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ABSTRACT The mechanism for passive cochlear tuning remains unsettled. Early models considered the organ of Corti complex
(OCC) as a succession of spring-mass resonators. Later, traveling wave models showed that passive tuning could arise through
the interaction of cochlear fluid mass and OCC stiffness without local resonators. However, including enough OCC mass to
produce local resonance enhanced the tuning by slowing and thereby growing the traveling wave as it approached its resonant
segment. To decide whether the OCC mass plays a role in tuning, the frequency variation of the wavenumber of the cochlear
traveling wave was measured (in vivo, passive cochleae) and compared to theoretical predictions. The experimental wavenumber
was found by taking the phase difference of basilar membrane motion between two longitudinally spaced locations and dividing by
the distance between them. The theoretical wavenumber was a solution of the dispersion relation of a three-dimensional cochlear
model with OCC mass and stiffness as the free parameters. The experimental data were only well fit by a model that included OCC
mass. However, as the measurement position moved from a best-frequency place of 40 to 12 kHz, the role of mass was diminished.
The notion of local resonance seems to only apply in the very high-frequency region of the cochlea.

INTRODUCTION

Introduction to experimental design

The plunging motion of the stapes launches a traveling wave

down the cochlea that peaks at frequency-dependent loca-

tions: low frequencies travel deep into the cochlea and peak

in the apex, high frequencies peak in the base. The physical

basis for the wave is the interaction between the mass of the

cochlear fluid and the stiffness of the organ of Corti complex

(OCC, the cellular tissue of the organ of Corti and the basilar

and tectorial membranes on either side). The stiffness of the

OCC is determined by its width, thickness, elasticity, and de-

gree of longitudinal coupling. From base to apex, there is a

decrease of OCC stiffness. The wave speed and therefore the

wavelength (l) decreases with decreasing stiffness. The re-

duced speed leads to growth of the wave due to conservation

of energy; eventually, however, damping causes the re-

sponse to plummet (1). Thus, the wavelength of the traveling

wave will become shorter as the wave approaches and then

passes the best-frequency (BF) place where it peaks (Fig.

1 A). The frequency tuning arises through the interaction of

the cochlear fluid mass, the stiffness of the OCC, fluid and/or

tissue viscosity, and possibly OCC mass. The anatomical

OCC mass can be translated to height (mocc ¼ rh) if we

assume that its density is approximately that of water (r ¼
1 g/cm3). From base to apex, the gerbil OCC height varies

from 125 mm to 200 mm (2), therefore we expect the OCC

mass to be ;0.015 g/cm2. However, because of its soft,

liquid character, the OCC might be mechanically indistin-

guishable from the surrounding fluid, in which case the

anatomical height would have diminished mechanical sig-

nificance. The role of OCC mass in passive tuning is un-

certain, and by studying the traveling wave pattern, we examine

this role. Because active tuning is built upon a substrate of

passive tuning, our conclusions will be important to cochlear

mechanics in general.

In three-dimensional (3D) cochlear computer models, tun-

ing can arise through the interaction of cochlear fluid mass and

OCC stiffness without local mass, supporting the concept

of nonresonant tuning. In their model, Steele and Taber (3,4)

treated the cochlear partition as a plate of viscoelastic

material, clamped at the sides. They referred to its mass as

‘‘BM mass’’, the basilar membrane mass; they considered the

soft cellular tissue of the organ of Corti to deform with fluid

pressure as though the cells were mechanically equivalent to

fluid. Therefore, only the BM mass was expected to behave

mechanically as a solid body. They explicitly studied the

effect of this BM mass on tuning, and found that it was of little

influence unless its value was unrealistically large (50 times

bigger than the mass due to BM height), and concluded that

BM mass could and should be neglected. Siebert (5) in a two-

dimensional model and Zwislocki (6) in a one-dimensional

model similarly concluded that OCC mass could be excluded

with no significant effect on the tuning. More recent models
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that include active cochlear mechanics (7,8) also exclude

significant OCC mass (Lim and Steele used a mass of 0.0015

g/cm2 at BF ¼ 10 kHz for their chinchilla model, which

corresponds to the BM height (9), and Wen used a mass of

0.003 g/cm2 at BF ¼ 2 kHz in her cat model).

However, other models (1,10) explicitly include mass and

the concept of local resonance: the basic mechanism for

passive tuning is similar to what was described above for the

nonresonant tuning, with the wave slowing and growing as

the stiffness decreases. The inclusion of OCC mass makes the

OCC’s effective-stiffness decrease with frequency and equal

to zero at the resonant frequency of a given position. The wave

(oscillating at the stimulus frequency) peaks at its best fre-

quency place and stops at the resonance place. In reality, due

to damping, the wave will not quite reach its resonant position.

The influence of the local resonance is to enhance the slowing

and growing of the wave. Lighthill (1) noted this was a case of

critical-layer absorption characterized by three points:

1. No wave energy at frequencies above the resonant fre-

quency can pass the point of resonance.

2. There is a decrease of the wavelength as the point of

resonance is approached, accompanied by a decrease of

the wave speed.

3. Therefore, the wave energy flow is retarded so much that

even light damping has enough time to dissipate that

energy: the resonance absorbs energy.

Lighthill used this concept to explain the steep apical cutoff

in amplitude and accompanying rapid phase variations of

passive cochlear tuning as the point of resonance is ap-

proached. The resonant frequency of a given location, fr,
depends on the local properties of the OCC (local stiffness, S,

and mass, mocc): 2pfr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S=mocc

p
: If the OCC mass is zero,

the resonant frequency is infinite. Our methodology allows

us to find the stiffness and the size of the OCC mass that is

playing a role in the mechanics, and thus to calculate fr. If fr is

less than twice the passive BF, we will say that the OCC

mass is significant, and local resonance plays a substantial

role in producing the tuning. A smaller mass (giving a reso-

nant frequency larger than two times the BF) will be used to

indicate that the tuning is not based on local resonance. The

factor two is an arbitrary number, but our experimental re-

sults will illustrate that it is a reasonable choice for sepa-

ration.

In summary, we are left with a class of models that argues

that OCC mass is not important to tuning, and another class

that argues that it is, through the mechanical effects of the

wave approaching (while not reaching) the local resonance

position. Despite the centrality of the issue, whether or not

OCC mass is critical to cochlear tuning remains an open

question of cochlear mechanics. We explore this question

through quantitative analysis of the wavenumber, k. The

wavenumber is the derivative of phase with distance. In a

FIGURE 1 (A) Cartoon of a cochlear travel-

ing wave illustrates the decrease of the wave-

length as the wave reaches its best frequency

place, XBF (position of maximum amplitude

response) and passes it. At each position the

wave is characterized by an amplitude and

phase. These are found by performing a FFT on

the motion response to pure tone stimuli, over a

range of frequencies, one position at a time.

The phase difference (Du) between two closely

spaced longitudinal positions, divided by the

distance between them (d), gives the wave-

number (kexp) at a position located in between

the two points. The wavenumber is directly

proportional to the inverse wavelength (1/l). In

practice, only a short longitudinal region is

probed; in our case, that was an approximate

millimeter length in the base of the ;11 mm

gerbil cochlea (31). (B) Theoretical effect of

local resonance. Illustrative amplitude and

phase response curves for pure tone stimuli at

two frequencies as a function of location are

shown in the top curves. To illustrate the influence of local resonance, the solid curves are drawn based on a scenario in which the local resonant frequency is

slightly greater than the best (peak) frequency. (In the alternative scenario, not shown, the local resonant frequency is much higher than the best frequency and

plays essentially no role in tuning—in the extreme case, when OCC mass is zero, the resonant frequency is infinity.) For illustration, the two stimulus

frequencies are chosen such that the response at the lower frequency, f1 (solid curve) peaks at the place that, if isolated, would resonate at frequency f2 (XBF1¼
XRF2). The response to the higher frequency stimulus, f2 (shaded curve), peaks at the more basal location (XBF2) but continues on, almost but not quite reaching

the position of its own resonant frequency (XRF2). Without damping, the response to frequency f2 would just reach XRF2, where its wavelength would be zero

and size infinitely large. In the presence of damping, when stimulating at frequency greater than or equal to f2 at the position XRF2, the response would be zero.

In experiments such a limiting behavior is not observed because the response amplitude and phase reach a plateau (dotted horizontal lines in upper figure and

vertical lines in lower) due to the emergence of an evanescent-fast response. The lower curve, oriented at 90�, shows the frequency response at just one location

(XBF1 ¼ XRF2), which is the actual format of the data.
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sinusoidal wave, k is proportional to the inverse wavelength,

k¼ 2p/l. The slowing of the traveling wave is reflected in its

decreasing wavelength (increasing k) (Fig. 1 A). Our goal is

to observe k’s variation with frequency, coupled to 3D

cochlear modeling predictions, to determine whether or not

the mechanical response relies upon the presence of sig-

nificant OCC mass. If the response peak is produced by local

resonance, the BF will be lower than, but fairly close to, the

local resonant frequency (less than a factor of two), as

indicated in the amplitude curves in Fig. 1 B (for now

ignoring the dotted lines). Through the BF region, k will

grow very rapidly with frequency, due to the pronounced

slowing of the wave—this is apparent in the changing phase

slope in Fig. 1 B. In contrast, if the response peak is not

produced by resonance, k will not grow as steeply in the

region of the BF as illustrated later in the article (Fig. 5).

Interferometric measurements were used to map the

motion of the basilar membrane under pure tone stimulation

in the basal region of the cochlea. The local wavenumber of

the traveling wave was found experimentally by taking the

difference in phase measured at two adjacent longitudinal

positions (separated by distances of tens of micrometers) and

dividing by the distance between the two points. The am-

plitude of cochlear tuning is known to vary greatly with

cochlear condition and/or stimulus level via the action of the

cochlear amplifier; in contrast, the phase is affected relatively

little. Therefore, the cochlear traveling wave and the wave-

number that describes its local wavelength are properties of

the passive mechanics. (Relatively small changes in phase

related to cochlear nonlinearity do occur (11).) The obser-

vation that the phase is little affected by cochlear condition

imposes strong constraints on cochlear models (10) and gives

us an experimental advantage, as we can do measurements

on cochleae that are passive or nearly passive (broad am-

plitude response at low sound pressure levels along with high

compound action potential, i.e., CAP, thresholds) and still

gather meaningful phase data. Our measured wavenumber

was compared to theoretical results obtained from a 3D

model developed by de Boer and van Bienema (12), and the

following question was asked: Does the measured wave-

number look more like the model prediction with or without

significant OCC mass?

Additional background: fast, slow, and
evanescent waves

The excitation of the cochlea by the stapes produces a dual-

mode pressure response composed of a pressure difference

across the organ of Corti summed with a compressive pres-

sure (sound wave) (13,14). Due to the long wavelengths of

sound compared to the cochlea, the compressive wave has

almost no spatial variation, constant amplitude along the

scalae, and because the compressibility of cochlear structures

is high (like that of water), there is negligible motion re-

sponse of the basilar membrane to the compressive pressure.

The compressive pressure is called a fast wave, because it

responds in phase with the stapes, with essentially no delay

(the speed of sound in water is ;1500 m/s). The pressure

difference mode causes the flexible organ of Corti complex

to respond elastically. This response launches the traveling

wave. In addition to the traveling wave, the pressure

difference is associated with nontraveling evanescent-waves

in the region of the round and oval windows (or an unnatural

window—for example, one drilled for observation (15)).

Like the compressive pressure, these are fast modes in that

they are in phase with the stapes motion. Unlike the com-

pressive pressure, they cause significant motion of cochlear

fluids and tissues. The evanescent-waves diminish rapidly in

space and are usually much smaller than the traveling wave,

but in the region of the windows they can be substantial, and

they are apparent in the data. Measuring at a fixed position

with increasing frequency, there comes a point where both

the amplitude and phase reach an evanescent-wave plateau.

In the schematic of Fig. 1 B, this is indicated in the dotted

lines that extend horizontally in the upper part of the figure

(vertically in the lower), thus truncating the detection of

the traveling wave response. The transition to a dominantly

evanescent-wave response occurs at a frequency ;1.4–2

times higher than the passive BF in our measurements. Be-

cause our analysis uses the phase variations of the traveling

wave, it is restricted to frequencies below the plateau.

EXPERIMENTAL METHODS

Animal preparation

Measurements were performed in gerbils, 50–70 g in mass. The care and use

of animals were approved by the Institutional Animal Care and Use Com-

mittee of Columbia University. The animal was first sedated with ketamine

(40 mg/kg) and then deeply anesthetized with sodium pentobarbital (initial

dose, 60 mg/kg; supplemental doses, 10 mg/kg when a toe pinch response

was elicited) and overdosed with anesthetic at the end of the experiment. The

body temperature was maintained at 37�C using an animal blanket. The

animal head was firmly attached to a head holder using dental cement. In

some cases the head holder was heated by running current through resistive

wire wrapped around the head holder. Surgery was performed to expose the

left cochlea. First, the pinna was removed. A tracheotomy was made to

maintain a clear airway. A small plastic tube of similar diameter as the ear

canal (EC) entrance was cemented to the ear canal to couple the speaker and

the microphone. The bulla was widely opened to view the cochlea. For the

very basal view of the BM, the round window membrane (RWM, which is

very transparent) was kept intact whereas for a more apical view of the first

turn, the round window opening was enlarged and a portion of the RWM

removed. For the latter preparation a glass coverslip closed the opening

(no seal was necessary). Its use helped to stabilize the level of liquid inside

the cochlea.

Experimental protocol

Basilar membrane vibration upon sound stimulation was measured at dif-

ferent longitudinal positions along the membrane. Experiments were per-

formed in vivo. The CAP response of the auditory nerve to tone pips was

measured with an electrode at the round window after opening the bulla and

again after several steps of the surgery. It was used to evaluate the hearing

capability of the animal, and to identify damage due to the invasive surgery
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(16). The cochlear condition was compromised due to the relatively wide

opening of the bulla and the enlarging of the round window, resulting in

passive (linear) or nearly passive preparations (30–40 dB increase in CAP

thresholds in the frequency region of interest at the end of the surgery). The in

vivo condition was nevertheless important to maintain the fluid level and

passive cochlear condition over several hours of recording (usually, the

surgery starts at 9 AM and the experiment ends at ;8 PM).

A RadioShack speaker (Fort Worth, TX) connected to the ear canal of the

gerbil was used to deliver pure tones of frequencies from 250 Hz to 50 kHz. A

probe tube attached to a B&K microphone (17) (Brüel & Kjær, Naerum,

Denmark) was inserted ;1 mm into the EC to perform the sound stimulus

calibration. When analyzing the EC data, a probe tube correction was used.

Basilar membrane vibrations were measured using a heterodyne laser inter-

ferometer coupled to a confocal microscope. The setup has been described

previously (18,19). The laser has been changed to a 25 mW semiconductor

laser, with wavelength like that of the previous HeNe laser (638 nm), but with

a more powerful beam. The phase of the interferometric measurements was

corrected for a 14 ms demodulation delay, determined experimentally (20).

The BM was viewed using either a 10 or 203 objective lens. The optical

sectioning capability of our system allows us to measure BM vibrations

without beads through the RWM. For the basal position, in which the BM was

viewed through the RWM, the RWM is a potential source of competing

signal. However, measurements performed at the same longitudinal position

with first the BM and then the RWM in focus showed that independent mea-

surements of each surface could be made (21,22). Measurements of stapes

vibrations were also performed with the laser beam focused on the posterior crus.

We show results from two animals, for which the view was such that

several longitudinal measurements could be made. Seven other animals

showed similar results. Because of the linear nature of the preparations, we

emphasize data collected at the relatively high stimulus level of 80 dB SPL.

BACKGROUND TO COCHLEAR THEORY

To determine whether the OCC mass plays a significant role

in cochlear frequency selectivity, we compared measure-

ments of the variation of wavenumber with frequency to

modeling predictions with and without OCC mass. Below

we motivate this analysis by reviewing the equations that

govern the motion of the OCC and lead to the dispersion

relation. The dispersion relation is the mathematical rela-

tionship between the local (at a particular longitudinal

location) wavenumber, the frequency, the cochlear dimen-

sions, and the local properties of the OCC—stiffness, mass,

and resistance.

The local equations

This work focuses on passive, linear cochlear mechanics and

no active forces are considered. We consider responses to

pure tone stimulation. The analysis models a cross section of

the organ of Corti complex. The pressures adjacent to the

OCC (PST in scala tympani and PSV in scala vestibuli) drive

the motion of the fluid on either side of the OCC and the local

pressure difference across the OCC, (PSV � PST), drives the

motion of the OCC (see Fig. 6 in (23) for an illustration of the

forces applied to the organ of Corti). In a symmetric cochlear

model, pressures and motions can be separated into

symmetric and antisymmetric modes (14). The symmetric

mode, in which the pressures in the scalae tympani and

vestibuli are equal, is the compressive fast pressure wave. As

noted in the Introduction, this does not drive significant OCC

motion and we do not consider it further. In the antisym-

metric mode, the pressures and the fluid disturbances above

and below the OCC are equal in magnitude but opposite in

sign, i.e., PST ¼ �PSV. This simplifies the problem to that of

a single fluid chamber with a flexible membrane (the OCC)

forming one boundary. Almost all cochlear models use this

approximation, including the one on which we base our

theoretical comparison. The antisymmetric mode actually

comprises several modes, both traveling (slow wave) and

nontraveling (evanescent-fast wave), as introduced above.

While many models are simplified to exclude the evanescent

modes, others (3,24) have noted that these modes are

necessary to match the boundary conditions in the region of

the windows. Our quantitative analysis below only includes

the traveling wave, but the evanescent-fast wave influences

our results, as will be discussed further below.

The OCC mechanics are described by

Zocc ¼ ivmocc 1
S

iv
1 R ¼ ðPSV � PSTÞ

vz

¼ �2PST

vz

: (1)

Zocc is the specific acoustic impedance of the OCC (pressure/

velocity), which can be expressed simply in terms of OCC

stiffness (S), mass (mocc), and resistance (R). In fact, we will

neglect the resistance for most of our analysis because it does

not have much effect on the phase unless it is very large. The

value vz is the vertical velocity of the OCC. To model the

stiffness of biological tissue as a single, frequency-indepen-

dent number is a simplification (25,26) and in the discussion

we will address whether and how a more realistic, frequency-

dependent stiffness would modify our findings. The units of

Zocc are dyne s/cm3. Note that because the driving load is

pressure rather than force, the units of mass, stiffness, and

resistance are normalized to the area of a BM segment (radial

width times a unit longitudinal distance of the BM). To relate

to our usual notions of mass and stiffness: the area-

normalized mass can be roughly thought of as the height

of the OCC that moves as a unit (that is not deformed by

penetrating fluid pressure) times its density (similar to that of

water); the area-normalized stiffness is the pressure divided

by the vertical OCC displacement. (The model stiffness is

related to previously measured point stiffness, N/m, via a

beam model in Appendix A.)

PST is the pressure just at the boundary of the BM that

drives the motion of the adjacent fluid in scala tympani.

Approximating the fluid forces as linear and inviscid (27),

we can write

PST ¼ razheq ¼ ivrvzheq ¼ ivvzmfluid=2; (2)

with mfluid ¼ 2rheq, the effective fluid mass per unit area (in

g/cm2). The value r is the fluid density and az is the

acceleration of the fluid at the OCC boundary (az ¼ ivvz).

The expression for heq, the equivalent height of the fluid

(given below), embodies the basic fluid physics. It is a
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function of the wavenumber and depends on the dimension-

ality of the model and the geometry of the cochlea (scalae

size, BM width). Equivalent height is sometimes identified

as Q (12). To provide some insight into heq, in Appendix B

we review how to find it in the relatively simpler one- and

two-dimensional cochlear models. (Including fluid viscosity

results in an imaginary component of heq, a minor modifi-

cation that we do not include.)

From Eqs. 1 and 2 we have the following relation at the

boundary of the BM ðz ¼ 0Þ:

ivmfluid ¼ �Zocc; so v
2
mfluid ¼ S� v

2
mocc 1 Riv: (3)

Equation 3 describes the relation between the frequency, the

fluid mass and the properties of the OCC cross section at a

position x. Including the mass of the organ of Corti (mocc)

will decrease the effective stiffness of the OCC from S (if

mocc ¼ 0) to S9 ¼ S – v2mocc. Wave speed increases with

stiffness; thus we can already see that the effect of mocc is to

decrease the wave speed. The value mfluid is a function of the

wavenumber of the traveling wave, and this functional depen-

dence will be used to recast Eq. 3 as a dispersion relation-

ship—the relationship between wavenumber and frequency.

Several authors have noted that 3D treatments are neces-

sary for detailed comparison to experimental results (1,3,10).

Therefore, to compare with accuracy our experimental results

to predictions, we will only consider a 3D model.

Fluid mass in a 3D model

To find the dispersion relation, we need to express mfluid in

terms of the wavenumber. For this, we use the 3D model

developed by de Boer (28). The model has the form of a

rectangular box. The structure contains two symmetric scalae

(h ¼ height, b ¼ width, and they are taken to be equal, h ¼
b). The OCC occupies a fraction (e) of the width of the scala.

The structure is considered to be infinitely long. The scalae

are filled with an inviscid, linear, and incompressible fluid.

The OCC is assumed to move linearly and to be described

completely by its specific acoustic impedance, Zocc. In view

of the linearity and pure tone stimulation, the system

response varies with time as eivt. The boundary conditions

are 1), at the outer walls, the normal component of the fluid

velocity is zero; 2), the cochlear windows are driven by an

equal and opposite velocity; 3), the pressure goes to zero at

longitudinal locations away from the peak; and 4), the

boundary condition at both radial edges of the BM are

hinged, meaning the second spatial derivative is zero there.

Details about how to find the analytic expression for Q are

in de Boer (28); here we simply give the result:

Q3DðkÞ ¼
e

k tanhðkhÞ1
p

2
+
N

n¼1

4e cosðnpeÞ
pð1�4n2e2Þ

sinðnpeÞ
ðnpeÞ

1

p tanhðphÞ

with p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2
1

4p
2
n

2

h
2

s
: (4)

The sum is performed over n, an integer that distinguishes

the various modes of the fluid waves. de Boer and van

Bienema (12) introduced an approximate form of Eq. 4 that

simplifies its analytical use:

Q3DðkÞ ¼
e

hk
2

1 1 b0k
2
h

2

1 1 eb0kh
: (5)

The value b0 is determined by best-fitting plots of Eq. 5 to

Eq. 4. Equation 5 is not symmetric for a sign inversion of k,

so it treats forward- and backward-going waves differently.

Therefore, de Boer later gave a new approximation using a

symmetrical analytic expression (29). However, for our

purposes the important thing is that the analytic expression

has the same shape as the expression it approximates for

positive k, and for that Eq. 5 is adequate, and simpler. (We

treat passive mechanics, for which any backward going wave

is expected to be insignificant.)

Dispersion relation

The dispersion relation is obtained by inserting Q3D(k) ¼
heq ¼ mfluid/2r from Eq. 5 into Eq. 3:

k
3
1 k

2 1

eb0h
1 i

2vr

ZoccðxÞ

� �
1 i

2vr

b0h
2
ZoccðxÞ

¼ 0: (6)

Equation 6 can be solved analytically. By substituting in

values for the mechanical elements comprising Zocc(x), the

variation of the local wavenumber k with frequency can be

studied. Because this is a cubic function for k, there are three

roots. One of the roots is real in the absence of OCC

damping, and positive. The other two roots have negative

real parts and imaginary components even in the absence of

OCC damping. The first root represents the forward traveling

wave solution. When damping is included in Zocc this root

has an imaginary part. The real part of k conveys the phase of

the response and the imaginary part conveys the decreasing

amplitude due to resistance. The real part of this theoretical k
was used to compare with the k derived via the experimental

phase, kexp.

We checked the validity of our experimental/theoretical

comparison by programming a two-dimensional (2D) co-

chlear computer model (5). Using this model we compared

the experimental wavenumber kexp (as calculated from the

difference in velocity phase at two adjacent longitudinal

locations, divided by the distance between these locations)

with the model’s actual k2D values (k2D ¼ �2ivr/Zocc; see

Appendix B). In this test case a departure between the

experimental and theoretical k values did appear, but only for

a very large value of OCC resistance. The departure arose

because with the inclusion of OCC resistance, the OCC

impedance has both real and imaginary parts, resulting in a

frequency-dependent phase-shift of velocity that appeared in

the experimental kexp but not in the theoretical k2D. This
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introduces a small additional (,90�) frequency-dependent

phase variation.

Parameter values

In Eq. 6, the parameters corresponding to the geometry of the

gerbil cochlea at our one turn measurement position (;2 mm

away from the round window) were determined using

Plassmann et al. (30). The dimensions of the scalae were

estimated as follows: the height was taken equal to the width

of each scala (h ¼ b ¼ 550 mm), and the BM occupied a

fraction e ¼ 0.3 of the total width, which corresponds to a

BM width of 165 mm, to model the basal BM. The value r is

the fluid density, taken as that of water, 1 g/cm3. The

parameter b0 was chosen for the best correspondence

between the analytical expression for Q3D(k) in Eq. 4 and

its approximation in Eq. 5: b0 ¼ 1.2. The match is shown in

Fig. 2, and one- and two-dimensional approximations for Q
(as derived in Appendix B) are included for comparison.

Finally, the only free parameters were the components of

Zocc(x): stiffness (S), mass (mocc), and damping (R). Stiffness

and mass can be recast as resonant frequency,

fr ¼
1

2p

ffiffiffiffiffiffiffiffi
S

mocc

r
:

As presented in the Introduction, fr (the frequency at which

the wave stops) must be greater than the BF (the frequency at

which the wave peaks); the question is how much greater. In

addition, as discussed in Background to Cochlear Theory,

because (experimentally) the traveling wave dominates the

evanescent wave up to the evanescent-wave plateau, and

(theoretically) the traveling wave stops when its frequency

reaches fr, fr must also be greater than the frequency where

the plateau just begins. If mocc is not important, fr will be

much higher than the BF—substantially greater than a factor

of two, an arbitrary but reasonable number that is based on

our experimental results. If mocc is important (if local

resonance has a significant role in slowing the wave), fr will

be fairly close to the BF—less than a factor of two. The plots

below illustrate this division.

EXPERIMENTAL VERSUS
THEORETICAL RESULTS

Results from two experiments are presented and compared to

theoretical results. These are in vivo passive-cochlea mea-

surements, at a stimulus level of 80 dB SPL.

Basilar membrane response at several nearby
longitudinal locations (Exp#18)

Fig. 3 illustrates the BM velocity at a basal region charac-

terized by a passive BF of 35–40 kHz viewed through the

intact RWM. Vibrations of the bony round window opening

were measured and defined our background level (;�60 dB

re 1 mm/s at all frequencies). As we moved the measurement

location from more basal to more apical (R#24 to R#27), the

BM velocity amplitude peaked at lower frequencies and the

phase shifted so that the rapidly downward sloping part started

at lower frequencies. The observed shift in BF is as expected

for the 315 mm longitudinal distance between R#27 and

R#24, based on the gerbil cochlear map (31). The longitudinal

distance between measurement positions was found as

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx21Dy21Dz2

p
; where the coordinates at each posi-

tion were read from our linear positioning system. (Note that

the plane of the BM was not perpendicular to our viewing/

measuring axis; there is a substantial change in z coordinate as

well as x and y coordinates between points, reported in the

figure caption. Thus, we measured the BM velocity with a

significant angle relative to the axis that is perpendicular to the

plane of the BM. This is not expected to influence the phase

measurement that is our emphasis.) The four amplitude and

phase responses show differences over the range 25–50 kHz

but overlap at low frequencies. This behavior was also

observed by others (32,33).

The total recording time for this experiment was 6 h. The

preparation needed to be stable in time to make the analysis

meaningful. Fig. 4 shows the responses measured at the same

position on the BM, but at different times: R#20 was

measured 35 min after and R#25 was measured 65 min after

R#14. Recording positions (x, y, and z) were adjusted to

maximize the carrier level (signal proportional to the amount

of light that reached the photodetector) at a position very

close to the reference point (R#14), and actually differed

from it by 11 and 19 mm. Amplitude responses for the three

curves were similar and the phase responses overlapped

precisely.

FIGURE 2 The analytical expression for the equivalent mass, Q3D, given

by Eq. 4 is compared to its approximation in Eq. 5. Parameters used were the

following: h ¼ b ¼ 550 mm; the BM occupied a fraction e ¼ 0.3 of the total

width, and b0¼ 1.2. The Q function for a 1D model, Q1D ¼ e=ðhk2Þ and a 2D

model, Q2D ¼ 1/k (short-wave approximation) are included for comparison.
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Experimental versus theoretical wavenumber
variations (Exp#18)

The wavenumber was found by taking the difference in the

phase (in radians) of two closely spaced locations and di-

viding by the longitudinal distance between these locations,

kexp ¼ Du/d. kexp is the wavenumber midway between the

two measurement positions. (Note that this definition of kexp

is valid only at frequencies where the traveling wave is

dominant, as will be discussed further below.) Fig. 5

compares experimental variation of the wavenumber as a

function of stimulus frequency obtained using R#24 and 25

(line with dots) to theoretical ones obtained by solving Eq. 6

for k. The influence of the parameters of the model (OCC

mass, stiffness, and resistance) on k is studied.

Fig. 5 A shows the variation of kexp. As expected, kexp

increased as the frequency approached the best frequency,

BF ;38 kHz (i.e., as the wave approached the best place).

The variations of kexp are noisy below 5 kHz; the phase

responses of both runs are similar and not smooth (but above

the noise floor), therefore small differences in phase are en-

hanced. With the 103 objective lens used during this ex-

periment a relatively high carrier level was obtained over a

distance of 610 mm along the z axis from the position where

the carrier level was maximum. Because the z-position of

one measurement point is chosen by the maximum carrier

level in combination with an in-focus view, a spread in

z-positioning of 610 mm can occur and introduces uncer-

tainty into the measured d. The error bars in Fig. 5 A illustrate

how the uncertainty in separation distance affects kexp. The

influence is small enough that it will not affect our conclusions.

In Fig. 5 B, the OCC impedance was considered as a

stiffness with and then without OCC mass. Including OCC

mass changed the shape of the curve. When the OCC was a

pure stiffness, k was slightly bigger than kexp below 38 kHz

and was much too small at high frequencies (dotted line).

Attempting to fit the data with a smaller stiffness value

(without mass), the too-big/too-small frequency transition

shifts up in frequency (dashed line), and the fit in the lower

frequency region is not at all close. To model the slow

growth in k at low frequencies followed by rapid growth at

high frequencies (above BF, indicated by the asterisk),

including substantial OCC mass was necessary (solid line).

Adding resistance did not influence k unless the OCC

resistance was so big that its impedance rivaled the im-

pedance of the effective stiffness S9¼ S� v2mocc (Fig. 5 C).

The effect of resistance was to reduce k; therefore including

resistance emphasized the need for mass to explain the

experimental data. For example, with R ¼ 1500 g/s cm2, we

needed a bigger mass (0.05 instead of 0.025 g/cm2), a

smaller resonant frequency (47 instead of 53 kHz) resulting

in a bigger stiffness (4.36 instead of 2.77 109 dyn/cm3) to fit

the experimental data. This value for the resonant frequency

was not realistic, as then the wave would not exist at fre-

quencies above 47 kHz, which was not the case; in Fig. 3,

amplitude and phase responses of R#24 and 25 remained in a

traveling wave mode above 47 kHz. Here the resistance is

taken constant with frequency. This is a rough approxima-

tion, as R has been measured and showed a decrease fol-

lowed by an increase with frequency (13,34). Because the

effect of resistance on k is small compared to the dramatic

effect of mass, and to reduce the parameter space, we do not

consider resistance further.

Fig. 5 D explores the sensitivity of the theoretical curves to

changes in stiffness and mass parameters. All the curves in

this figure were obtained with the stiffness, S ¼ (2pfr)
2mocc,

FIGURE 3 In vivo, passive measurements of velocity

amplitude (A) and phase (B) at four longitudinal positions

along the BM (Exp#18) from base to apex: R# 24, 25, 15,

and 27. The recording positions are illustrated in the

picture (BM, darker band; OSL, osseous spiral lamina). The

coordinates were set to (x ¼ 0, y ¼ 0, z ¼ 0) for R#24.

Position of each of the runs was recorded (in mm): R#25

(�53, 37, 87), R#15 (�105, 68, 157), and R#27 (�185,

109, 231).
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calculated with R ¼ 0, a fixed resonant frequency of 53 kHz

(same as Fig. 5 B), and a varying mass (0.015, 0.025, and

0.035 g/cm2). With lower S and mocc, k was bigger. This is

easily understood: because fr is fixed, and R ¼ 0, all the

curves must approach the vertical at 53 kHz. At frequencies

much lower than fr, k is not much influenced by mocc, and is

determined solely by the fluid (whose properties are fixed)

and the stiffness. The smaller stiffness results in a slower

wave, thus a shorter wavelength and a larger k. Even as fr is

approached and mocc becomes influential this tendency

remains.

Based on the experimental/theoretical comparisons in Fig.

5, B and D, the resonant frequency for the location with

passive BF of 38 kHz was 53 kHz, a factor of 1.4 greater than

the BF. Thus, significant OCC mass was necessary to produce

the pronounced increase in k slope—in other words, an

approach to the local resonant frequency appears to influence

the response substantially. It might be argued that up to the BF

;38 kHz, the theoretical k with and without OCC mass are

very close and both fit the experimental k, and therefore that

the OCC mass is not important to passive peaking. However,

the behavior on the high frequency side of the peak is an

important element of peaking. To make the point: if the high

frequency side amplitude did not come down, there would be

no peak. Therefore, the rapid increase in phase and k with

frequency is linked to the high frequency side decrease in

amplitude even in the passive case—as described by the

theory of critical layer absorption.

Fig. 6 assembles curves of k(f) from three longitudinal

locations along the basal turn of the BM. The relative position

of each run is in the inset. Experimental (lines with symbols)

curves are compared to the theoretical (thin lines) curves that

provided the best fit. For these data, as in Fig. 5, best fits were

obtained when significant OCC mass was included. Consid-

ering both parameters (mass and stiffness) as free, good fits

were obtained with a decreasing stiffness (from 3.2 109 to 1.7

109 dyn/cm3—factor of 1.88) and a decreasing mass (from

0.03 to 0.019 g/cm2—factor of 1.58) from the more basal to

the more apical position. This decrease in mass was not

expected, and the fitting was redone with the mass taken as

constant (mocc¼ 0.022 g/cm2). The fits are still very good with

the constrained mass value and stiffness values ranging from

S ¼ 2.53 109 to 2 109 dyn/cm3 (Fig. 6). With a smaller OCC

mass (0.015 g/cm2)—closer to what the anatomy pre-

dicts—the fits were less good but still reasonable.

The definition of the wavenumber kexp ¼ Du/d is valid

only over a frequency region where the traveling wave

dominates. As soon as one of the phase responses reaches or

approaches the plateau region, which likely signals that the

BM is responding primarily to the evanescent-fast wave

(1,35,36), kexp can no longer be calculated. That is why

above a certain frequency—48 kHz for kexp (24,25), 46 kHz

for kexp (25,15), and 43 kHz for kexp (15,27)—the variation

of the wavenumber changes its trajectory.

More results from the first turn of the gerbil
cochlea, slightly further apical

Results from another experiment (#8) are in Fig. 7. The view

of the BM was of turn one, corresponding to a region where

BF ¼ 20–25 kHz. To access this region, the RWM was

removed and the resulting opening was covered with a glass

coverslip, which was simply positioned on the bony opening

without sealing. BM vibrations were recorded over a total

distance of 285 mm along the longitudinal axis of the BM.

Run #20 corresponds to a more basal, R#19 to a more apical

position. The phase responses show the expected shift in

frequency (Fig. 7 B). The shift in amplitude is small, likely

due to the passive condition with a relatively broad response

(Fig. 7 A). Background vibrations were measured with the

laser beam focused on the bone around the oval window

and were less than �60 dB re 1 mm/s at all frequencies. The

repeatability of the measurements was checked by recording

the same position with a 2 h time separation. Fig. 7 C
compares kexp (lines with symbols) to the theoretical k with

(solid lines) and without (dashed lines) OCC mass. Best fits

were obtained including a significant mocc of 0.015 g/cm2

FIGURE 4 Demonstration of measurement stability over time: velocity

amplitude (A) and phase (B) measured at approximately the same position on

the BM at different times: At t ¼ 0, R#14 (�49, 38, 97); t ¼ 35 min R#20

(�51, 53, 85), and t ¼ 65 min R#25 (�53, 37, 87).
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(and like above, constrained to be one value for the set).

Going from the more basal to a more apical position within

this series of measurements, there was a decrease in stiffness,

from 5.2 108 to 3.9 108 dyn/cm3 (factor of 1.34).

Results for two animals were presented in this section, but

similar results (showing a need for significant OCC mass to

fit the data) were obtained with seven other animals: one in

the more basal region (Exp# 21: BF ;38 kHz, mocc ¼ 0.029

g/cm2, and S ¼ 2.6 109 dyn/cm3), four animals in the region

BF ;20–24 kHz (Exp# 20-28-29-33: mocc¼ 0.0056–0.0196

g/cm2 and S ¼ 3.2–9.5 108 dyn/cm3) and two in a region

whereBF; 16–18kHz(Exp#17–30:mocc¼ 0.004–0.0093g/cm2

and S ¼ 2–3.2 108 dyn/cm3).

MORE DETAILED EXPLORATION OF RESULTS

In this section, we will consider the different factors that can

affect the experimental wavenumber and might influence our

conclusions. First we will consider the effect of the distance

between the two measurement locations (d), then the effect

of the evanescent-fast wave on the slope of the phase re-

sponse. Finally, we will extend the analysis to more data sets,

including active preparations and more apical measurements.

Distance between the two locations

The theoretical wavenumber is defined at a longitudinal lo-

cation, and we approximate this wavenumber via measure-

ments of phase at two flanking longitudinal locations. Based

on the definition of the derivative, as the separation between

locations becomes larger, the Du/d value becomes a less and

less good approximation to the slope at the intermediate

point. On the other hand, if the points are too close together,

the difference between the phases is overly influenced by

random experimental noise. It can be shown analytically

that for phase changing more rapidly than quadratically with

FIGURE 5 In the four panels, the curve with dots rep-

resents the variation of kexp with frequency obtained from

the phase responses for R#24 and 25 (d ¼ 108 mm). The

asterisk in the x axis represents the BF position (;38 kHz).

(A) The error bars illustrate how an uncertainty of 610 mm

in the z-coordinate can affect kexp. (B) Comparison of

experimental to theoretical k with and without OCC mass.

The best fit was obtained when a significant mocc was

included (solid line through data points). R was set equal to

0, the resonant frequency to 53 kHz. S values are 3 109

dyn/cm3, mocc in g/cm2. Dashed and dotted lines show that

attempted fits with no mass were not successful. (C) The

effect of resistance was small. The resistance needed to be a

substantial fraction of the total OCC impedance to have

any effect on k, and its effect was to impair rather than

improve the fit. fr was fixed and set to 53 kHz, mocc¼ 0.025

g/cm2 and S ¼ 2.77 109 dyn/cm3 for all. R in dyne s/cm3.

(D) Theoretical k obtained with R ¼ 0, a fixed resonant

frequency, fr ¼ 53 kHz, a varying mocc, and a stiffness

determined by S ¼ (2pfr)
2mocc. S values are 3 109 dyn/

cm3, mocc in g/cm2. The figure illustrates the sensitivity of

the model to stiffness and mass.

FIGURE 6 Experimental (lines with symbols) and theoretical (thin solid

lines) k as a function of frequency. The inset shows the positions of the

measurements. The more basal kexp was obtained using the phase responses

from R#24 and 25 (line with circles, d ¼ 108 mm) and the more apical

position using R#15 and 27 (line with squares, d ¼ 116 mm). kexp using

R#25 and 15 (line with plus, d ¼ 93 mm) corresponds to a position between

the two others. Theoretical k values were obtained with mocc set to a value of

0.022 g/cm2. Going from the more basal to the more apical position, there

was a decrease in stiffness (S ¼ 2.53 109 dyn/cm3, then 2.35 109 dyn/cm3

and finally 2 109 dyn/cm3) and a decrease in resonant frequency (54 kHz, 52

kHz, and 48 kHz, respectively). R was set to zero for all. The scale bar is 100 mm.
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position, the increase in (absolute value of) the slope on the

high frequency side of the midpoint (compared to the slope at

the midpoint) is greater than the decrease in slope on the low

frequency side of the midpoint. So, the phase slope assigned

to the midpoint, and therefore kexp, is expected to be

erroneously large for large d. This might seem wrong, since

in the literature (32,36,37), the largest kexp was found in the

experiment where d was smallest (32). This is not inconsis-

tent with the arguments above, however, because at each

location the phase can only be found up to a little above that

location’s BF, where the phase levels off to a plateau value.

Therefore, the wavenumber for a point can only be cal-

culated up to about the BF of the more apical of the two

points of measurement and as d gets larger and larger, the

wavenumber is limited to lower and lower frequencies, fur-

ther from midpoint’s own BF. Because k grows rapidly as BF

is approached, the largest kexp is expected to be found when d
is small, simply because the midpoint’s own BF can be

more closely approached. On a related note: the shape of the

k curve is relatively flat at low frequencies, then abruptly

curves up. We have seen that the abruptness is responsible

for the apparent need for significant OCC mass. Increasing d
softens this abruptness. Therefore, the more localized the

measure of kexp is, the stronger will be the case for significant

OCC mass.

Slow wave/fast wave interaction

Wavenumber is based on the phase-versus-frequency re-

sponse; as a consequence experimental inaccuracies in the

measurement of phase would be reflected in the calculation

of kexp. The high frequency phase plateau imposes a fre-

quency limit beyond which traveling wave wavenumber

cannot be determined. Our interpretation of the plateau is that

the traveling wave response has become small enough that

the evanescent-fast wave response is dominant. We were

concerned that at frequencies below the plateau, but close to

it, interference between evanescent wave and traveling wave

responses might cause ripples in the phase-versus-frequency

curves. Evanescent wave interference in measurements of

OCC motion was described by Cooper and Rhode (15). The

alternating flattening and steepening of phase caused by in-

terference could lead us to an erroneous conclusion regard-

ing OCC mass. The thick lines in Fig. 8 A show the Exp#18

phase responses from runs 15 and 27 previously seen in Fig.

3. These curves are fairly smooth but do show phase ripples

in the 35–45 kHz region. To understand how the ripples in

phase affect kexp, we smoothed them out (by eye) so the

phase followed the center-line shown in the thin lines in Fig.

8 A. Fig. 8 B contrasts the k calculated using the original

(solid curve) and smoothed (shaded curve) phases, and

shows fitted curves from the model (thin lines). In the fitted

curves the mass of the OCC was reduced from 0.022 to 0.01

g/cm2 when using the smoothed data. Therefore, the

contamination of traveling wave motion with evanescent-

wave motion might cause us to overestimate the OCC mass.

If so, this helps reconcile the apparent mass decrease as the

measurements moved apically (0.022 for Fig. 6 to 0.015 in

Fig. 7), as the evanescent-wave influence will diminish with

distance from the region of the windows. However, even

with the correction for the influence of the evanescent-wave,

substantial OCC mass was indicated; the dashed curve is a

massless fit and it is much less successful.

Extending the analysis to more data sets

In this study we presented our experimental data from pas-

sive preparations, which was justified by the approximate

FIGURE 7 BM vibrations were measured at different

positions in the first turn of the gerbil cochlea as illustrated

in the picture, at a more apical location than in Fig. 3.

Velocity amplitude (A) and phase (B) are shown for three

locations. Coordinates were reset to (0,0,0) for R#20.

Position of each of the runs was recorded (in mm): R#15

(179, �52, �196) and R#19 (285, �57, �328). The scale

bar in the picture is 100 mm. Panel C shows kexp values at

three positions along the BM (lines with symbols),

compared to theoretical ones with and without OCC

mass (solid lines and dashed lines, respectively). The more

basal position is kexp (20,15) with d ¼ 270 mm, followed

by kexp (20,19) with d ¼ 438 mm and the more apical

position kexp (15,19) with d¼ 169 mm. The data were only

well fit when significant OCC mass was included. A mocc

value of 0.015 g/cm2 provided good fits to all the curves,

with a decreasing stiffness from the more basal to the more

apical position (S ¼ 5.2 108 dyn/cm3 and fr ¼ 29.5 kHz;

S ¼ 4.4 108 dyn/cm3; and fr ¼ 27.5 kHz, S ¼ 3.9 108 dyn/

cm3, and fr ¼ 25.5 kHz).
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insensitivity of phase to cochlear condition. However,

although phase is not very sensitive to cochlear activity,

there are usually small level-dependent variations caused by

the active nonlinearity that might be influential in the

calculation of kexp(f). Moreover, the results presented have

all been from a basal turn of the cochlea. To test how robust

our conclusions are—that OCC mass plays a significant role

in frequency selectivity in the base, but that this significance

wanes toward the apex—we applied the analysis to some in

vivo measurements of turn one BM motion in active cochleae

from the literature. This allowed us to evaluate the difference

that healthy preparations would have on the results, as well as

to probe the question of the need for significant OCC mass in

regions that were 2.5–3.5 mm away (BF ;12–18 kHz) from

the cochlear windows (33,38).

Gerbil basilar membrane vibrations from Cooper (38)

Cooper’s results from two gerbils are in Fig. 9: amplitude (A)

and phase (B) from the 12 kHz place at stimulus levels of 50

and 80 dB SPL and from the 18 kHz place at 80 dB SPL. The

12 kHz place phases show the generally observed (11) mild

phase steepening of the moderate SPL (active) data com-

pared to the high SPL (closer to passive) data. Closely spaced

longitudinal measurements were not part of Cooper’s study.

To calculate kexp from Cooper’s data, we used scaling-

symmetry and the gerbil’s place-frequency map (31) to

generate the phase responses at close-by locations from a

single u(f) curve (39). The value kexp was estimated from

generated responses separated by d ¼ 150 mm.

The kexp(f) derived from Cooper’s results are in Fig. 9 C.

The influence of the BF position is explored first (at 80 dB

stimulus level). The thick lines show the curves derived

from the data, the dashed thin lines give the best fit of the

theoretical k(f) without OCC mass, and the solid thin lines

give the best fit where mass was included. As in the results

from our data above, including mass gave a much better fit to

the data.

Analyzing the phase responses from the lower BF

position, we compared kexp for an active (50 dB) to an

FIGURE 9 BM responses relative to stapes from two

active gerbil cochleae, from Cooper (38). Amplitude (A)

and phase (B) of a region with BF ¼ 12 kHz with stimulus

levels of 50 (bold solid line) and 80 dB SPL (thin solid

line) and a region with BF ¼ 18 kHz (in a different gerbil)

with a stimulus level of 80 dB SPL (bold dashed line). (C)

Corresponding kexp and theoretical k values as noted in

legend. Best fits were obtained with OCC mass. There was

a decrease of the mass and the stiffness from the more basal

(BF ¼ 18 kHz) to the more apical (BF ¼ 12 kHz) position.

S values are in dyn/cm3, mocc in g/cm2, resonant frequency

in kHz, and R ¼ 0 for all.

FIGURE 8 (A) Experimental phase responses (Exp#18

R#15, solid bold line; Exp#18 R#27, dashed bold line) and

new phase responses after smoothing out the ripples in the

phase (solid and dashed thin lines). (B) Corresponding

experimental and fitted theoretical k values. The kexp curve

plotted with a solid thick line was calculated with the

original phase values, the one plotted with a shaded thick

line was calculated with the smoothed phase values.

Regarding the fitted lines: the black thin line is the fit to

the original kexp curve (mocc¼ 0.022 g/cm2, S¼ 2 109 dyn/

cm3, and fr¼ 48 kHz) and the shaded thin line is the fit to the

kexp curve from the smoothed phase curves (mocc¼ 0.01 g/

cm2, S¼ 2 109 dyn/cm3, and fr¼ 60 kHz). The theoretical k

without mass is also shown (dashed shaded line) to illustrate

that OCC mass was needed for a good fit.
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approximately passive (80 dB) preparation. Because the low

SPL u(f) curve has a more pronounced flat/steep transition

compared to the high SPL phase curve, it is not a surprise

that the low SPL kexp(f) curve was similarly flatter/steeper

than the high SPL curve (shaded thick and shaded dashed
lines in Fig. 9 C). However, the general shape of the curve

was unchanged and when compared to the theoretical curves,

best fits were obtained when OCC mass was included and the

mass was similar between the two (mocc ¼ 0.0018 g/cm2 at

50 dB and mocc¼ 0.0020 g/cm2 at 80 dB). The small amount

of change apparent in the kexp curves could be modeled via

OCC resistance change (rather than mass, recall the effect of

resistance in Fig. 5 C), which is consistent with the idea that

the cochlear amplifier acts via changes in resistance, not

stiffness (10,34,40).

Chinchilla BM vibrations from Rhode and Recio (33)

Rhode and Recio measured chinchilla basilar membrane

motion at several adjacent longitudinal locations, so their

results can be used directly to calculate Du(f) and find kexp(f).
Their phase results and derived kexp(f) are in Fig. 10. The

four sets of phase results (BFs of 7, 7.9, 10.7, and 12.1 kHz)

were used to calculate two kexp curves, corresponding to BFs

of 7.45 (using the 7 and 7.9 kHz phase data) and 11.4 kHz

(using the 10.7 and 12.1 kHz phase data). The distances d
were 360 mm and 450 mm. The model dimensions were for

gerbil and have not been modified for chinchilla, but a simple

application of the analysis to these data reinforces the

findings from above. The results were better fit when OCC

mass was included in the theoretical expression. The mass

was relatively small, and the mass and stiffness values cor-

respond to resonant frequencies of 20 and 25 kHz, more than

two times the BFs. The mass used (0.003 g/cm2) was twice

the one used by Lim and Steele (0.0015 g/cm2) to model the

chinchilla BM response at BF ¼ 10 kHz (7). Therefore,

while mass does slow down the traveling wave and increase

the wavenumber compared to the massless condition, its ef-

fect is not pronounced in these results.

DISCUSSION

Variation of OCC mass in the basal turn of the
gerbil cochlea

The mass of the OCC that provided a good fit can be translated

to height assuming that the density of the OCC is approxi-

mately that of water (r ¼1 g/cm3). The values can be com-

pared to the anatomical height from unfixed hemicochlea

micrographs of Edge et al. (2), in which the gerbil BM

thickness decreased from ;55 mm in the basal turn to ;35

mm in the apical turn and the OCC thickness increased from

;125 mm in the basal turn to ;200 mm in the apical turn.

At a measurement position in the basal turn (BF ;35–40

kHz), the predicted OCC height was 220 mm (Fig. 6). When

the phase ripples were smoothed out (Fig. 8 B), best fit was

obtained with a smaller mass (0.01 instead of 0.022 g/cm2),

resulting in a smaller height (100 mm). These values are much

greater than the height of the BM, but consistent with the

anatomical height of the OCC. This correspondence argues

that the entire OCC and enclosed fluid, not just the BM, is the

relevant structural element governing cochlear mechanics in

the base of the cochlea.

At a more apical position (BF ;20–25 kHz), the mocc

necessary was smaller than in the more basal curves of Fig.

6, which was not expected (decrease of the height from 220

to 150 mm in Fig. 7 C). Typically in cochlear models OCC

mass is either neglected or considered unchanging longitu-

dinally. If it increases apically this helps establish a resonance-

based frequency place map and the anatomy does suggest a

slight increase apically. Therefore, the apical decrease in

mass is hard to reconcile with a resonance-based map.

When extending the study to more data sets, similar results

were obtained. In Fig. 9, at the more apical position (BF ;12

kHz), the mass value was smaller than at the more basal one

(BF ;18 kHz): from 0.0075 to 0.0020 g/cm2. In fact, in the

analysis of Cooper’s data the best fit was obtained with a

higher resonant frequency in the more apical than in the more

basal position. As above, this indicates that the role of local

resonance in tuning diminishes apically.

Taken together, the basal and turn one results suggest that

the mechanism for slowing the traveling wave might vary

FIGURE 10 The left panel shows the phase responses measured on a sin-

gle chinchilla BM by Rhode and Recio (33) at four different locations (BF¼
7 kHz, 7.9 kHz, 10.7 kHz, and 12.1 kHz). The right panel shows the

derived kexp(f) obtained from the phase responses at 7 kHz and 7.9 kHz with

d ¼ 360 mm (curve with circles) and from the responses at 10.7 kHz and

12.1 kHz, with d ¼ 450 mm (curve with squares). Experimental curves are

compared to the theoretical ones with (solid lines) and without mass (dashed
lines). The parameter values were as follows: lower frequency (shaded lines)

fit with mass: mocc ¼ 0.003 g/cm2, fr ¼ 20 kHz, S ¼ 0.47 108 dyn/cm3, and

without mass: S ¼ 0.38 108 dyn/cm3; higher frequency (black lines) fit with

mass: mocc ¼ 0.003 g/cm2, fr ¼ 25 kHz, and S ¼ 0.74 108 dyn/cm3, and

without mass: S ¼ 0.58 108 dyn/cm3.
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longitudinally, with OCC mass and the concept of local res-

onance playing a more prominent role in the most basal regions.

Comparisons with previous studies of OCC
stiffness and impedance

In Appendix A, we compare our volumetric stiffness values to

point stiffness values from the literature, by analyzing both

sets of data with a transverse beam model. The stiffness found

in this article was 2–2.5 109 dyne/cm3 at the more basal loca-

tion (BF ;35–40 kHz) and 3–5 108 dyne/cm3 at the slightly

more apical location (BF ;20–25 kHz). After the beam anal-

ysis, these values overlap with the point stiffness measure-

ments of Olson and Mountain (41) and Naidu and Mountain

(42) and are roughly within an order of magnitude (usually

overlap within a factor of five) of those predicted from the

Emadi et al. (43) results. This article’s method for determining

stiffness was based on measurements of wavenumber and a

3D cochlear model, in which stiffness was treated as a free

parameter. Therefore, the confirmation provided by the close

match with experimental point stiffness values is reassuring.

As a very simple check, the BM displacement at fre-

quencies well below the peak can be related to an approxi-

mate value of the driving pressure, to find a rough value of

BM stiffness. For example, in Fig. 3, the velocity at 10 kHz

corresponds to a displacement, v/v ¼ 50 nm. The stimulus

pressure within the ear canal was 80 dB SPL and at fre-

quencies well beneath the peak, the driving pressure within

the cochlea can be approximated using the ;25 dB gain of

the gerbil middle ear (44) as ;5 Pa. This gives a specific

acoustic stiffness, P/displacement of 109 dyne/cm3, in good

agreement with the values above.

Scherer and Gummer (26) did not find a masslike im-

pedance in their point measurements of OCC impedance

measured through very high frequencies. However, they were

compressing the OCC, not displacing it, so it is not clear what

to expect in terms of mass. Previous studies by one of the

current authors (13) did find evidence for significant OCC

mass—in those measurements the ear was stimulated and

both pressure at the OCC and the motion of the BM were

measured to determine Zocc, and at frequencies above the BF,

Zocc appeared to make a transition to mass-dominated.

However, in the Discussion section of that article, those con-

clusions were questioned, since, as noted above, the cochlear

traveling wave should never reach the resonant point. So that

aspect of the results, which was not robust (not seen in many

cases), was not considered to be reliable. The inverse method

of de Boer and Nuttall (34) used BM motion measurements

and a 3D model to predict OCC impedance. They did not find

a resonance, but again, such a resonance is not expected to be

observed as the wave will stop before reaching it. Finally,

Cooper and Rhode (45), measuring in a live apical guinea pig

preparation, found no change in tuning after brushing off the

OCC. This is pretty conclusive evidence that the OCC mass

does not play a large role in tuning in the apex.

Influence of frequency-dependent stiffness

We noted at the outset that the idea that the stiffness is not

frequency dependent is likely an oversimplification, partic-

ularly in light of the frequency dependence found by Scherer

and Gummer (26). How would including a stiffness that

increases with frequency (as their results show) influence our

conclusions? In fact, a stiffness that increases with frequency

would only emphasize the need for OCC mass for the cochlear

wavenumber to vary with frequency as observed. This is

because the effect of OCC mass is to make the effective

stiffness decrease with frequency, and if the stiffness were

increasing with frequency, even more mass would be nec-

essary to provide the necessary decrease in effective stiffness

with frequency.

More complex cochlear models

Some of the complexity that has been explored in 3D models

bears on the unexpectedly apically decreasing mass apparent

in our results. In particular, Taber and Steele (46) showed that

the more limber osseous spiral lamina of the primate, com-

pared to animals like the guinea pig, could account for the

relatively large phase lags of the squirrel monkey at frequen-

cies well below the best frequency. That sort of response is

more like the relatively apical measurements we explored

here, which did not have as flat a low frequency phase as the

more basal results. Including this sort of detail in a cochlear

model is likely required to sort out the physical properties that

govern passive cochlear responses, and the role of local

resonance in tuning.

Significance for the cochlear map

If local resonance is invoked as the basis of passive cochlear

tuning, simple predictions can be made about the longitudinal

stiffness variation needed to produce the observed cochlear

map. The resonant frequency at any location depends on the

square root of the local partition stiffness divided by the local

mass, similar to a simple spring-mass resonant system. The

OCC mass is usually assumed to be relatively invariant lon-

gitudinally. Then, for the gerbil, as the frequency map spans

over two orders of magnitude, the (volumetric) stiffness needs

to range over four orders of magnitude. Naidu and Mountain

(42) measured the longitudinal variation of stiffness (at a point

on the BM side) in gerbil. They found that the OCC stiffness

did not decrease rapidly enough to supply a resonance-based

explanation for the frequency map. Based on this discrepancy,

they hypothesized the existence of a more complex motion,

because a significant frequency-dependent variation in effec-

tive mass gradient is possible if the organ of Corti vibrates in a

complicated fashion. However, Emadi et al. (43) also

measured longitudinal point stiffness variations and drew

the contrary conclusion—that the measured apical decrease in

stiffness, with or without a slowly varying mass increase
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(suggested by the anatomy), could supply the necessary

stiffness gradient for a simple resonance-based cochlear map.

While our data started out supporting the idea of local

resonance, the complete story has turned out to be more

complicated. In the most basal measurements, the BF is just

slightly less than the resonant frequency that is derived from

our kexp(f) curves, supporting the idea of a resonance-based

map. However, a little further apical, the apparent mass has

decreased. This does not make sense in terms of a resonance-

based map, since the stiffness will have to vary even more

rapidly if mass is varying in the wrong direction. It has been

pointed out by several authors (3,5,6) that the cochlear map

can be produced without local resonance. Based on our

results, local resonance is only likely to be important for

setting the best frequency in the base, and has diminishing

importance moving apically.

CONCLUSIONS

The basis for the cochlea’s frequency tuning was explored by

comparing theoretical predictions for the traveling wave

wavenumber and direct measurements. This comparison

was targeted at identifying the role that OCC mass plays in

frequency tuning. This study was devised to apply in a fre-

quency region below the resonance frequency, and not to look

for the resonance directly. Based on the results of Cooper and

Rhode (45), Scherer and Gummer (26), and the modeling

results of Steele and colleagues (3,4,47), we rather expected to

find that the OCC mass did not play a substantial role.

However, the opposite was found. These results indicated that

the OCC mass, by substantially decreasing the effective

stiffness of the OCC, plays a leading role in passive cochlear

tuning in the very base of the cochlea and a supporting role in

slightly more apical positions within turn-one. Expanding our

own measurements with the data and results of others

reaffirmed this basic finding.

This study could be built upon: the main challenge to

obtaining robust data was that kexp could not be extended to

frequencies very far above BF (where evanescent-fast wave

dominated the response), so its extent in frequency was

limited. Future experiments that could devise a way to extend

the frequency range for measuring kexp would be very useful.

We used wavenumber to illuminate passive mechanics, but in

addition, kexp plays a critical role in feed-forward, feed-

backward models that use longitudinally coupled outer hair

cell forces to add energy to the cochlear traveling wave

(8,47,48). Therefore, further and more advanced measures of

kexp could speak to active as well as passive mechanics.

We saw in Fig. 8 that the evanescent-fast modes may

influence the calculation of OCC mass in the basal region and

a caveat to these results is that the basal region of the cochlea is

likely not well modeled by a rectangular box. Employing a 3D

theory that is more true to the anatomy of this region would

improve future efforts to match theoretical predictions to this

well-explored cochlear region.

APPENDIX A: RELATION BETWEEN MODEL
STIFFNESS AND POINT STIFFNESS
MEASUREMENTS

The model stiffness we used in the equations above was defined as S(x) ¼
DP(x)/Æzæ (constant with frequency), where DP(x) is the pressure across the

OCC at the longitudinal location x and Æzæ is the average displacement over

one transverse section of the organ of Corti. It is the displaced area dividing

by the length of the beam,

Æzæ ¼ 1

L

Z L

0

zðyÞdy:

S has units of dyne/cm3. Point stiffness is found by measuring the force

required to displace the BM at a point and has units of dyne/cm. The two can

be linked via the beam equation that governs the bending of beams under

both localized and uniform loads. The beam equation is

D
d4

z

dy
4 ¼ qðyÞ;

where q(y) is the load, the force per unit length on the beam (dyne/cm). D ¼
EI is the flexural rigidity of the beam, a function of the beam height, width,

and material, with units dyne cm2. E is the Young’s modulus and I is the

moment of inertia. The y axis points along the length of the beam. The length

of the beam, L, is the span of the BM. In beam theory, the load is uniform

over the width of the beam. Below we solve the beam equation for a lo-

calized, centered load (point stiffness) and uniform pressure (model stiffness).

Uniform pressure load—model stiffness

We wish to find S(x) ¼ DP(x)/Æzæ. The pressure is taken to be uniform on

the beam, so DP(x) ¼ DP ¼ P. The beam equation becomes simply

Dðd4z=dy4Þ ¼ Pd (with d ¼ beam width ¼ probe diameter) and can be

directly integrated as

zðyÞ ¼ Pd

24D
y4

1 C1y3
1 C2y

2
1 C3y 1 C4:

The constants are determined from the boundary conditions of the system.

We present the solutions for two boundary conditions: for clamped edges

(subscript c) and for the simply supported edges (subscript s).

The boundary conditions for clamped edges are z ¼ 0 and dz=dy ¼ 0 at

y ¼ 0, L, leading to

zðyÞ ¼ Pd

24D
y

4 � PdL

12D
y

3
1

PdL
2

24D
y

2
and ÆzæC ¼ PdL

4
=720D:

The expression for the stiffness is SC ¼ P=ÆzæC ¼ 720D=dL4:

For the simply supported edges, the boundary conditions are z ¼ 0 and

d
2
z

dy
2 ¼ 0

at y ¼ 0, L leading to

zðyÞ ¼ Pd

24D
y

4 � PdL

12D
y

3
1

PdL
3

24D
y:

Then ÆzæS ¼ PdL4=120D; resulting in SS ¼ P=ÆzæS ¼ 120D=dL4:

Localized load—point stiffness

The point stiffness case was treated by Gummer et al. (49). In this case the

beam equation is
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D
d

4
z

dy4 ¼
F

d
fUðy� y0Þ � Uðy� y1Þg

(where U is the unit step function), and q is a constant ¼ F/(y1-y0) ; F/d.

This can be solved by Laplace transform, following Gummer et al. Their

analysis with a force applied to the center beam (their Eqs. 11 and 16) led to

the following expression for point stiffness: in the clamped condition,

F=zjC ¼
2880D

15L
3

and in the simply supported condition,

F=zjS ¼
144D

3L3 :

By comparing point and model stiffness values to eliminate D, model

stiffness, Sc/s can be expressed as a function of point stiffness,

F

z

����
C=S

;

BM width and probe diameter:

SC ¼
F

z

����
C

ð3:75=dLÞ and

SS ¼
F

z

����
S

ð2:5=dLÞ:

Experimental basilar membrane point stiffness
measurements in gerbil

The BM width is taken equal to 165 mm (same value as for the model results

above.) Table 1 assembles experimental point stiffness values and their

corresponding model stiffness. Measurements were all recorded from the

base of the gerbil cochlea. The value d is the diameter of the probe. The

model stiffness found in this article was 2–2.5 109 dyne/cm3 at the more

basal location (BF ;35–40 kHz) and 3–5 108 dyne/cm3 at the slightly

more apical location (BF ;20–25 kHz). These values overlap with those

derived from the point stiffness measurements of Naidu and Mountain (42)

and Olson and Mountain (41), and were in reasonable agreement—five

or more times larger—with those predicted from the Emadi et al. (43)

results.

APPENDIX B: EXPRESSION OF THE EFFECTIVE
FLUID MASS AND THE DISPERSION RELATION
FOR 1D AND 2D COCHLEAR MODELS

The following is only to sketch the equivalent height concept; more general

treatments can be found in the literature (1,3,28). Imagine a vial of water

(density r) of height h that is shaken (accelerated) up and down with

acceleration az(t). The vial is small enough that the fluid moves together; it

does not slosh around. Then the pressure on the bottom of the fluid column is

p ¼ azrh (plus a static term due to the fluid’s weight, p ¼ grh). In the

cochlea, when the OCC moves up and down, the pressure at the BM is

responsible for accelerating the adjacent fluid layer in scala tympani. The

height of this layer is not equal to the scala depth; due to the traveling wave,

as one part of the BM is moving up another is moving down, the fluid moves

in roughly a circular pattern, and not simply perpendicular to the BM in a

column (1). Nevertheless, an equation relating the pressure at the BM and

the acceleration at the BM can be written. To find it, generally one finds the

solution to the Laplace equation, =2p ¼ 0 in the fluid, considering the

boundary conditions and the dimensionality of the model, and also employs

the Navier-Stokes equation for inviscid, linear flow,
/
=p ¼ �ra~: The result is

an equation, p ¼ azrheq, where p is the pressure next to the BM and heq, the

equivalent height of fluid, depends on cochlear dimensions and the local

wavenumber of the cochlear traveling wave. To then find the dispersion

relationship that relates wavenumber to frequency, the mechanics of the

OCC is included. At the BM, the relation between the pressure p driving the

OCC and its motion vz is given by vz ¼ �2p/Zocc, with Zocc the specific

acoustic impedance of the OCC. Combining with the equation above for the

fluid leads to heq ¼ �Zocc/2ivr.

2D short-wave model of the cochlea

2D turns out to be simpler than 1D, so we start with it. Assuming that the BM

motion is a wave, and taking the short-wave approximation, which assumes

that the wavelength is much shorter than the scalae height, the pressure for

the 2D model is given by p(x,z) ¼ p0ei(vt�kx)e�kz. (It can easily be seen that

this solves the Laplace equation, and the pressure goes to zero for large z,

which is consistent with the short-wave approximation; note that with the

short-wave approximation, the cochlear dimensions drop out.) From the

Navier-Stokes equation, we have

dp

dz
¼ �raz;

which leads to kp¼ ivrvz¼ p/heq. Therefore, the effective fluid mass for the

2D short-wave model is heq ¼ Q2D�SW ¼ 1/k (see in Fig. 2) and the

dispersion relation is k2D ¼ �2ivr/Zocc. For the simple case of a stiffness

dominated OCC impedance, Zocc ¼ S/iv, the dispersion relationship is

simply k2D ¼ 2v2r/S; in a 2D model of the cochlea without OCC mass, the

wavenumber goes as frequency squared.

1D model of the cochlea

The pressure for a 1D model is given by p¼ p0ei(vt�kx). In the 1D treatment,

Laplace’s equation is not used because the fluid motions and pressure var-

iations are only allowed in the x direction. Conservation of fluid mass gives

the relation

h
dvx

dx
¼ evz

(with h the height of the scala, and e the width of the BM). This expresses

that when the BM moves up (in the z direction), the x velocity of the fluid

will increase in the x direction to make room. From the Navier-Stokes

equation, we have

TABLE 1

Ref. and

comments d (mm)

Pt stiffness

(dyne/cm)
Sc

(dyne/cm3)

Ss

(dyne/cm3)

(41), in vivo cochlea 20 ;6500 ¼ 6.5 N/m 7.4 108 4.9 108

(42), in vitro cochlea 10 ;2200 5.0 108 3.3 108

(43), in vitro

hemicochlea

25 ;790 7.2 107 4.8 107

First column: Reference from which the data are quoted; comments about

the experimental conditions. Second column: d is the probe diameter in mm.

Third column: Experimental point stiffness values. Fourth and fifth col-

umns: Corresponding model stiffness for the clamped-edges condition (Sc)

and for the simply supported condition (Ss). All the data were from the base

of the gerbil cochlea; the width of the basilar membrane was taken equal to

165 mm (same value as for the model results).
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dp

dx
¼ �rax ¼ �ivrvx:

After taking the derivative on both sides, we reach the equation

d
2
p

dx2 ¼ �ivr
dvx

dx
5� k

2
p ¼ �ivrvz

e
h
;

where we have used

d

dx
¼ �ik;

d

dt
¼ iv:

This leads to heq ¼ Q1D(k) ¼ e/hk2 (see Fig. 2). Incorporating the relation-

ship between p and the OCC impedance, we find

Q1DðkÞ ¼ �
ZoccðxÞ
2ivr

and therefore the dispersion relation for a 1D model is

k1D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ivre

hZocc

r
:

When the OCC impedance is stiffness-dominated, Zocc ¼ S/iv and

k1D ¼ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2re=hS

p
; in a 1D model of the cochlea without OCC mass, the

wavenumber goes as frequency. This is a nondispersive case, as the wave’s

velocity, dv/dk, does not vary with frequency.
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