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The cochlea is a complex biological machine that transduces

sound-induced mechanical vibrations to neural signals. Hair

cells within the sensory tissue of the cochlea transduce

vibrations into electrical signals, and exert electromechanical

feedback that enhances the passive frequency separation

provided by the cochlea’s traveling wave mechanics; this

enhancement is termed cochlear amplification. The vibration of

the sensory tissue has been studied with many techniques, and

the current state of the art is optical coherence tomography

(OCT). The OCT technique allows for motion of intra-organ

structures to be measured in vivo at many layers within the

sensory tissue, at several angles and in previously under-

explored species. OCT-based observations are already

impacting our understanding of hair cell excitation and cochlear

amplification.
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Early and recent techniques of cochlear
vibrometry
The cellular component of the cochlea’s sensory tissue,

termed the organ of Corti (OoC), is a long narrow strip,

bounded by two acellular structures, the basilar and

tectorial membranes (BM and TM) and surrounded by

fluid chambers. A sound stimulus enters the cochlea at the

basal end, and makes its way to frequency-dependent

locations by means of a fluid-mechanical traveling wave.

The leading actors of hearing are the hair cells (HC),

whose stereocilia ‘hair’ extend from the apical (top)

surface of the cell body (at the reticular lamina, RL) to
www.sciencedirect.com 
reach or nearly reach the adjacent surface of the TM.

Relative motion between the RL and the TM pivots the

stereocilia, opening/closing transduction channels, mod-

ulating current flow through the channels and thus HC

voltage, which leads to transmitter release to the numer-

ous afferent neurons contacting each inner HC. Recent

reviews of cochlear and hair cell processing include [1–4].

The sensory tissue of the cochlea vibrates at the frequen-

cies of incoming sound, which extends to 20 kHz for

human hearing and to 60 kHz and above for many

mammals. Soft to loud sounds range in pressure ampli-

tude from 20 mPa to 2 Pa, corresponding to 0–100 dB SPL

with the definition dB SPL = 20 log(P/20 mPa). The

amplitude of the motions for moderate sound pressure

levels is on the order of 10 nm. Thus, the challenge of

cochlear mechanics is to measure nm-scale motions at

frequencies approaching 100 kHz, within a nearly trans-

parent tissue.

Detecting sound-induced cochlear motion was initially

done with microscopy coupled to stroboscopic techniques

[5], where sampling frequencies can be relatively low

(less than the sound frequency). Microscopic/strobo-

scopic techniques have advanced and have been used

in in vitro preparations to simultaneously measure multi-

ple motions within the organ of Corti [6], and even

stereocilia deflections [7��].

Paradigm-changing advances in vibrometry were made

using the Mössbauer technique, in which a radioactive

source was placed on the BM and gamma radiation was

detected. When the BM moved, the radiation energy was

shifted due to a Doppler shift [8,9]. This is a complicated

and nonlinear measurement method, which makes one

grateful for the subsequent advances in lasers and optics!

However, the method was sensitive enough so that a noise

floor of �0.03 mm/s could be attained, corresponding to a

displacement of 5 nm at 1000 Hz [9]. Rhode reported

active nonlinearity in BM motion using the Mössbauer

technique in 1971 [8] and cochlear amplification and its

physiological vulnerability were reaffirmed throughout

that decade. The term ‘cochlear amplification’ primarily

refers to the healthy, in vivo cochlea’s active and nonlin-

ear boosting of mechanical responses — by a factor of up

to 1000 — at frequencies close to a location’s

‘characteristic frequency’ (CF). In the context of sensory

tissue motion, CF refers to the frequency at which the

motion reaches its maximum at the measured location,

when stimulated with soft tones. CF is also used for

neural responses, and signifies the sound frequency that
Current Opinion in Physiology 2020, 18:1–7

mailto:eao2004@columbia.edu
https://doi.org/10.1016/j.cophys.2020.08.022
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cophys.2020.08.022&domain=pdf
http://www.sciencedirect.com/science/journal/24688673


2 Physiology of hearing
most readily increases a neuron’s firing rate. The major

findings of cochlear activity, cochlear nonlinearity and the

similarity of BM motion tuning and auditory nerve fre-

quency-tuning-curves, were made with the Mössbauer

technique [8,9] and corroborated with interferometric

techniques [10,11]. Another early cochlear vibration tech-

nique was the capacitive probe [12] and a more recent

technique was the fiber optic sensor used to measure fluid

pressure and motion at the BM [13,14].

Laser interferometry was introduced to cochlear mechan-

ics in the early 1980s [15]. Interferometry uses the con-

structive and destructive interference of two light

beams — reference and incident beams. In homodyne

interferometry the read-out is light power [16]. It is a

problematically nonlinear measurement method that was

soon replaced by heterodyne interferometry, which moni-

tors the phase of the interference signal from the two

beams. Heterodyne interferometry became the go-to

method of cochlear vibrometry for many years, and the

commercial system made by Polytec is a staple of many

auditory physiology labs [17,18]. The Polytec vibrometer

is a point-and-shoot system, whose read-out is typically

directly proportional to velocity. A limitation of standard

laser interferometry is that the laser is focused on the

sensory tissue surface, which means that in the high

frequency base of the cochlea only BM motion was

measured, and in the low frequency apex, the motion

of the surface of the OoC or TM was measured. This

limitation is due to the surfaces that could be accessed

atraumatically either through cochleostomies or the nat-

ural opening of the round window. The apical measure-

ments showed less nonlinearity and less tuning than the

base. The apical/basal differences were difficult to fully

grasp since it was not known to what degree the differ-

ences were due to the different longitudinal locations,

versus due to the different surfaces of measurement.

Basal measurements showed strong and interesting non-

linearity and also had easier anatomical access, so were

emphasized. Scores of papers were published with het-

erodyne interferometry, and some of the most interesting

findings were related to aspects of cochlear nonlinearity,

such as the mechanical basis for suppression [19,20��,21],
and the relationship between mechanics, distortion pro-

ducts and distortion product emissions [22,23] see also

[24]. To summarize the history: the Mössbauer technique

admitted the age of cochlear nonlinearity, and decades of

heterodyne interferometry (1980s–2010) squeezed out

almost every drop of nonlinearity that could be found

at the basal BM. The degree of similarity between BM

and auditory nerve responses was surprising, given the

complex OoC anatomy that lay between the BM and the

stereocilia, but there were also BM motions that were not

similar to auditory nerve responses [20��,25]. The advent

of OCT-interferometry allowed for the exploration of the

under-explored layers within the OoC, in more animals

and in all turns of the cochlea.
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OCT vibrometry in the cochlea
OCT imaging uses a low-coherence infrared light source

that can penetrate biological tissue, allowing imaging and

interferometric motion measurements at depths of sev-

eral millimeters. The axial imaging resolution is deter-

mined by the bandwidth of the light source (larger

bandwidth = better resolution), with resolution values

in the micrometer range. Lateral resolution is determined

by the lens numerical aperture, as in standard microscopy

[26]. In the first applications of OCT to cochlear vibro-

metry, ‘Time-Domain’ OCT was used and vibrometry

was based on homodyne interferometry [27]. A hetero-

dyne-vibrometry time-domain OCT was designed at

about the same time [28]. In time-domain OCT, vibro-

metry measurements are made at one surface at a time. A

significant advance was the introduction of ‘Fourier-

Domain’ OCT (FD-OCT). In the ‘Spectral-Domain’

version of FD-OCT, SD-OCT [29,30], low-coherence

infrared light is mildly focused into the sample so that

several millimeters along the axis defined by the beam are

within the beam’s focus. Sample and reference beams are

interfered and this combined beam is then separated by

wavelength, and illuminates an array of photodetectors.

The pattern of light on these detectors is Fourier trans-

formed into the x-domain (x being the axial direction) as

FðxÞ. (‘Swept-source’ OCT is a related FD-OCT modal-

ity, in which the light source is swept in time through

wavelength and one photodetector is used. The signal is

then separated into wavelength components based on

timing [31] and Fourier-transformed into the x-domain as

FðxÞ.) Fourier transforms have terms of magnitude and

phase, and the magnitude of FðxÞ is the 1-D ‘image’ of the

reflectivity of structures along the beam axis (A-scan, as in

Figure 1a). (For 2-D imaging, lateral scanning is done

with mirrors (B-scan, as in Figure 1b), and a stack of B-

scans gives a 3-D image.) To find the motion of structures

in the A-scan image, repeated A-scans are taken at a rapid

rate (�105/s). The nm-scale displacements of the sensory

tissue are too small to significantly change the A-scan

images found with the magnitude of FðxÞ. It is the time

variation in the phase of the FðxÞ transform, evaluated at

the location corresponding to any given position x0
(selected from the A-scan, for example pixel 190 in

Figure 1a), that is used to find the displacement: the

axial-direction displacement of the structure at x0 is

directly proportional to the time variation in the phase

of Fðx0Þ [32,33]. This phase-based displacement signal is

much like the phase-based motion signal of heterodyne

interferometry [34], with the same key advantages that it

is a linear technique, and can be sensitive down to the

sub-nm level. Another powerful advantage is that the

motion of all structures along an A-scan are measured

simultaneously. Commercially available SD-OCT sys-

tems from Thorlabs have brought OCT vibrometry to

cochlear physiology labs lacking a full-time optics engi-

neer. However, the Thorlabs system is designed for

imaging, and using it for vibrometry requires both
www.sciencedirect.com
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Figure 1

(a)

(b) (c)
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(a) ‘Axial scan’ (shortened to ‘A-scan’) through the organ of Corti of a gerbil. This A-scan was taken along the white dotted line indicated in (b),

which shows the corresponding ‘Brightness-scan’ (shortened to ‘B-scan’). (c) A cartoon of the B-scan, indicating the organ of Corti structures.

This image was taken in vivo in the base of a gerbil cochlea, using a Thorlabs Telesto SD-OCT system.

Figure 2

(a) (b)
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Vibrometry data from the base of a gerbil cochlea, taken in vivo through the round window membrane, with a Thorlabs Telesto SD-OCT, using

custom software developed by M van der Heijden. These results, redrawn from Figure 6 in [37], show that at locations within the OHC, Deiters’

cell region of the organ of Corti (termed the ‘hotspot’ by the authors), nonlinearity extends throughout the frequency range (b). At the BM, the

nonlinearity is limited to regions of the peak (a). Data provided by M van der Heijden, and used with authors’ permission.
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4 Physiology of hearing
hardware and analytical/software modifications [33,35]. A

recent lab-built low-coherence heterodyne interferome-

ter also has the ability to measure vibration at several

layers within the cochlea and its results are included

below [36].

Physiological advances
There are two significant benefits of OCT-vibrometry

over classic heterodyne vibrometry: the ability to measure

different layers within the OoC and the ability to measure

through the bone of the cochlear capsule.

The ability to measure within the OoC has exposed

significant and unanticipated OoC motions. Motions at

the RL and in the OHC/Deiters cell regions exhibit

higher amplitudes than at the BM, and enhanced and

nonlinear responses in these regions extend to sub-CF

frequencies [37–40, 41��] (Figure 2). These findings

have stirred up the basic understanding of cochlear

amplification, which, in high-frequency regions of the

cochlea, had been thought to be limited to the CF peak.

The vibrations within the OoC have been analyzed to

understand the mechanical processing that gives rise to

the frequency/location tuning of cochlear amplification;

the results have not yet led to consensus [31,37,42,43��

,44]. OCT has allowed for the measurement of traveling

wave motion on the TM in vivo; measuring vibration
Figure 3

(a)

(d)

(b)

(e)

Vibrometry results from the apex of the mouse cochlea, taken in vivo throug

[45��] were taken with a custom swept-source FD-OCT system developed b

bone allowed for motion measurements to be made from two angles, and t

F to be determined. The reference includes links to movies that vividly illust
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with a pure tone stimulus at several longitudinal loca-

tions, the TM was observed to possess a larger and

sharper peak that reached its maximum further apical

than the BM response [31]. The local motions that give

rise to stereocilia pivoting and hair cell stimulation have

been measured in intact cochleae in vivo, by measuring

vibrations at one location at two angles and reconstruct-

ing the relative motion between the TM and RL [45��]
(Figure 3). The sub-CF nonlinearity has been used to

probe the intrinsic frequency response of OHC electro-

mechanics [46��].

The ability to measure through cochlear bone has greatly

enhanced vibration explorations in genetically modified

mice. By combining OCT-vibrometry with histology and

microscopy, specific changes in hair cell, hair bundle, or

organ of Corti morphology have been mapped to defects

or alterations in the mechanical responses [47,48,42]. Pre-

OCT studies had already made exciting discoveries in

genetically modified mice, but were constrained by the

challenging and limited round window approach [49].

The ability to measure through the apical bone has

greatly expanded the yield and possibilities for these

explorations.

Imaging and doing vibrometry through the cochlear bone

has allowed the exploration of apical and basal regions of
(c)

(f)
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h the bone of the cochlear capsule. These results, from Figure 9 of

y the team of J Oghalai and B Applegate. The approach through the

he 2-dimensional motions within the organ of Corti shown in panels D-

rate the motions. Figure used with senior author’s permission.
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the cochlea in a number of species beyond mice. Tradi-

tional interferometry at the apex was restricted to mea-

suring from the apical surface of the OoC, and measure-

ments were made through a cochleostomy that, unless

reclosed, disrupted fluid mechanics [50]. In mice, the CF

of the apical region is still quite high in frequency

(�10 kHz) and the apical responses measured with SD-

OCT in mice have been similar to the basal responses of

other rodents, with a pronounced CF peak that is strongly

nonlinear [42,45��]. In contrast, in gerbil and guinea pig,

OCT measurements have observed that the motions in

the apical region are broadly tuned or even low-pass [51–

53], in agreement with earlier findings from vibration

measurements of the OoC surface [50,54]. To date,

measurements through bone in these mammals lack

well-resolved imaging, making structures within the

OoC difficult to discriminate, and more discoveries will

come as the technology improves. Beyond mammals,

through-the-bone capability has allowed for vibration

measurements in the cochlea of the chicken, finding that

mechanical tuning was not actively enhanced in that

species [55].

Future
The development and application of more intense and

broader bandwidth light sources will improve axial reso-

lution and vibrometry signal:noise [56]. Axial resolution is

also improved by employing a shorter wavelength light

source [26]. Lateral resolution can be improved by using a

higher numerical aperture objective lens [57,28]. How-

ever, this comes at the expense of reduced axial working

range and distance and will not be practical for some

physiological measurements. OCT systems have been

coupled to fiber optic probes, allowing for smaller surgical

opening and an ability to access remote locations [58], and

are moving OCT-imaging and vibrometry into clinical

use in the auditory system [59]. OCT-based vibration

measurements have recently been performed on awake,

behaving mice, finding that motion differences exist in

anesthetized versus awake animals [60]. The adaptation

of commercially available OCT instruments, such as the

Thorlabs series, has brought OCT vibrometry to many

cochlear mechanics groups. The ability to measure deep

within the OoC allows us to connect the macromechanics

of sensory tissue motion to the micromechanics of hair

cell stimulation, and further weave the picture of cochlear

operation.
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