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The classical picture of middle ear (ME) transmission has the tympanic membrane (TM) as a piston

and the ME cavity as a vacuum. In reality, the TM moves in a complex multiphasic pattern and sub-

stantial pressure is radiated into the ME cavity by the motion of the TM. This study explores ME

transmission with a simple model, using a tube terminated with a plastic membrane. Membrane

motion was measured with a laser interferometer and pressure on both sides of the membrane with

micro-sensors that could be positioned close to the membrane without disturbance. A finite element

model of the system explored the experimental results. Both experimental and theoretical results

show resonances that are in some cases primarily acoustical or mechanical and sometimes produced

by coupled acousto-mechanics. The largest membrane motions were a result of the membrane’s

mechanical resonances. At these resonant frequencies, sound transmission through the system was

larger with the membrane in place than it was when the membrane was absent.
VC 2015 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4934515]
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I. INTRODUCTION

The tympanic membrane (TM) is a nearly transparent

membrane, 10 lm thick in gerbil, 100 lm thick in human,

that moves in a complex multiphasic motion in response to a

sound stimulus (e.g., Khanna and Tonndorf, 1972; Cheng

et al., 2013). Building on these observations, some current

models have the middle ear (TMþ ossicles) operating as a

series of mistuned resonances (Funnell and Laszlo, 1978;

Funnell et al., 1987; Fay et al., 2006). Another consideration

is that the TM’s movement in response to sound will produce

pressure within the middle ear (ME) cavity. In an abstract

analytical model, Rabbitt (1990) showed that the TM radi-

ated considerable sound pressure into the ME cavity, which

reflected and drove the TM from the ME side. We recently

explored these ideas with pressure measurements within the

ear canal (EC) and the ME cavity in gerbil (Bergevin and

Olson, 2014), and those observations reaffirmed the TM’s

multiphasic motion and confirmed the prediction that TM

motion would lead to significant pressure and a resultant

standing-wave pressure field within the ME cavity.

Two components of the ME system are particularly sig-

nificant to sound transmission and can be simplified to under-

stand aspects of the basic behavior. In an abstract limit, the

EC can be modeled as a tube and the TM as a membrane.

This study focused on these two aspects of the mechanics,

employing a simple system of a tube terminated with a flat

plastic membrane. The membrane dimensions were similar to

those of the gerbil TM the diameter of which is �4 mm with

�10 lm thickness (Kuypers et al., 2005). Our tube length of

43 mm was not a model of the gerbil EC, which is much

shorter. This length is similar to the EC length in human and

provided richer acoustics for our study. Thus our study is of

the acousto-mechanics of a system with components like

those of the ME. Pressure was measured both near and rela-

tively far from the membrane with a micro-pressure sensor

and membrane velocity was measured with a laser interferom-

eter. A finite element model (FEM) of the system was devel-

oped, and its predictions were used to interpret the

experimental results. Many previous studies have employed

pressure measurements within the EC and acoustic models

with various objectives: for example, to quantify ME trans-

mission, to understand transmission of otoacoustic emissions,

and to diagnose middle ear pathology (e.g., Keefe et al.,
1993; Ravicz et al., 2007; Puria and Allen, 1998; Stinson,

1985). The present model is more abstract than these, and its

strength lies in the precise matching between experimental

and modeling results. In addition to a tubeþmembrane sys-

tem, four related and even simpler systems were analyzed to

evaluate effects of the different sub-components.

II. METHODS

A. Experimental setup

The physical tube and membrane system was made by

gently stretching plastic wrap over the end of a glass tube of

inner diameter 5.8 mm and length 43 mm (Fig. 1). Household

plastic wrap is composed of low density polyethylene (LDPE)

the mechanical properties of which are: density 940 kg/m3 and

Young’s modulus within a range including the value we use,

250 MPa (Sakurada et al., 1981). The thickness of the
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membrane is 0.013 mm according to on-line data provided by

Dow, a manufacturer of household plastic wrap. This was con-

firmed by using the measured mass of a piece of plastic wrap

and the density of LDPE to calculate thickness. A thin film of

gold (�50 nm) was evaporated onto the membrane to make it

reflective for laser-interferometric motion measurements.

Pressure was measured with fiber-optic pressure sensors

of inner/outer diameter 75/125 lm that were constructed in

the lab (Olson, 1998). The sensor was held in a motorized

micromanipulator (Marzhauser) with 1 lm step size resolu-

tion. Pressure was measured along the axis of the tube with a

5 mm step size, starting at a location �10 mm from the inner

surface of the membrane. Pressure was also measured outside

the tube end (the end with the membrane), along the tube

axis. Outside the tube, the measurement spacing was rela-

tively dense, 90–100 lm close to the outer surface of the

membrane where pressure varied rapidly. Based on FEM

results, the effect of the sensor on the acoustic field was not

significant. The velocity of the membrane in the direction per-

pendicular to its surface was measured with a heterodyne in-

terferometer that was coupled to a translation and rotation

stage (Khanna et al., 1996). Stimulus generation and data ac-

quisition were performed with a Tucker Davis Technologies

System III and MATLAB. The stimulus pressure was provided

by a Radio Shack tweeter terminated by a speaker-tube. The

speaker-tube was positioned �1 cm from the membrane at an

angle of 45�. A reference pressure was measured halfway

between the sound source and the membrane with a probe-

tube microphone. The sound pressure level was �1 Pa at the

reference. Data analysis was performed via FFT using

MATLAB.

B. Numerical modeling

We built and analyzed several related FEMs. The main

model corresponds to the experiment that was performed on a

tube, terminated on one end with a flexible membrane [Figs.

2(a) and 3]. Considering its mechanical geometry, with a very

small thickness (13 lm) compared with the radius (2.9 mm),

the termination can be described as a membrane. This is rein-

forced by the small pre-stress that was applied when con-

structing the experimental system. Because of the small

displacement magnitude, the stresses and motions were linear.

In addition to the tube and membrane, four related

systems were analyzed to evaluate effects of the different

sub-components of the total system. The tube was calculated

without the membrane in two configurations: both sides

open [open-open, Fig. 2(b)] and with the side corresponding

to the membrane closed [open-closed, Fig. 2(c)]. The mem-

brane alone was analyzed by modeling the membrane within

a baffle [baffle membrane, Fig. 2(d)]. This configuration was

also explored experimentally but with a different membrane

thickness in a previous report (Gonzalez-Herrera et al.,
2013). We also modeled the baffle without the membrane

[hole baffle, Fig. 2(e)] to better understand the behavior of

the membrane and baffle at a frequency for which the mem-

brane had a mechanical resonance.

Most of the numerical aspects of the models are common

to all of the configurations. The following description refers

to the main model (tube and membrane). The ANSYS pro-

gram was used to model and calculate the problem. The nu-

merical model comprised a solid domain corresponding to the

membrane and a fluid domain for the surrounding air. The

domains were in contact at the membrane faces where a

coupled fluid-structure problem was implemented. The tube

and the baffle were taken as perfectly rigid and with zero

thickness. The fluid was limited to the volume within a sphere

the surface of which was represented by a specific ANSYS

element, (FLUID130). The size of the sphere was taken as

7 cm in diameter for which reflections were effectively elimi-

nated. The sound source was represented as a cylinder with

dimensions equal to that of the tube that terminated the

speaker. Sound pressure was applied as a unitary load (1 Pa)

(Figs. 1 and 3) at an approximate distance of 1 cm and 45�,
corresponding to the actual experiment.

Due to its symmetry, only half the problem was mod-

eled and calculated with symmetry boundary conditions

applied on the midplane of the sphere. Details of the model

FIG. 1. Setup for pressure measurement.
FIG. 2. Problems solved by FEM: (a) tube-membrane, (b) open-open, (c)

open-closed, (d) baffle-membrane, and (e) hole-baffle.
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mesh are shown for the different geometries in Fig. 3. A

parametric geometric model was developed with the

ANSYS program and then meshed.

The fluid was represented with acoustic elements

(FLUID30). Fluid30 behaves according to the acoustic wave

equation assuming an inviscid fluid with uniform mean den-

sity and pressure. It is able to model the fluid medium and

the interaction with an interface in fluid/structure problems.

In this case, it takes into account the coupling of acoustic

pressure and structural motion at the interface. It has been

used in its tetrahedral form, with four nodes and linear shape

function. Each node has four degrees of freedom: transla-

tions in x, y, and z directions and pressure. Translational

degrees of freedom are only used at nodes on the interface,

reducing the computational cost. The elements have the

capability to include damping of sound-absorbing material at

the interface. The speed of sound was 343 m/s and air den-

sity was 1.21 kg/m3. The acoustic absorption coefficient for

the tube surface was 0.003 and for the membrane was 0.01.

These values were found by fitting model predictions with

experimental results. The maximum element size was estab-

lished to capture the wave effects over the frequency range

of interest. The size of the elements in the fluid domain was

limited to at most 1.7 mm in order that the wavelength of the

maximum frequency of 20 kHz (17.1 mm) was meshed with

at least 10 elements. The element size was smaller close to

the membrane. The minimum element size was constrained

by the size of the solid elements used to mesh the membrane

as will be detailed in the following text.

The membrane was represented by solid elements

(SOLID185). SOLID185 is a 3D structural element that can

be used in prism, tetrahedral, and pyramid forms. In its prism

form, it is defined by eight nodes with 3 degrees of freedom at

each node: translations in x, y, and z directions. In this particu-

lar work, it has been used with enhanced strain formulation

(as will be justified later), where the common isoparametric

formulation with linear shape function is complemented with

additional internal degrees of freedom to overcome the shear-

locking problem that is present in bending-dominated prob-

lems. In addition to the physical properties of the membrane

material (LDPE) described in the preceding text, the

Poisson’s ratio was taken as 0.49 and damping was included

via a material coefficient damping ratio, n¼ 0.001 (0.1%).

This parameter was initially estimated at a slightly higher

value and updated to this value based on the numerical

results.

The membrane geometry posed a difficulty. The thick-

ness dimension was much smaller than the diameter: the di-

ameter/thickness ratio was 446. Additionally, the

mechanical response is dominated by bending behavior that

is usually difficult to model with solid elements, which are

affected by the shear-locking problem of structural mechan-

ics calculations. To avoid a very fine mesh containing an

unacceptably large number of elements, hexahedral elements

with enhanced strain formulation (we call them “Hexa

ESF”) were used. This element introduces 13 internal

degrees of freedom to overcome shear-locking (Simo and

Rifai, 1990; Simo et al., 1993; Andelfinger and Ramm,

1993). The efficiency of this formulation was evaluated with

a mesh convergence study to establish the maximum element

size at the membrane that was acceptable to obtain valid

results. The membrane was meshed with an automatic rou-

tine controlled by a parameter corresponding to the maxi-

mum element length permitted (els). Finally the mesh

obtained was like that shown in Fig. 3. Due to the small

thickness of the membrane (th¼ 13 lm), the ratio els/th must

be limited to values below 10 to obtain valid results.

The convergence analysis was done based on a modal

analysis of several FE models of the membrane with the

same dimension and material but different element size. The

first, fourth, and ninth natural frequencies, corresponding to

the unimodal [classical membrane mode (0, 1)] and

“sombrero” [(0, 2), (0, 3)] shaped modes were considered to

evaluate the convergence. (On the top of Fig. 12 we show

the patterns of several of the natural modes.) These classical

circular-membrane modes are found in books on acoustics

and musical acoustics (e.g., Hall, 1993). The convergence

rate was different for the different modes. As expected, con-

vergence was reached with a larger mesh dimension at the

lower frequencies where the shape was simpler, and so there

was less bending. The target values were calculated with a

simple shell model. Results are plotted in Fig. 4 for three

different types of FE modeling, first the target result with

shell elements (“shell”) and then with hexahedral solid ele-

ments in one case with enhanced strain formulation (“Hexa

ESF”) and the other with a usual formulation (“Hexa”).

Only one layer of elements was used for the thickness in all

cases.

The convergence was studied in terms of the element

shape ratio (els/th) and in terms of the number of divisions of

the radius, (radius/els), and for the purposes of illustration,

the results of the second study are shown in Fig. 4. The con-

vergence of the shell model is the best and is good even with

a very low number of elements. However, this type of ele-

ment does not allow fluid-structure interaction coupling on

both sides of the membrane and cannot be used. Focusing on

FIG. 3. FEM tube and membrane problem and membrane mesh size detail.
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the hexahedral elements we can see that the convergence is

good with the Hexa ESF element and poor with the common

(Hexa) formulation. The common Hexa formulation case is

not acceptable from a computational cost point of view

because a very high number of elements would be necessary

to obtain the correct results (element length <100 divisions

of the radius). The use of Hexa ESF elements provides a

good balance between accuracy and element size. An ele-

ment size of 130 lm, which is 10 times the thickness and 22

divisions of the radius, was considered acceptable for this

work, which focused on the lower natural frequencies of the

membrane. (We will return to this when discussing Fig. 12.)

In summary, the membrane was meshed with a maximum

element size of 130 lm. Regarding the fluid elements, close

to the membrane the mesh size was 130 lm, and it gradually

increased to a maximum size of 1.7 mm far from the

membrane.

During the coupling of the plastic wrap to the tube, a

small tension was applied to the film to avoid wrinkles and

obtain a planar shape. Experimentally, the degree of pre-

straining was difficult to measure or estimate and, at the

same time, significant to the dynamic response of the mem-

brane. Thus this parameter was necessarily evaluated based

on the experimental results. In our numerical model, the pre-

strain was introduced as an additional load step in which the

perimeter of the circular membrane was subjected to an

imposed radial displacement urad. As a consequence, the

membrane acquired a strain field where the two principal

strains are e11¼ e22 in the plane of the membrane (and

e33¼�2e11). This homogeneous situation is ideal, and the

actual strain was not perfectly homogeneous. Nevertheless

the homogenous approximation was useful to understand

and interpret the results. The influence of the pre-strain (in

terms of e11, e22, or urad) on the dynamic response of the

membrane (in a vacuum) is illustrated in Fig. 5 where the

first six natural frequencies are plotted at different levels of

pre-strain. Pre-strain increases the stiffness of the system and

so shifted the natural frequencies upward. We determined

the value of the pre-strain parameter to use in the model

based on the value of the second natural mode of the experi-

mental results. The membrane’s first natural mode frequency

was not useful for this purpose because it was close to an

acoustic tube resonance and also because the first resonant

frequency of the membrane is a uniphasic motion, and the

fluid mass of the air shifts the resonant frequency downward

significantly from the theoretical value of a membrane in a

vacuum. Accepting that the rest of the mechanical parame-

ters of the model (material properties and dimensions) have

been estimated or measured with reasonable accuracy, pre-

strain was the only free parameter needed to obtain the cor-

responding second natural mode frequency. In our case,

frequency¼ 7.6 kHz (m2 in Table I), and the pre-strain is

found to be e11¼ 0.00275, which corresponds to a very small

radial displacement of urad¼ 8 lm.

FIG. 4. Mesh size convergence study.

Results from a standard hexagonal ele-

ment model (Hexa) and a model that

incorporates an enhanced strain formu-

lation (Hexa ESF) are compared with a

shell model, which provided target val-

ues. The calculation of natural frequen-

cies for modes 1, 4, and 9 with

different mesh sizes are used as refer-

ence for the study. In the figure the

convergence is studied in terms of the

ratio of the radius of the membrane to

the element length.

FIG. 5. The effect of membrane pre-

strain on the natural frequencies of the

membrane. The first six modes are

shown. The mode 2 curve was used

with experimental results to determine

the pre-strain value for the model.
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III. RESULTS

A. General description

Sound pressure is plotted in Figs. 6 and 7 for a general

overview of the response of the different systems. The vari-

able plotted is sound pressure in decibels where 0 dB corre-

sponds to the sound pressure at the sound source. A double

spatial and frequency domain plot is used. Spatial z axis corre-

sponds to the central axis of the tube [x¼ y¼ 0, see Fig. 2(a)].

When it is present, the membrane is placed at the coordinate

z¼ 0. The plot ranges from z¼�10 mm, which is in front of

the membrane and close to the speaker, to 7 mm outside the

far end of the tube (z¼ 50 mm). The numerical result for the

tube-membrane system is plotted in Fig. 6(a) and the corre-

sponding experimental result in Fig. 6(b). (Due to the risk of

breaking the membrane during the experiment, there is a gap

at the interior of the tube because sound pressure was only

measured up to 10 mm from the membrane.) Two key aspects

can be highlighted. On the one hand, peaks are present at cer-

tain frequencies in the area close to the membrane at �4, 7,

and 11 kHz. These correspond to mechanical resonances of

the membrane. The resonant frequencies corresponding to

these modes are the m1–m9 values in Table I. On the other

hand, inside the tube, acoustic resonances related to the tube

length are observed. These two different effects are present in

the same range of frequencies; their responses are coupled

and can be difficult to distinguish.

To better understand the behavior of the system, four

additional systems were studied numerically. These are the

models sketched in Fig. 2. In Fig. 7, the spatial distribution

of pressure along the axis is plotted for a range of frequen-

cies from 0 to 15 kHz. The scale is the same for all the fig-

ures and ranges from �80 to 10 dB. If we make a section of

these figures for a specific location (z) inside the tube, we

obtain a frequency response function, FRF [Fig. 8(a)].

Similarly, if we make a section for a specific frequency, we

see the sound pressure distribution along the axis inside and

outside the tube (Fig. 9).

The effect of the tube can be understood by considering

two limiting cases. In the limit that the membrane is stiff and

does not let the sound go through, the system can be consid-

ered as a tube with a closed end. In this case, sound pressure

within the tube enters it from the far, open end of the tube

[Figs. 2(c) and 7(c), open-closed tube]. On the other hand, in

the limit that the membrane transmits the sound freely, the

tube would behave as an open-ended tube [Figs. 2(b) and

7(a), open-open]. The actual behavior is between these two

situations, with additional structure due to the membrane’s

dynamics. The membrane response was also calculated with

the presence of a baffle without a tube [Figs. 2(d) and 7(d),

baffle membrane]. In this case, the membrane is excited on

one side, transmitting sound to the other. The case of the hole

in baffle without the membrane [Fig. 2(e)] was also calculated

in order to uncouple the influences of the hole and the mem-

brane. This result is plotted in Fig. 7(b) (hole baffle).

The main resonance frequencies of each separate system

are displayed in Table I. The membrane resonance frequen-

cies and mode shapes were calculated by means of a modal

analysis of a FEM of the membrane including the pre-strain

(pre-strain e11¼ e22¼ 0.00275). The sequence of mechanical

resonance frequencies are approximately as expected based

on the Bessel function analytical result for a membrane, also

shown in the Table (Hall, 1993). The tube resonance fre-

quencies were obtained with the classical expression in

terms of the sound-speed, c, and tube-length, L. For the

open-open case the tube resonant frequencies are fn¼ nc/2L
n¼ 1,…, corresponding to to1, to2,… in Table I and for the

open-closed case they are fn¼ c(2n� 1)/4L n¼ 1,…,

TABLE I. Resonance frequencies (in kHz) of membrane and tubes considered as separate systems and as combined system in final row. For the different sub-

systems (membrane, open-closed tube, and open-open tube), the resonance frequencies were affected slightly by the way in which they were calculated. For

the membrane, these are the shell and solid-element FEM with the analytical result for the frequency ratios of a circular membrane included for comparison

(to use that row multiply the ratio by the m1 value). For the tubes, the resonances were first calculated with the classical formulas relating to tube length, L,

and then including the effective length that accounts for pressure spreading outside the tube, where Leff¼Lþ 0.61r where r is the radius, and finally with the

FEM. The m#, tc#, to#, and tm# labeling correspond to the membrane, the closed-open tube, the open-open tube and the tubeþmembrane systems.

System Resonant frequencies in kHz and their labels

Membrane m1 m2 m3 m4 m5 m6 m7 m8 m9

Shell model 4.7 7.6 10.2 11 12.7 14 15.2 16.9 17.5

Solid element 4.7 7.6 10.4 11.4 13.3 14.6 16 17.8 18.5

Classical membrane mode (0,1) (1,1) (2,1) (0,2) (3,1) (1,2) (4,1) (2,2) (0,3)

Classical freq. ratio (m#/m1, unitless) 1 1.59 2.14 2.30 2.65 2.92 3.15 3.50 3.60

Tube open-closed tc1 tc2 tc3 tc4 tc5

Simple classical 2 6 10 14 18

Lþ 0.61r 1.9 5.7 9.6 13.4 17.2

FEM 1.9 5.8 9.7 13.6 17.5

Tube open-open to1 to2 to3 to4 to5

Simple classical 4 8 12 16 20

Lþ 0.61r 3.8 7.6 11.5 15.3 19.1

FEM 3.7 7.5 11.2 14.7 18.8

Tube 1 membrane tm1 tm2 tm3 tm4 tm5 tm6 tm7

FEM 1.6 4.2 6.7 9.8 11.4 14 18.1
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corresponding to tc1, tc2,… in Table I. These values were

not calculated with the “effective length” that takes into

account the pressure field extending from the open tube end,

and a correction using an effective length of Lþ 0.61r (r the

tube radius) introduces small downward shifts in the pre-

dicted tube resonance frequencies (also shown in Table I).

The length-corrected predictions of acoustic resonance fre-

quencies are in better accordance with the frequencies

obtained with the FEM. For simplicity in the discussion in

the following text, we refer to the whole number (uncor-

rected for effective length) frequencies (2, 4, 6 kHz…) as the

acoustic resonance frequencies of the tube.

An important feature of the tabulated resonant frequen-

cies is that many are very close, as in the case of m1 and to1.

In both the FEM theory and experiment of the tube-

membrane system, these nearby resonances combine. Going

back to the tube-membrane system of Figs. 7(e) and 7(f), we

observe how the total system behaves as a combination of

the simpler models. We can identify maximum responses at

different frequencies and these are tabulated in Table I (tm1,

tm2….). Those maxima are related to the sound pressure

gain inside the tube. Comparing Figs. 7(a), 7(c), and 7(e),

the first (tm1) and second (tm2) frequencies of Fig. 7(e) are

very similar to the first resonance of a closed/open and open/

open ended tube, respectively. The third and following fre-

quencies lay at intermediate positions between the simple

open/open and open/closed tubes in a more complex pattern.

This can be easily visualized in Fig. 8(a) where the FRF for

a position inside the tube is plotted (z¼ 11 mm from the

membrane). Numerical and experimental results for the

tube-membrane system agree reasonably well. Numerical

predictions for the simple systems are included in Fig. 8(a)

and reaffirm that the first and second peaks of the tube-

membrane system are close to the open-closed and open-

open model first peaks. The velocity at the center of the

membrane is plotted in Fig. 8(b). Comparing the membrane-

tube result with that of the baffle-membrane model, we see

that the second tube-membrane peak, in addition to being

close to the open-open acoustic resonance, is also nearly

coincident with the 11 kHz m4 resonance of the membrane.

The effect of the membrane-baffle, or hole-baffle [as

illustrated in Figs. 7(b) and 7(d)] is most significant very

close to the hole (within �2 mm) and at the membrane’s me-

chanical resonant frequencies. Responses at those frequen-

cies are explored in Figs. 9(d) and 9(f) and will be discussed

in the following text.

FIG. 6. (Color online) Pressure field

along the axis of the tube of the

tubeþmembrane system. (a) Numerical

results. (b) Experimental results. The

gap in (b) is the region just behind the

membrane in which pressure was not

measured.
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B. Representative frequency ranges

An effective way to understand the behavior of the sys-

tem is to inspect the response at specific frequencies where

particular aspects of the mechanics are dominant. To this

end, in Fig. 9, sound pressure along the z axis (x¼ y¼ 0) is

plotted at selected frequencies. Numerical results for the

tube-membrane and more basic systems and experimental

results for the tube-membrane are shown. The experimental

results are the gray solid lines with dots noting the measure-

ment locations within the tube; outside the tube the measure-

ment points were relatively dense and not indicated

individually. It is notable that in all frequency ranges, there

is good correspondence between experimental and numerical

tube-membrane results.

Range 0–1 kHz: This range of frequencies represents the

pseudo-static response of the system [Fig. 9(a), at 1 kHz]. The

tube-membrane response is very similar to the open-closed

response–—thus the pressure inside the tube is primarily due

to the sound entering from the open, back side of the tube.

There is a small displacement of the membrane proportional

to the sound pressure applied, but there is no pressure gain

due to any dynamic effect. Pressure drops across the mem-

brane and the closed tube are both �15 dB. In the case of the

baffle-membrane, the drop across the membrane is much

larger because there is no back route for the sound.

1.58 kHz [Fig. 9(b)]: At this frequency [corresponding to

the first peak in Fig. 8(a), tm1], the effect of a quarter-wave

acoustic resonance appears. The resonance frequency is lower

than the classical quarter-wave resonance frequency (2 kHz),

and it is shifted downward both by the movement of the mem-

brane (compared with the truly closed-ended tube) and also

because the effective length of the open tube is slightly longer

than the physical length (see Table I). The tube resonance pro-

duces 30–40 dB pressure gain at the membrane as measured

from the back side of the tube, but this pressure is not

FIG. 7. (Color online) (a)—(e)

Numerical results, pressure field along

the z axis indicated in the central

sketches (along the axis of the tube or

perpendicular to the baffle, passing

through the center of the hole). Several

different models are considered, as

indicated in the captions in the figure.

(f) Experimental results of the tube-

membrane experiment.
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transmitted by the membrane to the exterior (z< 0), where the

pressure in the tube-membrane condition is quite similar to

the pressure in the other systems despite the large differences

in pressures within the tube (z> 0) across systems. It is nota-

ble that because of the tube’s acoustic resonance, the sound

pressure within the tube of the tube-membrane system is

much larger than it is on the exterior side of the membrane,

close to the sound source.

3 kHz [Fig. 9(c)]: At this frequency, the effects of the

tube resonances tm1 and tm2 are observed in the sound pres-

sure gain within the tube. The frequency is not close to a

membrane mechanical resonance and the membrane has

only a small displacement. The pressure at the external side

of the membrane is not much affected by the internal pres-

sure–—as in the cases of Figs. 9(a) and 9(b), the external

pressure is quite similar across systems, while the internal

pressure is quite different.

4.24 kHz [Fig. 9(d)]: Two resonance effects are present

in the range of 4–4.5 kHz. This range is approaching the

membrane’s first mechanical resonant frequency, predicted

to occur at �4.7 kHz. The strong effect of this resonance is

shifted downward in frequency due to air mass adding to

the mass of the membrane, as will be clearly seen in Fig.

11. The open-open half-wave tube resonance at 4 kHz also

influences the response. The baffle-membrane and open-

open tube FRFs in Figs. 8(a) and 8(b) underscore these con-

tributions to the 4.24 kHz response observed in Fig. 9(d). It

is notable that the effects of the mechanicalþ acoustical

resonances are most prominent at a different frequency

(4.24 kHz) than either of the two resonances considered

separately. There is a maximum within the tube that is simi-

lar to the system with both open ends; this is attributable to

the open-open tube acoustical resonance. In addition, there

is a substantial pressure increase at locations within �2 mm

of the membrane, both internal and external to the tube.

This is due to the mechanical resonance of the membrane

(with surrounding air adding mass), and the resulting

membrane motion, which essentially becomes a pressure

source. This behavior of the mechanically resonant

membrane as a pressure source is particularly clear when

comparing the baffle-membrane and hole-baffle curves. The

baffle-membrane curve is displaced upward significantly

compared to the hole-baffle curve with a 3 dB increase

persisting to large z values–—thus the presence of the

membrane enhances the sound transmission through the

hole.

FIG. 8. (a) Pressure frequency response

function at one location along the axis

of the tube, 11 mm behind the mem-

brane (or behind the baffle hole).

Experimental and modeling results are

shown. (b) Corresponding velocity of

the membrane at the center of the

membrane.
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6.6 kHz [Fig. 9(e)]: At this frequency, several resonant

effects are present: open-closed tube (6 kHz), open-open

tube (8 kHz), and the second natural frequency of the mem-

brane (7.6 kHz). The resonance of the membrane it is not

apparent in this plot–—there is not an enhanced pressure

close to the membrane as in Fig. 11(d)–—because the mid-

dle of the membrane is a node in the second natural mode,

m2¼ (1,1) (see mode sketches at top of Fig. 12). Likely

because of the antisymmetric motion, the membrane does

not act as an effective pressure source and the sound trans-

mission of the baffle-hole system exceeds that of the baffle-

membrane system all along the z axis within the tube.

11.3 kHz [Fig. 9(f)] and higher frequencies: In this range

of frequency and higher, the membrane vibrates in a more

complex pattern. Inside the tube the corresponding resonant

effects can be observed. The membrane mode m4¼ (0, 2)

“sombrero” mechanical resonance is also apparent and is

particularly clear when considering the curve corresponding

to the baffle-membrane system. As in Fig. 9(d), the presence

of the membrane in the membrane-baffle case boosts sound

transmission compared to the baffle-hole case, here by an

even larger amount, �6.5 dB. Thus the membrane’s mechan-

ical resonances act as a mechano-acoustical filter; the system

operates as a relatively open gate for sound transmission at

some frequencies and a relatively closed gate at other

frequencies.

C. Mechanical impedance

In the final results section, we concentrate on the

tubeþmembrane system, and the paper will end with one

comparative figure from the baffleþmembrane system.

In Fig. 10, experimental and numerical pressure and ve-

locity variables for the center of the membrane are plotted.

Pressure outside and inside the tube (at 10 lm distance) and

the velocity at the center are shown in magnitude and phase.

Experimental results are also plotted when they are avail-

able. Figure 10 focused on the range of frequencies from 4

to 5 kHz, which we expected to contain the first mechanical

resonant mode of the membrane. The peak in the velocity

graph [Fig. 10(c)] shows the presence of a resonance, but

because the pressure adjacent to the membrane [Fig. 10(a)]

also exhibits a peak, it is not possible to use the velocity

peak to pinpoint the resonant frequency of the membrane

alone (its purely mechanical resonance). Pin, Pout, and ve-

locity all have different but similar peak frequencies.

FIG. 9. Pressure field along the axis of

the tube or the axis perpendicular to

the baffle. The different panels show

different frequencies of interest based

on previous results. The experimental

results are shown in the gray solid lines

with the measurement locations within

the tube noted with dots. Adjacent to

the membrane outside the tube the

measurement spacing was much

greater, resulting in a smoother curve

and individual points are not indicated.
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Pin and pout follow alternate trends below and above

the peaks. At 4 kHz, the membrane acts as a relatively stiff

barrier [see also the velocity plot of Fig. 10(c)]. Pressure is

higher outside than inside. As frequency increases and we

approach the peak frequency, the pressure increases on both

sides and the difference between them is reduced. When the

outside pressure (pout FEM) is at maximum, inside (pin

FEM) it keeps growing. As the frequency increases, the out-

side pressure drops more quickly than the inside pressure,

and has a local minimum at �4.4 kHz.

The impedance of the membrane alone, Z¼DP/veloc-

ity, was found using the pressure and velocity values at the

membrane center. First we used the FEM data to calculate

the pressure difference across the membrane (DP¼ pout -

pin, the complex difference). The result is shown in Fig.

10(a) (dotted line). Again a maximum appears basically

coincident with the maximum of the velocity. The imped-

ance is shown in Figs. 10(e) and 10(f). The magnitude is

trending downward gradually, and the phase is close to

�90�, so through this frequency range, the membrane alone

is stiffness dominated. It is the membraneþ airmass system

that gives rise to the pressure and velocity response peaks at

�4.2 kHz, and the ratio corresponding to the impedance of

the membrane alone is not peaked. To provide a reference

value for the properties used in this work, the specific acous-

tic impedance of air is Zair¼ 415 Pa/(m/s). The membrane-

alone impedance resonance is slightly higher than 5 kHz (as

will be shown in Fig. 11) and did not appear within the

4–5 kHz frequency range.

In Fig. 10 we showed pressure and velocity values at the

center of the membrane, and calculated Z based on these val-

ues. However, because our system is distributed, a better

understanding can be obtained if we study the spatial distri-

bution of Z. In Fig. 11, we extend the frequency range to 6

kHz and show the responses at the three locations on the

membrane indicated in the inset diagram. In Fig. 11, the res-

onant mechanical impedance of the membrane alone is appa-

rent. We had expected the first membrane resonance to occur

at �4.7 kHz (see Table I), but this was based on the theoreti-

cal resonance frequencies of a membrane and depended in

part on the pre-stress parameter. We see in Fig. 11 that when

considering the center of the membrane, the membrane-

alone resonance was shifted slightly higher than this predic-

tion. While Pout, Pin, and velocity are all smoothly and

gradually varying with frequency, with a single prominent

peak, pout and pin can become nearly equal in magnitude

and phase at a frequency that depends on the particular loca-

tion on the membrane. In such cases, the pressure difference

exhibits a sharp notch. The notch is particularly steep for the

center position at �5.3 kHz. Because this is a frequency well

above the peak in velocity, when the ratio is taken the

membrane-alone impedance has a steep minimum at this fre-

quency as well, and the phase undergoes the expected transi-

tion from �90� (stiffness dominated) to þ90� (mass

dominated) [Fig. 11(J)]. At the position closer to the sound

source, the impedance magnitude goes through a more grad-

ual minimum at 4.7 kHz, and at the same frequency, the

phase goes from �90� (stiffness dominated) to �270� (mass

dominated), but the direction of the transition is reversed,

which can be traced back to the specifics of the Pout, Pin

magnitudes and phases. At the position furthest from the

sound source, the pressure difference goes through a very

mild minimum accompanied by a mild phase variation. Thus

the concept of point mechanical impedance is only roughly

FIG. 10. FEM-calculated pressure and

velocity at/of the center of the mem-

brane in the membrane-tube system,

plotted versus frequency. Dashed lines

show experimental results when avail-

able. (a) and (b): Magnitude and phase

of inside and outside pressures and

pressure difference across the mem-

brane. (c) and (d): Membrane velocity.

(e) and (f): Membrane mechanical

impedance.
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applicable to this distributed system. Nevertheless, by exam-

ining the impedance at several locations and also the ele-

ments going into its calculation, the impedance values can

be understood.

Continuing in this vein, in Fig. 12(a), jZj is shown at

locations along the diameter of the membrane, for a

frequency range 0–20 kHz. Figure 12(a) is for the tube-

membrane system, and Fig. 12(b) for a baffle-membrane sys-

tem. For any specific frequency, we can evaluate the distri-

bution of Z along the diameter of the membrane. The

diagram in the left upper corner indicates the axis of mea-

surement with the colored crosses, and the positions along

the diameter of the colored crosses are mapped to the col-

ored horizontal lines in the main panels. Zair [�415 Pa/(m/s)]

serves as a useful reference value. There are frequencies for

which Z< Zair for nearly the entire diameter, and frequencies

for which Z is very low only in concentrated areas, but the

average Z across the diameter is still>Zair. Locating the fre-

quencies where Z<Zair for the entire diameter, it is apparent

that they occur at the mechanical resonance frequencies of

FIG. 11. Similar to Fig. 10 but three

locations on the membrane are shown

and the frequency range is extended.

FEM results (magnitude and phase) of

(a) and (b) pressure outside the mem-

brane, (c) and (d) pressure inside the

membrane, (e) and (f) pressure differ-

ence across the membrane, DP, (g) and

(h) velocity of the membrane, (i) and

(j) impedance of the membrane, found

as DP/velocity.
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the membrane. The mechanical resonant frequencies are

noted with the modal diagrams at the top and vertical gray

lines. The radially symmetric modes (m1, m4, m9) are easily

identified, while some of the modes (m3, m5, and m7) are

relatively difficult to identify due to their axial nodes and the

fact that only a single axis is illustrated in the figure.

We note that especially at the higher frequencies there is

a slight discrepancy between the membrane resonant fre-

quencies that emerge from Fig. 12, and the mode frequencies

from the shell model in Table I. The resonant frequencies

that are apparent in Fig. 12 are also tabulated in Table I in

the row labeled, “solid element.” The reason for the differ-

ence is numerical error. The natural frequencies shown in

the shell model row of Table I were obtained with a FEM

with shell elements with a reasonable mesh and small error.

In contrast, the model used to solve the mechano-acoustic

coupled problem was made with solid element as stated

when describing the FEM and discussing Fig. 4. The element

size selected was decided to simulate correct behavior for

the range of frequency including the first few modes without

excessive computational cost. That meant that at higher fre-

quencies a small error was expected and accepted (following

the trend shown in Fig. 6). This error produces a slightly

increased stiffness and so predicts slightly higher resonant

frequencies than the shell-element prediction. The differen-

ces in resonant frequencies found with solid elements, shells,

or using the classical theory can be found in Table I. The

small differences do not influence our findings significantly.

An important observation from Fig. 12(a) is that the

influence of the tube resonance disappears. This is very clear

at lower frequencies where the maximum observed at

1.5 kHz for velocity and pressure (Fig. 8) is not present. This

is as expected because the mechanical impedance has been

found using the pressures on the membrane and its

motion–—thus the membrane has been isolated, so the me-

chanical impedance is purely a property of the membrane.

To emphasize this last point, the impedance has been com-

puted for the case of the membrane with the baffle and

FIG. 12. (Color online) Impedance of

the membrane, DP/velocity, versus fre-

quency (horizontal axis) calculated

along the diameter (vertical axis). The

color code at the right gives the imped-

ance in units of Pa/(m/s). White areas

in the figure correspond to regions

where the impedance was >1000 Pa/

(m/s). The small circular diagram at

the top left of the figure shows the di-

ameter of the membrane along which

the (calculated) data are plotted (that

with the colored crosses), and the data

at the positions of the crosses are noted

by the horizontal colored lines in the

figure. The small circular diagrams

spanning the top of the figure show the

membrane’s mechanical modes. (The

colors of the circular diagram are for

illustration and not related to the color

key at the right.) (a) Tube-membrane

system (b) Baffle-membrane system.
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without the tube, Fig. 12(b). The result is similar in the pres-

ence of either the tube or the baffle. While individual imped-

ance values can be misleading, when the values spanning the

diameter are considered, the figure clearly illustrates the me-

chanical resonances of the membrane alone.

IV. DISCUSSION

A. Significance of results for middle ear transmission

The systems under study have similar components to the

middle ear system but were not arranged in the same

way–—in the middle ear, sound is delivered to the open end

of a tube (EC) and the membrane (TM) is at the far end with

the ME cavity behind. In our membrane-tube system, the

sound was delivered to the membrane with the tube behind.

The ME cavity was not included nor was the cochlear load.

Nevertheless, the size and mechanics of the membrane were

similar to that of the gerbil TM, which displays complex

motion suggesting mechanical resonances starting in the

kHz range (de La Rochefoucauld and Olson, 2010). The tube

was of a length like that of the human EC. Thus basic aspects

of the results are relevant to the ME system.

Several aspects of the results are of particular interest to

ME mechanics. The pressure on the far side of the membrane

commonly exceeded the pressure on the near, sound-source

side. This occurred both due to quarter or three-quarter wave

resonance [Figs. 9(b) and 9(e)] and due to mechanical reso-

nance of the membrane [Figs. 9(d) and 9(f)]. The latter case

corresponds to large membrane motion and considering this

result with respect to the ME system, large TM motion would

give rise to large MEC pressure. Intuitively, the presence of

large MEC acoustic pressure might be considered to be detri-

mental to TM motion drive because we would expect a large

external-internal pressure difference to be an effective drive.

Indeed, there is typically a substantial pressure drop across

the TM; in averaged measurements in gerbil, the internal

pressure was typically at least 10 dB down compared to the

external pressure (Fig. 3b of Bergevin and Olson, 2014).

However, in the same study, in individual ears, there were

frequency regions in which internal pressure exceeding exter-

nal pressure by several decibels. Based on the results from

current study, these regions are expected to correspond to rel-

atively large TM motion.

In recent experimental work (Bergevin and Olson,

2014), reflections within the ME cavity were explored to

probe theoretical predications from an abstract model in

which cavity reflections were shown to extend the bandwidth

of ME function (Rabbitt, 1990). Experimentally, standing

wave patterns were observed within the ME cavity, signify-

ing the presence of the predicted cavity reflections, but it

was not clear if those reflections enhanced ME function. A

FEM that includes the middle ear cavity in more anatomical

detail would be of interest to explore this question further.

The present study provides a good start for dealing with the

numerical details of such a model, for example, the use of

the hexahedral solid elements with enhanced strain formula-

tion to provide efficient meshing at the membrane.

The results of the present study underscore the inescap-

ability of acoustical and mechanical resonances in a system

with properties like the ME. This is supportive of ME mod-

els that include resonances and predict that as long as there

are many mistuned resonances, broad-band transmission of

sound energy to the cochlea will occur (Funnell and Laszlo,

1978; Funnell et al., 1987; Fay et al., 2006). Damping in the

membrane also helps produce broad-band transmission, by

merging nearby resonances (Funnell et al., 1987). Because

ME transmission is high-fidelity and with short delay

[�25 ls in gerbil (Olson, 1998)], there is not time for the

resonances to build up, and it is probably not correct to think

of these resonances as “useful” but rather as “unavoidable,”

and the presence of many mistuned resonances allows for

the persistent ringing of the individual resonances to cancel

out (Olson et al., 2015).

Our abstract model is missing the most important com-

ponent of the auditory system: the cochlea. The flow of

acoustic power through the middle ear to the cochlea has

been quantified through measurements of pressure and ve-

locity (e.g., Rosowski et al., 1986; Ravicz et al., 1992,

1996), and an impressive fraction of the acoustic power

available at the ear canal is absorbed by the cochlea. By

absorbing sound energy, the cochlea damps the ME system.

Although we are missing this fundamental component, our

model’s present components–—acoustic spaces and a flexi-

ble, complexly moving membrane–—are present in the ME,

and the behavior of our simple model has counterparts in the

experimental ME literature. In particular, the TM’s complex,

multi-phasic response to tonal stimuli, and its persistent ring-

ing to click stimuli have been measured experimentally, and

substantial pressure transmission through the TM at particu-

lar frequencies was recently documented. How the funneling

of sound energy to the cochlea occurs, given the dynamic

ME system it must navigate, remains to be understood, and

is informed by our model results.

B. Conclusion

A simple mechano-acoustical system of a tube and mem-

brane was studied via calculation on a numerical model. Only

with a properly informed model, in which the system parame-

ters are known, can we obtain accurate numerical data. This

has been done in this work, which was supported by a com-

plete set of experimental data, including both pressure and ve-

locity. Using the numerical model, pressure and velocity were

determined along a large spatial and frequency distribution.

By considering the ratio of pressure difference across the

membrane to velocity (the impedance), the mechanical

resonances of the membrane alone were observed. As

expected, the membrane-alone impedance was nearly inde-

pendent of the acoustic environment–—the pressure/velocity

calculation yielded results that were much the same whether

the tubeþmembrane or baffleþmembrane system was con-

sidered. Frequencies where impedance was small over most

of the diameter of the membrane coincided with the expected

mechanical resonances of the membrane. At frequencies

where the membrane impedance was low, the presence of the

membrane increased the pressure amplitude on both sides of

the membrane and decreased the pressure difference. Thus

the system operated as a relatively open gate for sound
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transmission at some frequencies, and a relatively closed gate

at other frequencies. While our tubeþmembrane model was

an extreme abstraction of the ME, the acousto-mechanical

relationships we emphasize apply to the actual ME system

and reinforce the significance of its dynamical properties.

ACKNOWLEDGMENTS

This work was supported by the Spanish Ministry of

Education, Culture, and Sport, the University of Malaga,

Spain, the NIDCD, and the Emil Capita Foundation. The

paper benefited greatly from the comments of the JASA

reviewers.

Andelfinger, U., and Ramm, E. (1993). “EAS-elements for two-

dimensional, three-dimensional, plate and shell structures and their

equivalence to HR-elements,” Int. J. Num. Methods Eng. 36,

1311–1337.

Bergevin, C., and Olson, E. S. (2014). “External and middle ear sound pres-

sure distribution and acoustic coupling to the tympanic membrane,”

J. Acoust. Soc. Am. 135, 1294–1312.

Cheng, J. T., Hamade, M., Merchant, S. N., Rosowski, J. J., Harrington, E.,

and Furlong, C. (2013). “Wave motion on the surface of the human tym-

panic membrane: Holographic measurement and modeling analysis,”

J. Acoust. Soc. Am. 133, 918–937.

de La Rochefoucauld, O., and Olson, E. S. (2010). “A sum of simple and

complex motions on the eardrum and manubrium in gerbil,” Hear. Res.

263, 9–15.

Fay, J. P., Puria, S., and Steele, C. R. (2006). “The discordant eardrum,”

PNAS 103, 19743–19748.

Funnell, W. R. G., Decraemer, W. F., and Khanna, S. M. (1987). “On the

damped frequency response of a FEM of the cat eardrum,” J. Acoust. Soc.

Am. 81, 1851–1859.

Funnell, W. R. J., and Laszlo, C. A. (1978). “Modeling of the cat eardrum as

a thin shell using the finite element method,” J. Acoust. Soc. Am. 63,

1461–1467.

Gonzalez-Herrera, A., Wattamwar, K., Bergevin, C., and Olson, E. S.

(2013). “Sound transmission in a simple model of the ear canal and tym-

panic membrane,” Acoust. Soc. Am. 19, 030099.

Hall, D. E. (1993). Basic Acoustics (Krieger, Malagar, FL).

Keefe, D. H., Bulen, J. C., Arehart, K. C., and Burns, E. M. (1993). “Ear

canal impedance and reflection coefficient in human infants and adults,”

J. Acoust. Soc. Am. 94, 2617–2638.

Khanna, S., and Tonndorf, J. (1972). “Tympanic membrane vibrations in

cats studied by time-averaged holography,” J. Acoust. Soc. Am. 51,

1904–1920.

Khanna, S. M., Koester, C. J., Willemin, J. F., Dandliker, R., and

Rosskothen, H. (1996). “A noninvasive optical system for the study of the

function of inner ear in living animals,” SPIE 2732, 64–81.

Kuypers, L. C., Dirckx, J. J. J., Decraemer, W. F., and Timmermans, J. P.

(2005). “Thickness of the gerbil tympanic membrane measured with con-

focal microscopy,” Hear. Res. 209, 42–52.

Olson, E. S. (1998). “Observing middle and inner ear mechanics with

novel intracochlear pressure sensors,” J. Acoust. Soc. Am. 103,

3445–3463.

Olson, E. S., Kumar, N., Lei, J., and Bergevin, C. (2015). “The role of reso-

nance in middle ear transmission,” Abstracts of the 38th Midwinter
Research Meeting, Association for Research in Otolaryngology.

Puria, S., and Allen, J. B. (1998). “Measurements and model of the cat mid-

dle ear, evidence of tympanic membrane delay,” J. Acoust. Soc. Am. 104,

3463–3481.

Rabbitt, R. D. (1990). “A hierarchy of examples illustrating the acoustic

coupling of the eardrum,” J. Acoust. Soc. Am. 87, 2566–2582.

Ravicz, M., Rosowski, J., and Voigt, H. (1992). “Sound-power collection by

the auditory periphery of the Mongolian gerbil Meriones unguiculatus. I.

Middle ear input impedance,” J. Acoust. Soc. Am. 92, 157–177.

Ravicz, M., Rosowski, J., and Voigt, H. (1996). “Sound-power collection by

the auditory periphery of the Mongolian gerbil Meriones unguiculatus. II.

External-ear radiation impedance and power collection,” J. Acoust. Soc.

Am. 99, 3044–3063.

Ravicz, M. E., Olson, E. S., and Rosowski, J. J. (2007). “Sound pressure dis-

tribution and power flow within the gerbil ear canal form 100 to 80 kHz,”

J. Acoust. Soc. Am. 122, 2154–2173.

Rosowski, J. J., Carney, L. H., Lynch, T. J. III, and Peake, W. T. (1986).

“The effectiveness of external and middle ears in coupling acoustic power

into the cochlea,” in Peripheral Auditory Mechanisms, edited by J. B.

Allen, J. L. Hall, A. Hubbard, S. T. Neely, and A. Tubis (Springer, New

York), pp. 3–12.

Sakurada, I., Kaji, K., and Wadano, S. (1981). “Elastic moduli and structure

of low density polyethylene,” Colloid Polymer Sci. 259, 1208–1213.

Simo, J. C., Armero, F., and Taylor, R. L. (1993). “Improved versions of

assumed enhanced strain tri-linear elements for 3D finite deformation

problems,” Comput. Methods Appl. Mech. Eng. 110, 359–386.

Simo, J. C., and Rifai, M. S. (1990). “A class of mixed assumed strain meth-

ods and the method of incompatible modes,” Int. J. Num. Methods Eng.

29, 1595–1638.

Stinson, M. R. (1985). “The spatial distribution of sound pressure within

scaled replicas of the human ear canal,” J. Acoust. Soc. Am. 78, 1596–1602.

J. Acoust. Soc. Am. 138 (5), November 2015 Antonio Gonzalez-Herrera and Elizabeth S. Olson 2985

http://dx.doi.org/10.1002/nme.1620360805
http://dx.doi.org/10.1121/1.4864475
http://dx.doi.org/10.1121/1.4773263
http://dx.doi.org/10.1016/j.heares.2009.10.014
http://dx.doi.org/10.1073/pnas.0603898104
http://dx.doi.org/10.1121/1.394749
http://dx.doi.org/10.1121/1.394749
http://dx.doi.org/10.1121/1.381892
http://dx.doi.org/10.1121/1.4806409
http://dx.doi.org/10.1121/1.407347
http://dx.doi.org/10.1121/1.1913050
http://dx.doi.org/10.1117/12.231687
http://dx.doi.org/10.1016/j.heares.2005.06.003
http://dx.doi.org/10.1121/1.423083
http://dx.doi.org/10.1121/1.423930
http://dx.doi.org/10.1121/1.399050
http://dx.doi.org/10.1121/1.404280
http://dx.doi.org/10.1121/1.414793
http://dx.doi.org/10.1121/1.414793
http://dx.doi.org/10.1121/1.2769625
http://dx.doi.org/10.1007/BF01525016
http://dx.doi.org/10.1016/0045-7825(93)90215-J
http://dx.doi.org/10.1002/nme.1620290802
http://dx.doi.org/10.1121/1.392797

	s1
	s2
	s2A
	l
	n1
	s2B
	f1
	f2
	f3
	f4
	f5
	s3
	s3A
	t1
	f6
	s3B
	f7
	f8
	s3C
	f9
	f10
	f11
	f12
	s4
	s4A
	s4B
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26

