Relating Intracochlear Pressure to Emissions

Wei Dong and Elizabeth S. Olson

Columbia University New York USA

Cochlear wave in forward direction

Traveling + compression waves

Dong & Olson, JASA, 117, 2005

Method Simultaneous recording of DP and DPOAE Speaker $L_1 = L_2$, $f_2/f_1 = 1.05$ or 1.25, sweep (f_1, f_2) from low to high Sound Wax Ear canal $f_1 + f_2$ OAEs Eardrum Stapes **Microphone: EC pressure** $f_1 + f_2 +$ ST pressure sensor Incus Wax/ Malleus **Intracochlear pressure** Forward: phase ST – EC ($f_1 \& f_2$ frequency) Intracochlear pressure measurement **Reverse:** phase DPOAE – DP (DP frequency) scala vestibuli sensory tissue (organ of Corti) IHC Adult gerbil (50 - 70 g)basilar membrane scala tympani Basal cochlear turn BF ~ 20 kHz pressure sensor (diameter $\sim 150 \,\mu\text{m}$)

DP local and remote generation

<u>At fs ~ BF</u>

Tuned similarly to single-tone with similar traveling group delay

Cochlear filtering shapes DP amplitude DPs appear to be locally generated

<u>At fs << BF</u>

Fine structure in amplitude Phase is relatively steep with wiggles

DPs appear to be remotely generated

 $2f_1 - f_2$

Wg93, sensor positioned 10 μ m from the BM L₁ = L₂ = 70, 80 & 90 dB SPL f₂/f₁ = 1.05 f₂ = [1 : 0.2 : 35] kHz

Is there clear similarity between DP and DPOAE?

IF YES

How will DPs travel out of the cochlea?

Propagating via BM reverse traveling wave? Or directly through fluid via compression wave?

Evidence should be in the phase:

Reverse traveling wave phase delay \approx forward traveling wave phase delay Compression wave phase \approx middle ear reverse delay

Sensor positioned 28 μ m from the BM, before hitting $L_1 = L_2 = 80 \text{ dB SPL}$ $f_2/f_1 = 1.05$ $f_2 = [1:0.1:40] \text{ kHz}$ Sensor positioned 20 μ m from the BM, after hitting L₁ = L₂ = 60, 70 & 80 dB SPL f₂/f₁ = 1.25 f₂ = [1 : 0.4 : 30] kHz

DP directly related to **DPOAE** (*f* < *BF*)

 $2f_1 - f_2$: Phase DPOAE-DP favors reverse wave

DP directly related to DPOAE (f ~ BF)

 $2f_1 - f_2$: no similar fine structure (wg96)

DPOAE and **DP** not similar, yet we do expect the **BF DPOAE** to have substantial contribution from **BF** region. Can we get a quantitative relationship?

DP directly related to DPOAE ($f \sim BF$) 2 $f_1 - f_2$: phase DPOAE-DP (wg96)

<u>At 80 dB SPL</u>

Phase leads instead of lags:

Supports compression wave hypothesis OR

Due to: DP phase – forward traveling DPOAE phase – shallow, has no phase information about traveling in and out

At 60&70 dB SPL

Phase lags:

Supports reverse traveling wave AND Due to: DP phase – forward traveling

DPOAE phase – steep, contains phase information about traveling in and out

More reverse wave like phase

 $2f_2 - f_1$: phase DPOAE-DP favors reverse traveling wave $(f_2/f_1 = 1.05)$

DP compression wave is not in evidence due to spatial variation of DP pressure

DPs change rapidly in space, were not dominated by a compression wave (which would be spatially unvarying)

Summary

- At fs ~ BF, comparisons of DPs and DPOAEs need to be interpreted with caution. The phase DPOAE – DP can only be expected to have meaning when the DPOAE phase is steep. In those cases, DPOAE – DP phase is consistent with the reverse traveling wave.
- At fs < BF, comparison of DPs and DPOAEs routinely show a direct relationship, that DPs travel back to the EC via a reverse traveling wave.
- In addition, DP spatial variation indicates that the DP close to the BM is not dominated by a compression wave.

