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Abstract: We developed a spectral domain optical coherence tomography (SDOCT) fiber 
optic probe for imaging and sub-nanometer displacement measurements inside the 
mammalian cochlea. The probe, 140 μm in diameter, can scan laterally up to 400 μm by 
means of a piezoelectric bender. Two different sampling rates are used, 10 kHz for high-
resolution B-scan imaging, and 100 kHz for displacement measurements in order to span the 
auditory frequency range of gerbil (~50 kHz). Once the cochlear structures are recognized, 
the scanning range is gradually decreased and ultimately stopped with the probe pointing at 
the selected angle to measure the simultaneous displacements of multiple structures inside the 
organ of Corti (OC). The displacement measurement is based on spectral domain phase 
microscopy. The displacement noise level depends on the A-scan signal of the structure 
within the OC and we have attained levels as low as ~0.02 nm in in vivo measurements. The 
system’s broadband infrared light source allows for an imaging depth of ~2.7 mm, and axial 
resolution of ~3 μm. In future development, the probe can be coupled with an electrode for 
time-locked voltage and displacement measurements in order to explore the electro-
mechanical feedback loop that is key to cochlear processing. Here, we describe the 
fabrication of the laterally-scanning optical probe, and demonstrate its functionality with in 
vivo experiments. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Spectral Domain Optical Coherence Tomography (SDOCT) is a low-coherence 
interferometric system developed mainly for imaging, and also capable of displacement 
measurements, using Spectral Domain Phase Microscopy (SDPM) [1]. SDOCT has a 
penetration depth of several millimeters, resulting from working in the infrared range, and the 
ability to simultaneously measure displacements at locations all along the axial-scan (A-scan). 
Its steep optical sectioning curve, based on its broadband light source, results in ~3 μm axial 
resolution [2]. This resolution is adequate for displacement measurements in the sensory 
tissue of the cochlea, whose different structures are separated by distances on the order of 10 
μm. Following pioneering work over the past decade [3–5], the data generated by OCT 
systems is having a substantial impact on the understanding of cochlear processing. Several 
groups, including ours, have performed SDOCT-based displacement measurements using a 
Thorlabs system (Telesto III), which is designed for imaging and can be tailored by the user 
for phase-based displacement measurements [6,7]. The light source of the Telesto III is 
comprised of two coupled superluminescent diodes, with a central wavelength of ~1300 nm 
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and a bandwidth of ~135 nm. The system’s axial resolution, ∆z, is 3.5 μm in air and in saline-
rich tissue like the cochlea, the index of refraction n ~1.3, and ∆z is 2.7 μm. 

To date, we have used the Telesto as a bulk-optics SDOCT system to measure 
displacements of the cochlea’s sensory tissue through the transparent round window 
membrane (RWM), at the base of the cochlea [2,6]. Other auditory groups have measured 
through the bony shell in the apical region of the cochlea where the bone is relatively thin [3]. 
The access locations are limited because the cochlea is surrounded by bone, and damage will 
modify the measured displacements, in particular by reducing the active outer-hair-cell-based 
process termed cochlear amplification. Going from the apex to the base the frequency of 
sound processing increases, in humans from ~20 to ~20000 Hz and in gerbils from ~100 to 
50000 Hz. The processing of sound is similar, but not identical, in the cochlear base and apex, 
and both regions are interesting scientifically. Our lab studies the basal cochlea, and the probe 
described here is being developed for measurements in that region, but could be used in the 
cochlear apex, as well as other applications. Here we demonstrate, through in vivo 
experiments, a fiber-optic-probe-based SDOCT system. In the current experiments we 
accessed the cochlea’s sensory tissue through the RW, with intact RWM. The SMF/GRIN 
probe has a diameter of 140 μm, and can also be inserted via a hole (cochleostomy) drilled in 
the bone of ~200 x 500 μm (500 μm dimension to allow scanning). For many years our lab 
has used basal cochleostomies of ~200 μm diameter with fiber optic probes of ~150 μm 
without damaging the active cochlear process, in measurements in gerbil [8]. The presence of 
the persistent stapedial artery makes larger holes difficult in the gerbil base, but 
cochleostomies of ~400 – 500 μm have been made in the base and apex of chinchilla and 
guinea pig cochleae for imaging and motion measurements [9]. 

We had two motivations for developing the probe system. Firstly, it will allow us to 
access locations that the bulk-optics system cannot access. Secondly, we plan in the future to 
attach an electrode to the side of the probe, in order to make simultaneous displacement and 
outer hair cell (OHC)-produced voltage measurements. A similar pressure-voltage dual 
sensor, built around a fiber-optic probe, was developed previously by our lab [8]. With our 
planned electrode/SD-OCT probe, the measurements of voltage and motion will be coincident 
in both time and space, and will allow us to explore the electro-mechanical feedback loop that 
results in cochlear amplification. 

SDOCT displacement measurements with a fiber optic probe have been performed 
previously. For example, optical coherence elastography determines tissue displacement 
produced by compressive loading [10–13], using probe-based SDOCT. Probe-based 
displacement measurements have not been done in the cochlea, although several groups have 
imaged the cochlea with fiber optic probes that scan by rotating around the long axis [14,15], 
and another group has developed a fiber optic probe for middle-ear imaging [16]. 

In this paper, we describe the development and initial use of an SDOCT probe with 
controllable lateral scanning up to 400 μm. This scanning range is suitable for identifying 
cochlear structures. Once the structures are identified, the scanning is stopped and the probe 
can be precisely pointed at a specific angle for subnanometer–scale displacement 
measurements of the structures along that angle’s A-scan. Two in vivo experiments were 
done to validate the probe’s usage. 

2. Probe system 

2.1 Probe design 

The probe is composed of a micro-GRIN fiber ~140 μm in diameter, with g = 5.9 mm−1, a 
length of 500 μm, fused to SMF-28 fiber. This basic component was ordered from WT&T Inc, 
Pierrefonds, Quebec Canada. A micrograph is shown in Fig. 1(A). A probe-measured A-scan 
of a water-immersed mirror is shown in Fig. 1(B). The beam profile was measured by the 
manufacturer with a BeamScan Optical profiler placed at the focal point (focal length = 250 
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complex A-scan gives the depth profile of the sample structures (Fig. 4(B)) [22]. A series of 
A-scans (~106 for 10s of acquisition) is taken at a fixed lateral position in rapid temporal 
succession, called the M-scan, to acquire data for the displacement measurement. 
Displacement, δ(t), of the sample is found by evaluating the phase variations Θ(t) of the 
complex A-scan at the location of the peak in the A-scan magnitude. Unwrapping is 
performed to undo phase jumps > π  at adjacent time points. δ(t) = Θ(t)/(2nk0), where ko = 
2π/λο, and λο is the center wavelength of the light source. The resulting waveform, δ(t), is then 
Fourier-transformed to the frequency domain in order to find the magnitude and phase of the 
sample. 

Cochlear measurements were done in vivo on Mongolian gerbils (Meriones unguiculatus). 
The animal experiments were approved by the Columbia University Institutional Animal Care 
and Use Committee and a full description of the surgical preparation and anesthetic regimen 
and acoustic setup can be found in other papers from our lab [23]. 

The current paper is focused on the probe and the in vivo animal experiments were done 
to demonstrate its utility; new physiological findings are not a component of this paper. The 
measurements here were done in vivo in passive cochleae, following an independent set of 
measurements. In order to compare the results with those of the bulk optics system these data 
were collected with the probe imaging the OC through the round window (Fig. 4). 

3. Results 

3.1 In vivo cochlea imaging and displacement measurements 

The round window, where the probe accessed the cochlea, is indicated with a dotted line in a 
cross-sectional sketch of the cochlea in Fig. 4(A). The lateral scanning was initially ranged at 
400 μm and the acquired B-scan (top image of Fig. 4(B)) can be compared to the sketch in 
Fig. 4(A) to identify the RWM, basilar membrane, organ of Corti, and Reissner’s membrane. 
The probe was positioned at the desired angle with DC voltage applied to the bender and 
scanned with the sawtooth voltage. The lateral scanning range was gradually decreased, and 
ultimately stopped to point the probe at the desired location (shown in Fig. 4(B) with the red-
dotted line, and its corresponding A-scan). An M-scan was then acquired for displacement 
measurements, while stimulating the ear canal with a set of tones as described in the next 
section. The first structure at depth location 300 μm is the RWM, followed by the organ of 
Corti complex structures at depth locations between 400 and 500 μm. Reissner’s membrane is 
at ~650 μm. 
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identification, and then be arrested to measure displacement along a selected A-scan. In 
addition, in the future an electrode can be coupled to the probe in order to simultaneously 
measure mechanical and electrical cochlear responses, to explore cochlear electromechanical 
processing [8]. 

Attaining a good SNR (a low displacement noise floor) for intracochlear measurements, 
especially deep inside the organ of Corti, is challenging because of the low reflectivity of the 
sensory tissue. For example, the outer hair cell reflectivity is only ~0.006% [30]. Our cochlear 
measurements in Fig. 5 showed a noise floor of ~0.02 nm, similar to those obtained by our 
and other groups’ vibrometry systems [25,26,31]. With this noise floor, displacement can be 
measured at low SPL in the basal region of the gerbil’s cochlea. The CP setup is used for 
displacement measurement to maximize the light to the sample, because with the nonCP 
setup, light is lost when traveling back and forth through a 75:25 fiber coupler. Additionally, 
by using the same optical path for both the sample and reference arms, systematic noise is 
reduced. On the other hand, the nonCP setup allows for adjustment of the reference beam 
level which is sometimes needed for real-time imaging. 

As discussed in section 2.3, when using SDPM, displacement is determined from the 
phase variation of the complex A-scan peaks over time, and the minimum detectable phase 
difference σ∆Φ in the complex A-scan sets the noise floor of the displacement measurements, 
δx. σ∆Φ is directly related to the SNR of the A-scan’s magnitude (SNRA = the ratio of a 
reflector (peak) intensity to the background intensity, and the A-scan magnitude can be used 
to find an approximation for the displacement noise floor. The expression is: 

1
2 10 0 2[ ]

4 4
x

n n SNRA

λ λ
δ σ φπ π π= =Δ  [32,33]. The predicted δx for the bright structure in the organ of 

Corti in the experiment of Fig. 5 is 12 nm based on the SNRA of the reflector’s A-scan 
magnitude. Taking the frequency domain FFT lowers the noise floor because the noise is 
distributed among all the frequency bins (524288). This lowers (improves) the noise floor by 

a factor of 
1

_ _ _number of frequency bins
, giving a theoretical δx of 0.0165 nm. This prediction is 

born out in the value of the experimental noise floor in Fig. 5(B). 

5. Conclusion 

We demonstrated a lateral scanning SDOCT probe, 140 μm in diameter, coupled to a 
Thorlabs Telesto SDOCT, for real-time laterally-scanned B-scans within the cochlea and 
displacement measurements with a noise floor of ~0.02 nm. Planned work includes coupling 
an electrode to the probe to explore the electro-mechanical feedback loop that results in 
cochlear amplification. In future work, the probe could be used to image and measure 
displacement in locations that can be accessed through a sub-mm-sized hole. 
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