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shape factors (if any) are uniquely and consistently associated
with neural responses. This has not been attempted before because
of the intractable size of three-dimensional shape space. In this

virtually infinite domain, a conventional random or systematic
(grid-based) stimulus approach can never produce sufficiently dense
combinatorial sampling.

–1
–1

a b

Response = 0.4A + 0.0B + 49.0AB + 0.0

38 

10

0

1

Relative x position

R
el

at
iv

e 
y 

po
si

tio
n

R
el

at
iv

e 
y 

po
si

tio
n 

Relative z positionMaximum curvature

M
in

im
um

 c
ur

va
tu

re

0

180

180 360

Angle on xy plane (deg)

A
ng

le
 o

n 
yz

 p
la

ne
 

(d
eg

)

0

i

5 deg

c d

0

20

40

Rotation angle (deg)
900–90–4 –2 0 2 4

10

20

30

Depth (deg)

0 0

10

20

30

1 2.10.48
Size(x)x position (deg)

y 
po

si
tio

n 
(d

eg
)

–10 100

–10

10

0

0

10

20

30

0

10

20

30

Sha
din

g

Te
xtu

re
Non

e

0

10

20

30

e f g h

Te
xtu

re
Non

e

Stereo Nonstereo

900–90
0

10

20

30

Light angle (deg)
Sha

din
g

0

10

20

30

0

10

20

30

900–90

900–90

10

20

30

0

10

20

30

0

–4 –2 0 2 4

–4 –2 0 2 4

0

10

20

30

0

10

20

30

1 2.10.48

1 2.10.48

0

20

40

0

20

40

900–90

900–90

–10

10

0

–10

10

0

–10 100

–10 100

40

j

0 spikes s–1

R
es

po
ns

e 
(s

pi
ke

s 
s–1

)

R
es

po
ns

e 
(s

pi
ke

s 
s–1

)

R
es

po
ns

e 
(s

pi
ke

s 
s–1

)

R
es

po
ns

e 
(s

pi
ke

s 
s–1

)0 spikes s–1

R
es

po
ns

e 
(s

pi
ke

s 
s–1

)

1–1 0 1
–1

0

1

–1 0 1
–1

0

1

Figure 2 Neural tuning for three-dimensional configuration of surface fragments. (a) Top 50 stimuli across eight generations (400 stimuli) for a single IT
neuron recorded from the ventral bank of the superior temporal sulcus (17.5 mm anterior to the interaural line). (b) Bottom 50 stimuli for the same cell.
(c) Responses to highly effective (top), moderately effective (middle) and ineffective (bottom) example stimuli as a function of depth cues (shading, disparity
and texture gradients, exemplified in Supplementary Fig. 10). Responses remained strong as long as disparity (black, green and blue) or shading (gray) cues
were present. The cell did not respond to stimuli with only texture cues (pale green) or silhouettes with no depth cues (pale blue). (d) Response consistency
across lighting direction. The implicit direction of a point source at infinity was varied across 1801 in the horizontal (left to right, black curve) and vertical
(below to above, green curve) directions, creating very different two-dimensional shading patterns (Supplementary Fig. 11). (e) Response consistency across
stereoscopic depth. In the main experiment, the depth of each stimulus was adjusted so that the disparity of the surface point at fixation was 0 (that is, the
animal was fixating in depth on the object surface). In this test, the disparity of this surface point was varied from !4.51 (near) to 5.61 (far). (f) Response
consistency across xy position. Position was varied in increments of 4.51 of visual angle across a range of 13.51 in both directions. (g) Sensitivity to stimulus
orientation. As with all neurons in our sample, this cell was highly sensitive to stimulus orientation, although it showed broad tolerance (about 901) to rotation
about the z axis (rotation in the image plane, blue curve); this rotation tolerance is also apparent among the top 50 stimuli in a. Rotation out of the image
plane, about the x axis (black) or y axis (green), strongly suppressed responses. (h) Response consistency across object size over a range from half to twice that
of the original stimulus. (i) Linear/nonlinear response model based on two Gaussian tuning functions (details as in Fig. 2d,e). (j) The tuning functions are
projected onto the surface of a high-response stimulus, seen from the observer’s viewpoint (left) and from above (right). Error bars indicate s.e.m. in all panels.
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shape factors (if any) are uniquely and consistently associated
with neural responses. This has not been attempted before because
of the intractable size of three-dimensional shape space. In this

virtually infinite domain, a conventional random or systematic
(grid-based) stimulus approach can never produce sufficiently dense
combinatorial sampling.
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Figure 2 Neural tuning for three-dimensional configuration of surface fragments. (a) Top 50 stimuli across eight generations (400 stimuli) for a single IT
neuron recorded from the ventral bank of the superior temporal sulcus (17.5 mm anterior to the interaural line). (b) Bottom 50 stimuli for the same cell.
(c) Responses to highly effective (top), moderately effective (middle) and ineffective (bottom) example stimuli as a function of depth cues (shading, disparity
and texture gradients, exemplified in Supplementary Fig. 10). Responses remained strong as long as disparity (black, green and blue) or shading (gray) cues
were present. The cell did not respond to stimuli with only texture cues (pale green) or silhouettes with no depth cues (pale blue). (d) Response consistency
across lighting direction. The implicit direction of a point source at infinity was varied across 1801 in the horizontal (left to right, black curve) and vertical
(below to above, green curve) directions, creating very different two-dimensional shading patterns (Supplementary Fig. 11). (e) Response consistency across
stereoscopic depth. In the main experiment, the depth of each stimulus was adjusted so that the disparity of the surface point at fixation was 0 (that is, the
animal was fixating in depth on the object surface). In this test, the disparity of this surface point was varied from !4.51 (near) to 5.61 (far). (f) Response
consistency across xy position. Position was varied in increments of 4.51 of visual angle across a range of 13.51 in both directions. (g) Sensitivity to stimulus
orientation. As with all neurons in our sample, this cell was highly sensitive to stimulus orientation, although it showed broad tolerance (about 901) to rotation
about the z axis (rotation in the image plane, blue curve); this rotation tolerance is also apparent among the top 50 stimuli in a. Rotation out of the image
plane, about the x axis (black) or y axis (green), strongly suppressed responses. (h) Response consistency across object size over a range from half to twice that
of the original stimulus. (i) Linear/nonlinear response model based on two Gaussian tuning functions (details as in Fig. 2d,e). (j) The tuning functions are
projected onto the surface of a high-response stimulus, seen from the observer’s viewpoint (left) and from above (right). Error bars indicate s.e.m. in all panels.
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Thorpe et al ’96; VanRullen & Thorpe ’01; Fei-Fei et al ’02 ’05; Evans & Treisman ’05; Serre Oliva & Poggio ’07



Vision as ‘knowing what 
is where’

Aristotle; Marr ’82
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➡ Central thesis: visual attention 
(see also Van Der Velde and De Kamps ‘01; Deco and Rolls ‘04)

‘What’ and ‘where’ 
cortical pathways
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Perception as Bayesian 
inference

Mumford ’92; Knill & Richards ‘96; Dayan & 
Zemel ’99; Rao ’02 ’04; Kersten & Yuille ‘03; 

Kersten et al ‘04;  Lee & Mumford ‘03; Dean ’05; 
George & Hawkins ’05 ’09; Hinton ‘07; Epshtein 

et al ‘08;  Murray & Kreutz-Delgado ’07
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Perception as Bayesian 
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Mumford ’92; Knill & Richards ‘96; Dayan & 
Zemel ’99; Rao ’02 ’04; Kersten & Yuille ‘03; 

Kersten et al ‘04;  Lee & Mumford ‘03; Dean ’05; 
George & Hawkins ’05 ’09; Hinton ‘07; Epshtein 
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S

I
image 
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S = {O1, O2, · · · , On, L1, L2, · · · , Ln}

object identities

object locations

visual scene 
description

P (S, I) = P (O1, L1, O2, L2, · · · , Ln, Ln, I)



Assumption  #1: 
Attentional spotlight

Broadbent ’52 ‘54; Treisman ‘60; Treisman & 
Gelade ‘80; Duncan & Desimone ‘95; Wolfe ‘97; 

and many others

O,L

I
image 

measurements

• To recognize and localize objects in the 
scene,  the visual system selects 
objects, one object at a time P (O,L, I)

visual scene 
description
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‘what’ and ‘where’ pathways
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Assumption  #3: 
universal features

• Objects encoded by collections of 
‘universal’ features (of intermediate 
complexity) 

- Either present or absent 

- Conditionally independent given the 
object and its location
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see Riesenhuber & Poggio ’99; Serre et al ’05 ’07
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see Riesenhuber & Poggio ’99; Serre et al ’05 ’07
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Bayesian inference and 
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• Goal of visual perception: to 
estimate posterior probabilities of 
visual features, objects and their 
locations in an image

• Attention corresponds to 
conditioning on high-level latent 
variables representing particular 
features or locations (as well as on 
sensory input), and doing 
inference over the other latent 
variables
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The Normalization Model of Attention

John H. Reynolds1,* and David J. Heeger2
1Salk Institute for Biological Studies, La Jolla, CA 92037-1099, USA
2Department of Psychology and Center for Neural Science, New York University, New York, NY 10003, USA
*Correspondence: reynolds@salk.edu
DOI 10.1016/j.neuron.2009.01.002

Attention has been found to have a wide variety of effects on the responses of neurons in visual cortex. We
describe amodel of attention that exhibits each of these different forms of attentional modulation, depending
on the stimulus conditions and the spread (or selectivity) of the attention field in the model. The model helps
reconcile proposals that have been taken to represent alternative theories of attention. We argue that the
variety and complexity of the results reported in the literature emerge from the variety of empirical protocols
that were used, such that the results observed in any one experiment depended on the stimulus conditions
and the subject’s attentional strategy, a notion that we define precisely in terms of the attention field in the
model, but that has not typically been completely under experimental control.

Introduction
Attention has been known to play a central role in perception
since the dawn of experimental psychology (James, 1890).
Over the past 30 years, the neurophysiological basis of visual
attention has become an active area of research, yielding an
explosion of findings. Neuroscientists have utilized a variety of
techniques (single-unit electrophysiology, electrical microstimu-
lation, functional imaging, and visual-evoked potentials) to map
the network of brain areas thatmediate the allocation of attention
(Corbetta and Shulman, 2002; Yantis and Serences, 2003) and to
examine how attention modulates neuronal activity in visual
cortex (Desimone and Duncan, 1995; Kastner and Ungerleider,
2000; Reynolds and Chelazzi, 2004). During the same period of
time, the field of visual psychophysics has developed rigorous
methods for measuring and characterizing the effects of atten-
tion on visual performance (Braun, 1998; Carrasco, 2006; Cava-
nagh and Alvarez, 2005; Sperling andMelchner, 1978; Verghese,
2001; Lu and Dosher, 2008).

We review the single-unit electrophysiology literature docu-
menting the effects of attention on the responses of neurons in
visual cortex, and we propose a computational model to unify
the seemingly disparate variety of such effects. Some results
are consistent with the appealingly simple proposal that atten-
tion increases neuronal responses multiplicatively by applying
a fixed response gain factor (McAdams and Maunsell, 1999;
Treue and Martinez-Trujillo, 1999), while others are more in
keeping with a change in contrast gain (Li and Basso, 2008; Mar-
tinez-Trujillo and Treue, 2002; Reynolds et al., 2000), or with
effects that are intermediate between response gain and
contrast gain changes (Williford and Maunsell, 2006). Other
studies have shown attention-dependent sharpening of neuronal
tuning at the level of the individual neuron (Spitzer et al., 1988) or
the neural population (Martinez-Trujillo and Treue, 2004). Still
others have shown reductions in firing rate when attention was
directed to a nonpreferred stimulus that was paired with
a preferred stimulus also inside the receptive field (Moran and
Desimone, 1985; Recanzone and Wurtz, 2000; Reynolds et al.,
1999; Reynolds and Desimone, 2003). These different effects
of attentional modulation have not previously been explained

within the framework of a single computational model. We
demonstrate here that a model of attention that incorporates
divisive normalization (Heeger, 1992b) exhibits each of these
different forms of attentional modulation, depending on the stim-
ulus conditions and the spread (or selectivity) of the attentional
feedback in the model.
In addition to unifying a range of experimental data within

a common computational framework, the proposedmodel helps
reconcile alternative theories of attention. Moran and Desimone
(1985) proposed that attention operates by shrinking neuronal
receptive fields around the attended stimulus. Desimone and
Duncan (1995) proposed an alternative model, in which neurons
representing different stimulus components compete and atten-
tion operates by biasing the competition in favor of neurons that
encode the attended stimulus. It was later suggested that atten-
tion instead operates simply by scaling neuronal responses by
a fixed gain factor (McAdams and Maunsell, 1999; Treue and
Martinez-Trujillo, 1999). Treue and colleagues advanced the
‘‘feature-similarity gain principle,’’ that the gain factor depends
on the match between a neuron’s stimulus selectivity and the
features or locations being attended (Treue andMartinez-Trujillo,
1999; Martinez-Trujillo and Treue, 2004). Spitzer et al., 1988
proposed that attention sharpens neuronal tuning curves, and
Martinez-Trujillo and Treue (2004) explained that sharpening is
predicted by their ‘‘feature-similarity gain principle.’’ Finally, Rey-
nolds et al., 2000 proposed that attention increases contrast
gain. Indeed, the initial motivation for the model proposed here
derived from the reported similarities between the effects of
attention and contrast elevation on neuronal responses (Rey-
nolds and Chelazzi, 2004; Reynolds et al., 1999, 2000; Reynolds
and Desimone, 2003).
The proposed normalization model of attention combines

aspects of each of these proposals and exhibits all of these
forms of attentional modulation. Thus, the various models out-
lined above are not mutually exclusive. Rather, they can all be
expressed by a single, unifying computational principle. We
propose that this computational principle endows the brain
with the capacity to increase sensitivity to faint stimuli presented
alone and to reduce the impact of task irrelevant distracters
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R(x, θ) =
A(x, θ)E(x, θ)

S(x, θ) + σ



Multiplicative scaling of tuning 
curves by spatial attention

see also Heeger & Reynolds ’09

McAdams and Maunsell ‘99 Model

P (L = x) = 1/|L|

P (L = x) ≈ 1

P (Xi = x|I) ∝
�

F i,L

P (Xi = x|F i, L)P (I|Xi)P (F i)P (L).



Contrast vs. response gain
see also Heeger & Reynolds ’09

Trujillo and Treue ‘02 Mc Adams and Maunsell ’99

P (Xi|I) =
P (I|Xi)

�
F i,L P (Xi|F i, L)P (L)P (F i)

�
Xi

�
P (I|Xi)

�
F i,L P (Xi|F i, L)P (L)P (F i)

�



Feature-based attention

0 20 40 60 80 100 120 140 160 180 2000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P stim/P cue
NP stim/ P.cue
P.stim/NP cue
NP stim/NP cue

0

1

2

3

N
or

m
al

iz
ed

 s
pi

ke
s

N
or

m
al

iz
ed

 re
sp

on
se

Bichot et al. ‘05

P (Xi = x|I) ∝
�

F i,L

P (Xi = x|F i, L)P (I|Xi)P (F i)P (L).

neural data from Bichot et al ’05



Learning to localize cars 
and pedestrians

L

Xi

I

Fi

O

N



Learning to localize cars 
and pedestrians

L

Xi

I

Fi

O

N

learning object 
priors



Learning to localize cars 
and pedestrians

L

Xi

I

Fi

O

N

learning object 
priors

Context



Learning to localize cars 
and pedestrians

L

Xi

I

Fi

O

N

learning object 
priors

learning location priors 
(global contextual cues, 
see Torralba, Oliva et al)

Context



The experiment

• Eye movements as proxy for 
attention 

• Dataset:

- 100 street-scenes images with 
cars & pedestrians and 20 without

• Experiment

- 8 participants asked to count the 
number of cars/pedestrians

- block design for cars and 
pedestrians

- eye movements recorded using 
an infra-red eye tracker



The experiment

Uniform priors (bottom-up)
Feature priors 
Feature + contextual (spatial) priors
Humans

• Eye movements as proxy for 
attention 

• Dataset:

- 100 street-scenes images with 
cars & pedestrians and 20 without

• Experiment

- 8 participants asked to count the 
number of cars/pedestrians

- block design for cars and 
pedestrians

- eye movements recorded using 
an infra-red eye tracker



The experiment

Uniform priors (bottom-up)
Feature priors 
Feature + contextual (spatial) priors
Humans

1st three fixations
• Eye movements as proxy for 

attention 

• Dataset:

- 100 street-scenes images with 
cars & pedestrians and 20 without

• Experiment

- 8 participants asked to count the 
number of cars/pedestrians

- block design for cars and 
pedestrians

- eye movements recorded using 
an infra-red eye tracker



The experiment

Uniform priors (bottom-up)
Feature priors 
Feature + contextual (spatial) priors
Humans

1st three fixations
• Eye movements as proxy for 

attention 

• Dataset:

- 100 street-scenes images with 
cars & pedestrians and 20 without

• Experiment

- 8 participants asked to count the 
number of cars/pedestrians

- block design for cars and 
pedestrians

- eye movements recorded using 
an infra-red eye tracker

R
O

C
 a

re
a



The experiment

cars pedestrians
0.5

0.75

1

Uniform priors (bottom-up)
Feature priors 
Feature + contextual (spatial) priors
Humans

1st three fixations
• Eye movements as proxy for 

attention 

• Dataset:

- 100 street-scenes images with 
cars & pedestrians and 20 without

• Experiment

- 8 participants asked to count the 
number of cars/pedestrians

- block design for cars and 
pedestrians

- eye movements recorded using 
an infra-red eye tracker

R
O

C
 a

re
a



The experiment

cars pedestrians
0.5

0.75

1

Uniform priors (bottom-up)
Feature priors 
Feature + contextual (spatial) priors
Humans

1st three fixations
• Eye movements as proxy for 

attention 

• Dataset:

- 100 street-scenes images with 
cars & pedestrians and 20 without

• Experiment

- 8 participants asked to count the 
number of cars/pedestrians

- block design for cars and 
pedestrians

- eye movements recorded using 
an infra-red eye tracker

R
O

C
 a

re
a



The experiment

cars pedestrians
0.5

0.75

1

Uniform priors (bottom-up)
Feature priors 
Feature + contextual (spatial) priors
Humans

1st three fixations
• Eye movements as proxy for 

attention 

• Dataset:

- 100 street-scenes images with 
cars & pedestrians and 20 without

• Experiment

- 8 participants asked to count the 
number of cars/pedestrians

- block design for cars and 
pedestrians

- eye movements recorded using 
an infra-red eye tracker

R
O

C
 a

re
a



The experiment

cars pedestrians
0.5

0.75

1

Uniform priors (bottom-up)
Feature priors 
Feature + contextual (spatial) priors
Humans

1st three fixations
• Eye movements as proxy for 

attention 

• Dataset:

- 100 street-scenes images with 
cars & pedestrians and 20 without

• Experiment

- 8 participants asked to count the 
number of cars/pedestrians

- block design for cars and 
pedestrians

- eye movements recorded using 
an infra-red eye tracker

R
O

C
 a

re
a



The experiment

cars pedestrians
0.5

0.75

1

Uniform priors (bottom-up)
Feature priors 
Feature + contextual (spatial) priors
Humans

1st three fixations
• Eye movements as proxy for 

attention 

• Dataset:

- 100 street-scenes images with 
cars & pedestrians and 20 without

• Experiment

- 8 participants asked to count the 
number of cars/pedestrians

- block design for cars and 
pedestrians

- eye movements recorded using 
an infra-red eye tracker

R
O

C
 a

re
a



The experiment

cars pedestrians
0.5

0.75

1

Uniform priors (bottom-up)
Feature priors 
Feature + contextual (spatial) priors
Humans

1st three fixations
• Eye movements as proxy for 

attention 

• Dataset:

- 100 street-scenes images with 
cars & pedestrians and 20 without

• Experiment

- 8 participants asked to count the 
number of cars/pedestrians

- block design for cars and 
pedestrians

- eye movements recorded using 
an infra-red eye tracker

R
O

C
 a

re
a



The experiment

cars pedestrians
0.5

0.75

1

Uniform priors (bottom-up)
Feature priors 
Feature + contextual (spatial) priors
Humans

1st three fixations
• Eye movements as proxy for 

attention 

• Dataset:

- 100 street-scenes images with 
cars & pedestrians and 20 without

• Experiment

- 8 participants asked to count the 
number of cars/pedestrians

- block design for cars and 
pedestrians

- eye movements recorded using 
an infra-red eye tracker

R
O

C
 a

re
a



The experiment

cars pedestrians
0.5

0.75

1

Uniform priors (bottom-up)
Feature priors 
Feature + contextual (spatial) priors
Humans

1st three fixations
• Eye movements as proxy for 

attention 

• Dataset:

- 100 street-scenes images with 
cars & pedestrians and 20 without

• Experiment

- 8 participants asked to count the 
number of cars/pedestrians

- block design for cars and 
pedestrians

- eye movements recorded using 
an infra-red eye tracker

R
O

C
 a

re
a



The experiment

cars pedestrians
0.5

0.75

1

Uniform priors (bottom-up)
Feature priors 
Feature + contextual (spatial) priors
Humans

1st three fixations
• Eye movements as proxy for 

attention 

• Dataset:

- 100 street-scenes images with 
cars & pedestrians and 20 without

• Experiment

- 8 participants asked to count the 
number of cars/pedestrians

- block design for cars and 
pedestrians

- eye movements recorded using 
an infra-red eye tracker

R
O

C
 a

re
a



The experiment

cars pedestrians
0.5

0.75

1

Uniform priors (bottom-up)
Feature priors 
Feature + contextual (spatial) priors
Humans

1st three fixations
• Eye movements as proxy for 

attention 

• Dataset:

- 100 street-scenes images with 
cars & pedestrians and 20 without

• Experiment

- 8 participants asked to count the 
number of cars/pedestrians

- block design for cars and 
pedestrians

- eye movements recorded using 
an infra-red eye tracker

R
O

C
 a

re
a

*similar (independent) results by Ehinger Hidalgo Torralba & Oliva ’10

Explains 92% of the inter-subject agreement!



Bottom-up saliency and 
free-viewing
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Method ROC area

Bruce & Tsotos ’06 72.8%

Itti et al ’01 72.7%

Proposed 77.9%

human eye data from Bruce & Tsotsos
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• Goal of vision: 
- To solve the problem of ’what is where’ problem

• Key assumptions: 
- ‘Attentional spotlight’ → recognition done sequentially, one object at a time

- ‘What’ and ‘where’ independent pathways

• Attention as the inference process implemented by the interaction between 
ventral and dorsal areas

-  Integrates bottom-up and top-down (feature-based and context-based) attentional 
mechanisms

-  Seems consistent with known physiology

• Main attentional effects in the presence of clutters

-  Spatial attention reduces uncertainty over location and improves object recognition 
performance over first bottom-up (feedforward) pass
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