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The ‘what’ problem human psychophysics

Thorpe et al ’96; VanRullen & Thorpe ’01; Fei-Fei et al ’02 '05; Evans & Treisman '05; Serre Oliva & Poggio '07



Vision as ‘knowing what
IS where’

Aristotle; Marr '82
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How does the visual system combine information about the
identity and location of objects?
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How does the visual system combine information about the
identity and location of objects?

= Central thesis: visual attention
(see also Van Der Velde and De Kamps ‘01; Deco and Rolls ‘04)
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Perception as

Sayesian
iINference
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e To recognize and localize objects in the
scene, the visual system selects
objects, one object at a time P(O, L, I)

visual scene
description

image
measurements

ASSU T pthn # 1 Broadbent '52 ‘54 Treisman ‘60; Treisman &

Gelade ‘80; Duncan & Desimone ‘95; Wolfe ‘97;

Attentional spotlight and many others




e Object location L and identity O are
iIndependent

P(O, L, T)
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e Object location L and identity O are
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e Objects encoded by collections of
‘universal’ features (of intermediate
complexity)

- Either present or absent

- Conditionally independent given the

object and its location object

N

image

location measurements

Assumption #3:
universal features

see Riesenhuber & Poggio '99; Serre et al '05 '07
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Predicting IT readout

Serre et al 07
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q object
e Goal of visual perception: to -
estimate posterior probabilities of ocation position and
visual features, objects and their scale tolerant
locations in an image features
e Attention corresponds to
conditioning on high-level latent \ retinotopic
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The Normalization Model of Attention

John H. Reynolds'-* and David J. Heeger?

1Salk Institute for Biological Studies, La Jolla, CA 92037-1099, USA

2Department of Psychology and Center for Neural Science, New York University, New York, NY 10003, USA
*Correspondence: reynolds@salk.edu

DOI 10.1016/j.neuron.2009.01.002
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learning location priors
(global contextual cues,
see Torralba, Oliva et al)
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e Eye movements as proxy for
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- block design for cars and
pedestrians

- eye movements recorded using
an infra-red eye tracker
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Explains 92% of the inter-subject agreement!
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*similar (independent) results by Ehinger Hidalgo Torralba & Oliva *10
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Summary |

e Goal of vision:

- To solve the problem of 'what is where’ problem

e Key assumptions:
- ‘Attentional spotlight’ = recognition done sequentially, one object at a time

- ‘What’ and ‘where’ independent pathways

e Attention as the inference process implemented by the interaction between
ventral and dorsal areas

- Integrates bottom-up and top-down (feature-based and context-based) attentional
mechanisms

- Seems consistent with known physiology
e Main attentional effects in the presence of clutters

- Spatial attention reduces uncertainty over location and improves object recognition
performance over first bottom-up (feedforward) pass
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[T readout Improves
with attention
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