biodiversity metrics. Details of phylogenetic analyses and results, including support values,
are presented in the Materials and Methods and the SI Text. (B) Biodiversity can be measured in a number of ways, including the number of species in a community
(N), the number of trait-based functional groups (F), or the total phylogenetic diversity (PDC) representing the members of a community. PDC is calculated as the
sum of branch lengths leading to all members of a community, and two examples are shown using orange and blue branches. The number of species and
functional groups often give little information about the underlying phylogeny describing the evolutionary history of a group of species. In 2 hypothetical
communities, C1 and C2, the number of species is the same, but variation exists in the number of functional groups and the calculated PDC.
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widely used in experiments, and the prevalence of just a few
species could dictate the results. When we excluded species
found in #10% of experimental units (n ! 14 species) and reran
the analyses, none of our conclusions was altered (see Table S2).
The results were also robust to five commonly used methods used

to estimate phylogenies (see SI Text), and regardless of which
phylogeny was used to estimate PDC, phylogenetic diversity was
always a superior predictor of community biomass production
compared with the number of species or functional groups
included in diversity experiments, indicating that our conclusions

Table 1. Results of linear mixed effects models predicting the log response ratio of biomass production to three measures of
biodiversity

Models and
variables F df P value Rpseudo

2
Log

likelihood AIC
Akaike
weight

A: Single variable with
Exp as random effect
Spp 90.443 1,262 "0.0001 0.184 $1057.728 2,123.456 3.97 % 10$6

FG 65.469 1,262 "0.0001 0.181 $1067.760 2,143.521 1.74 % 10$10

PDC 112.31 1,262 "0.0001 0.206 $1045.291 2,098.582 &1.0
B: Multivariable with

Exp as random effect
Spp ' PDc ' Spp*PDc 0.210 $1049.218 2,110.436

Spp 0.449 1,260 0.5028
PDC 112.77 1,260 "0.0001
Spp*PDC 6.492 1,260 0.0110

C: Multivariable with
FG as random effect
nested in Exp

Spp ' PDC ' Spp*PDC 0.211 $1048.977 2,111.954
Spp 0.402 1,220 0.5261
PDC 98.154 1,220 "0.0001
Spp*PDC 5.905 1,220 0.0152

Spp is the number of species in an experimental unit; FG is the number of functional groups, and PDC is phylogenetic diversity calculated from the Bayesian
Inference with Ultrametric rate-smoothing phylogeny. Results Model A are for single-variable, fixed-effect models with experiment (Exp) included as a random
effect. Model B is a model with Spp and PDC, and their interaction is with the Exp random effect. Model C is the two-variable model with FG as a random effect
nested within Exp. Akaike weights can be interpreted as the probability that model i is the best fit to the observed data among a set of models (54).
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Fig. 2. The proportional difference between polyculture biomass and mean biomass of species monocultures [log ratio (mean)] is positively related to: the
number of species (A), the number of plant functional groups (B), and plot phylogenetic diversity based on Bayesian Inference with Ultrametric rate smoothing
(C). (D) Significant relationship between the number of species and phylogenetic diversity. The linear fits come from single-variable mixed-effects models (Table
1, Model A), and the dashed lines represent the case where polyculture biomass equals mean monoculture biomass.

17014 ! www.pnas.org"cgi"doi"10.1073"pnas.0805962105 Cadotte et al.

http://www.pnas.org/cgi/data/0805962105/DCSupplemental/Supplemental_PDF#nameddest=STXT
http://www.pnas.org/cgi/data/0805962105/DCSupplemental/Supplemental_PDF#nameddest=ST2


are not sensitive to minor differences in estimates of PDC caused
by using different phylogenetic methods (see SI Text).

Data and analyses presented here show that when controlled
experiments simulate changes in species diversity, changes in
community biomass are greater for groups of plant species that
have a distant common ancestor than for groups that share a
recent common ancestor. However, it is not yet clear why
increasing phylogenetic diversity results in increased plant com-
munity biomass (but see ref. 19). Some research suggests that
phylogenetic relatedness is an indicator of the ecological unique-
ness of species and a predictor of patterns of competitive
coexistence (20–24; but see ref. 25). For example, it has long
been assumed, and sometimes demonstrated, that within a
habitat type, the amount of ecological differentiation among
species is proportional to the amount of evolutionary and genetic
divergence (26). Ecological differentiation can result in reduced
resource use overlap between species, allowing species to stably
coexist together (e.g., niche partitioning). These ecologically
differentiated species could potentially complement each other
in their resource use by differentially capturing resources in
space and/or time. Greater niche and trait differences could, in
turn, translate to higher production of biomass (4, 15, 19, 21, 27).

If this interpretation is correct, then future work should be
able to map variation in niche differences (or plant traits that
confer such differences) onto our phylogenies and find strong
correspondence. However, until the time that such datasets exist,
we suggest that phylogenetic diversity may be a useful biodiver-
sity metric for predicting the ecological consequences of modern
diversity change and for scaling from organism physiology to
ecosystem processes (28). This tool may prove especially useful
in the world’s ecosystems where organisms are too large (e.g.,
rainforests), the systems too vast (e.g., plankton of the open
ocean and the taxa of the ocean floor), or population sizes
already too small (endangered species) to allow manipulative
biodiversity experiments.

Materials and Methods
Obtaining and Standardizing Data. We used recent reviews and metaanalyses
of biodiversity and ecosystem studies (4, 10, 12, 13) to identify 29 experiments
that have experimentally manipulated the diversity of 3 or more terrestrial
plant species in greenhouse or field settings. Most of these experiments were
performed by using seasonal systems where most above-ground biomass has
a yearly senescence phase. We obtained data on the species composition and
community-level biomass in each experimental pot or plots used in these 29
studies by using data presented in the original publication, online data
repositories, or directly from the principal investigators of the experiments
(refs. 7, 17, 29–37; see Table S1 and Fig. S4 for a summary of experiments). Our
dataset included a total of 177 species of angiosperms that are inhabitants of
ecosystems found throughout the world (see SI Text).

We used two complementary metrics to characterize diversity effects on
the production of biomass in each plot or pot (10, 12, 38). The first metric
characterizes the net diversity effect size. It is estimated as the log ratio:
LRmean ! ln(yip/ym! ), which gives the proportional difference between biomass
production (y) of a polyculture (p) and the mean biomass of those same species
in monoculture (m! ) in experiment i. The second metric gives the proportional
difference in biomass production (y) of a polyculture (p) and the biomass of
the maximum producing monoculture (m̂) in experiment i, LRmax ! ln(yip/ym̂).
This metric characterizes the amount of ‘‘transgressive overyielding’’ in a
community, which occurs when a diverse polyculture produces more biomass
than even its single most productive species. The main text of this article
focuses on the net diversity effect size, LRmean, whereas results for LRmax are
reported in the SI Text, Table S3, and Fig. S6.

Because these two metrics require information about the biomass that
species achieve individually in monoculture, a number of polyculture plots
could not be included in our analyses. This was true for two principal reasons.
First, some experiments did not include monocultures of all species in the
experimental design, which meant that only a subset of polycultures could be
included in our analyses (e.g., 7, 30, 36). Second, in a subset of experiments,
unintentional species were sown into plots (37). These additions created
2-species polycultures in place of the intended single-species monocultures. In

either case, adequate monoculture estimates could not be calculated for all
species in 310 plots, which were excluded from our analyses.

Constructing the Phylogeny. The 177 species recorded in these experiments
included mainly herbaceous angiosperms (both monocots and eudicots), with
experimenters explicitly focusing on species that mimic herbaceous grassland-
type communities. We pooled all 177 species together to construct a master
phylogeny. We used two methods to construct this phylogeny: (i) by using the
angiosperm supertree (39); and (ii) from molecular data where we estimated
a phylogeny from either (i) maximum likelihood or (ii) Bayesian inference
analyses, and for the final two phylogenies we further used Ultrametric rate
smoothing on the two molecular phylogenies.
Angiosperm supertree. We constructed this phylogeny by using the Davies et al.
(39) supertree and generated a phylogeny for our species list by using Phylo-
matic (40). We then used the BLADJ procedure in Phylocom 3.40 (41) to scale
branch lengths by using known node ages. For angiosperms, we used the
divergence times estimated by Wikstrom et al. (42). Therefore, our estimates
of phylogenetic distance from the supertree are in millions of years.
Molecular phylogenies. For each of the 177 species, we searched GenBank (43)
for 4 gene sequences commonly used in published angiosperm phylogenies:
atpb, matk, rbcl, and 5.8s. Of the 177 species, 110 had at least 1 gene
represented in GenBank. For a further 33 species, we used gene sequences for
a congeneric relative only if there were not any other congeners used in the
experimental plots. We also included 3 representatives of early diverging
lineages as outgroup species, including Amborella trichopoda, Magnolia
grandiflora, and Nymphaea odorata. For these 148 species we aligned se-
quences by using MUSCLE (44). We then selected best-fit models of nucleotide
substitution for each gene by using the Akaike Information Criterion, as
implemented in Modeltest and MrModeltest (45, 46).

Maximum likelihood phylogeny from gene sequences. Using the aligned
sequences and the estimated models of nucleotide substitution, we estimated
a maximum likelihood phylogeny by using the PHYML algorithm with a BIONJ
starting tree (47, 48). To assess nodal support on maximum likelihood phy-
logenies, we report Approximate Likelihood Ratio Test (aLRT) scores, which
have been shown to correlate with ML bootstrap scores but require much less
computational time (48).

Bayesian phylogeny from gene sequences. We conducted partitioned
Bayesian Inference, estimating the posterior probability distribution of all
possible phylogenies by using Metropolis Coupled Markov Chain Monte Carlo
(MCMCMC), as implemented in MrBayes (49, 50). Four independent Markov
Chains were run, each with 3 heated chains for 100 million generations. To
monitor possible convergence of the separate MCMC runs, we tracked the
standard deviation of split frequencies (SDSF), which was 0.022 at the end of
the analysis. We sampled the runs every 10,000 generations and used a burnin
of 70 million steps to generate a majority rule consensus tree that was used to
calculate PDC. The Bayesian phylogeny is shown in Fig. S1.

Maximum likelihood and Bayesian trees with Ultrametric rate smoothing.
We created two additional phylogenies that represent estimated divergence
times based on Ultrametric transformations of the maximum likelihood and
Bayesian phylogenetic analyses described above. We performed nonparamet-
ric rate smoothing (51) on both phylogenies.

Calculating Phylogenetic Diversity. We calculated the phylogenetic diversity
of plant species sown together in each experimental unit as total phylo-
genetic branch lengths connecting species together by using script pro-
vided by T. Jonathan Davies run in R 2.6.2 (R Development Core Team,
www.R-project.org). The results are provided in the SI Text.

Another PD metric, Faith’s PD (52) or phylogenetic diversity, is identical to
ours except that it calculates PD including the root node of a larger regional
phylogeny. Faith’s PD then is a measure of the proportion of evolutionary
history represented within a local community. Our measure, PDC, simply
calculates the phylogenetic distance connecting all members of a community
together without considering a larger regional phylogeny. We calculated PDC

for plots that had all resident species included in all phylogenies, to compare
results among the different phylogenetic methods; therefore, the species in-
cluded in the supertree phylogeny mirror those for the molecular phylogeny.

In the main text, we present only the results from one phylogenetic analysis
(Bayesian inference with Ultrametric rate smoothing; see SI Text for results
from other phylogenetic methods) because estimates of PDC depended very
little on the specific method of phylogenetic analysis. This finding is evidenced
by a high correlation of PDC values calculated with trees resulting from five
different phylogenetic methods (for all, r # 0.912, P " 0.01; see Fig. S2). We
chose to present the Bayesian tree in particular because Bayesian search
algorithms represent a more thorough exploration of parameter space than
maximum-likelihood methods, likely optimizing tree topology and branch
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lengths better. We also chose to use the Ultrametric version of the Bayesian
tree because present-day taxa are assumed to be equally divergent from the
shared ancestor.

Assigning Functional Groups. To assign species to plant functional groups we
used the classifications provided by individual researchers for their own
experiments (17, 34, 36, 37), which generally organized plants into nitrogen
fixers (Fabaceae), woody species, C3 graminoids, C4 graminoids, and nonni-
trogen-fixing forbs. To standardize the classification of graminoids, we used
a single source (53) to determine C3–C4 status. We then enumerated the
number of functional groups within experimental plots.

Statistical Analysis. Our analyses focused on comparing the relative impor-
tance of seven potential predictors of LRmean, including species number, the
number of plant functional groups, and the five PDC estimates from different
phylogenetic methods. For each predictor we ran single variable mixed effects
models of the general form:

yi ! "o # "1x1 # b i # $ i, [1]

where yi is the LRmean value in a plot in experiment i, "o is the intercept, "1 is
the coefficient associated with the fixed effect variable xi (either species
number, PDC, or functional group number), bi is the coefficient of the random
effect (experiment), and the error term, $i, is the remaining variation. Param-
eters in all mixed-effects models were estimated by using restricted likelihood
estimation (54). Individual models were compared by using log-likelihood
values, Akaike Information Criterion (AIC), and the Akaike weight, which
gives the likelihood that model i explains the most variation in an observed
data given a set of candidate models (55). We also calculated pseudo-R2 values
by regressing model-fitted response values to the observed response variable.
Twenty-one statistical outliers (of 1,315) were excluded from our analyses.
These were identified from Bonferroni 2-sided tests on Studentized residuals.

Species number, PDC, and their interaction were then combined into the
single mixed-effects model:

yi ! "o # " spx sp # "PDxPD # " spxPDx spxPD # b i # $ i. [2]

With this model we tested the assumption that the predictor variables were
fixed effects, as in a standard mixed-effects model, vs. whether heteroge-
neous results necessitate allowing " estimates to vary among experiments. To
test this assumption, we fit models with random effects for both the intercept
and the slope estimates for either species number or PDC nested within
experiment and compared these models with the corresponding one where

the intercept and slope were modeled as fixed effects (54). Fixed independent-
variable models (i.e., single ") were most parsimonious for both richness and
PDC (likelihood ratios: 2.995, P ! 0.2236; 4.091, P ! 0.1293, respectively).

Although we know that functional groups are predictors of LRmean, we also
know that functional groupings generally have a phylogenetic signal (28).
Also, from the data it is apparent that the number of functional groups in a
plot is correlated with the average PDC in that plot (see Fig. S3). Therefore,
because not all experiments explicitly manipulated the number of plant
functional groups, we included the number of functional groups, j, as a
random effect nested hierarchically within experiment. The model is:

yij ! "o # " spx sp # "PDxPD # " spxPDx spxPD # b i # b i,j # $ ij,

[3]

where yij is the LRmean value in a plot in experiment i with j functional groups,
"o is the intercept, "sp is the slope of the effect of species number, "PC is the
slope of the PDC effect, and "sp%PD is the slope of the effect of the interaction
between species number and PDC. bi is the coefficient of the random effect of
experiment i, bij is the coefficient of the random effect of j number of
functional groups nested with experiment i, and the error term, $i, is the
remaining variation. Because of the apparent colinearity between predictors,
we preformed a ridge regression (e.g., 56) on the full model and found no
significant change in parameter estimation with an estimated Hoerl–
Kennard–Baldwin parameter of 2.315.

Finally, species varied in the number of plots in which they occurred (see Fig.
S5), and commonly used species could have a disproportionate effect on the
results. Therefore, we created n data subsets corresponding to the n species
found in #10% of plots. In each data subset, all plots containing common
species ni were removed. We reran the statistical analyses and compared these
results with the full dataset to determine whether species ni had a dispropor-
tionate effect on the results (see SI Text). All analyses were run by using R 2.6.2
(R Development Core Team, www.R-project.org).
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