

1

Brain State Decoding for Rapid Image Retrieval

Shih-Fu Chang

Department of Electrical Engineering Columbia University

joint work with Jun Wang, Eric Pohlmeyer, Barbara Hanna Yu-Gang Jiang, and Paul Sajda

supported by funding from DARPA

- Volumes of imagery and media
- Can we smartly "triage" information?

- Volumes of imagery and media
- Can we smartly "triage" information?
- Human Vision: Superb by quick "gist" But limited in throughput (5-10Hz)

- Volumes of imagery and media
- Can we smartly "triage" information?
- Human Vision: Robust and quick "gist" But still limited in throughput
- Computer Vision: Can be very fast but suffer from sensitivity to variance and low accuracy

www.cs.umass.edu

 Goal: optimally integrate neuro-vision and computer vision/machine learning to maximize information throughput and retrieval accuracy of image content

Graph-Based Visual Pattern Discovery

System Designs: Integration of HV (EEG) and CV

System Designs: Integration of HV (EEG) and CV

Database (any target that may interest users)

Database

prediction score

Pre-triage

Post-triage

From D. Linden, 2005

COLUMBIA UNIVERSITY

Single-trial EEG Analysis

- Typically EEG is averaged over trials to increase the amplitude of the signal correlated with cortical processes relative to artifacts (very low SNR)
- High-density EEG systems were designed without a principled approach to handling the volume of information provided by simultaneously sampling from large electrode arrays.
- Our solution: identifying neural correlates with individual stimuli via single trial EEG analysis.
- We apply principled methods to find optimal ways for combining information over electrodes and moments in time contained in individual trials

Identifying Discriminative Components in the EEG Using Single-Trial Analysis

LDA or Logistic Regression is used to learn the contributions of (Parra, Sajda et al. 2002, 2003) EEG signal components at different spatial-temporal locations

Hierarchical Discriminant Components

... use factorization to greatly reduce the number of parameters (100K -> 100)...

$$\mathbf{y}(t) = \mathbf{w}_{\tau}^{T} \mathbf{x}(t) \qquad \tau = \left\{ t_{k} - \frac{\delta}{2} \dots t_{k} + \frac{\delta}{2} \right\}$$

System Designs: Integration of HV (EEG) and CV

EEG "Teacher" and Manifold Learning

Opportunities and Issues:

- EEG results used as exemplars indicating user interest
- Propagate "interest" scores over manifolds in the image space
- But EEG labels are noisy and limited
- No prior knowledge about target models

Graph-based Semi-Supervised Learning in the Image Space

• Given few noisy labels and a large # of unlabeled data

A hot topic in Machine Learning

Given initial labels, Y, find predictions F over all nodes

$$\mathcal{Q}(F) = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} \left\| \frac{F_{i.}}{\sqrt{D_{ii}}} - \frac{F_{j.}}{\sqrt{D_{jj}}} \right\|^{2} + \mu \sum_{i=1}^{l} \|F_{i.} - Y_{i.}\|^{2}$$
$$= \operatorname{tr} \{ F^{\top} LF + \mu (F - Y)^{\top} (F - Y) \}$$
(Zhou, et al NIPS04)

Gaussian fields & Harmonic functions (Zhu et al ICML03)

$$\mathcal{Q}(F) = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} \|F_{i.} - F_{j.}\|^2$$

1) $\triangle F = 0$ on unlabeled data, where $\triangle = D - W$ is the graph Laplacian;

2) $F_{i.} = Y_{i.}$ on labeled data.

Graph Transduction via Alternating Minimization (GTAM)

(Wang, Jebara, Chang, ICML08) (Wang and Chang, CVPR09)

-- Bivariate Optimization over Labels (Y) and Prediction (F)

$$Q(\mathbf{F}, \mathbf{Y}) = \frac{1}{2} \operatorname{tr} \left\{ \mathbf{F}^T \mathbf{L} \mathbf{F} + \mu (\mathbf{F} - \mathbf{V} \mathbf{Y})^T (\mathbf{F} - \mathbf{V} \mathbf{Y}) \right\}$$

- Label Tuning Step
 - Iteratively remove bad labels and add good labels

$$\mathcal{Q}(\mathbf{Y}) = \frac{1}{2} \operatorname{tr} \left(\mathbf{Y}^T \mathbf{V}^T \left[\mathbf{P}^T \mathbf{L} \mathbf{P} + \mu (\mathbf{P}^T - \mathbf{I}) (\mathbf{P} - \mathbf{I}) \right] \mathbf{V} \mathbf{Y} \right)$$

• Propagation Step

• Given label (Y), find prediction F over graph

$$\frac{\partial Q}{\partial F^*} = 0 \Rightarrow F^* = (L/\mu + I)^{-1}VY = PVY$$

NSF HNCV10

Experiments

- CalTech101: 3798 images from 62 categories Satellite images
- EEG decoder trained per user using images (Soccer Ball or Baseball Gloves) from Caltech256
- A subset of 1000 images randomly sampled to construct 6-Hz RSVP sequence
- Initial Trials: 4 subjects, 3 targets (*Dalmatian*, *Chandelier/Menorah*, & *Starfish*)

Example results

Top 20 results of EEG detection

(b)

Top 20 results of Hybrid System (BCI-VPM)

Retrieval on Satellite Imagery

(a)

(b)

The experimental results of *"helipad" target RSVP, showing the top 20 ranked images*. a) ranking by original EEG scores; b) ranking by the BCI-VPM refined interest score.

Performance Evaluation

Neuro (EEG detector) vs.
 Hybrid Neuro-Computer System (BCI -VPM)

$\operatorname{Subject}$	Method	AP-30	AP-60	AP-100	AP-ALL
A	EEG score	19.76	15.83	14.9	30.97
	BCI-VPM score	50.19	32.65	25.46	37.89
В	EEG score	8.76	9.79	9.56	23.71
	BCI-VPM score	87.31	63.29	46.07	57.41
С	EEG score	12.70	19.58	16.54	29.62
	BCI-VPM score	90.82	63.30	41.21	53.66
D	EEG score	10.68	11.87	11.75	24.45
	BCI-VPM score	91.87	60.62	40.24	52.70

(Varying depths on the ROC curve)

Dependency of Neuro & CV Components

... not every case improves ...

• Among 12 cases (4 subjects & 3 targets), 8 cases are clearly improved. When the EEG decoder fails, the hybrid system also fails.

Question:

- what's the required EEG accuracy for the hybrid system to work?
- are some categories more difficult?

What's Next

- Consider case when we do not instruct the subject to look for a particular class of image. **Pick an image, any image...**
 - "Readout" what has grabbed a user's attention/interest without prior cuing or instruction--the "mind reading" trick.
 - Deliver visually relevant content based on what is "interesting" -- can be subjective, based on **user's intent.**
 - Can integrate non-visual information (such as metadata).
- Current experiments are for one iteration. What if there is feedback?
 - Co-learning between subject and machine
 - Human learner
 - EEG machine learner
 - Computer Vision machine learner
- Systems for consumer use
 - Low cost EEG systems that are usable (wireless, simple to setup) gaming applications
- Detector improvement in both neuro and computer vision components

References

- J. Wang, E. Pohlmeyer, B. Hanna, Y.-G. Jiang, P. Sajda, and S.-F. Chang, "Brain State Decoding for Rapid Image Retrieval," ACM Multimedia, 2009.
- P. Sajda, E. Pohlmeyer, J. Wang, L. C. Parra, C. Christoforou, J. Dmochowski, B. Hanna, C. Bahlmann, M. K. Singh, and S.-F. Chang, "In a Blink of an Eye and a Switch of a transistor: Cortically Coupled Computer Vision," Proc of the IEEE, 98(3), pp 462-478, 2010.
- L. Parra, C. Christoforou, A. Gerson, M. Dyrholm, A. Luo, M. Wagner, M. Philiastides, and P. Sajda. Spatiotemporal linear decoding of brain state: Application to performance augmentation in high-throughput tasks. IEEE Signal Processing Magazine, 25(1):95–115, January 2008.
- J. Wang, Y.-G. Jiang, S.-F. Chang, "Label Diagnosis through Self Tuning for Web Image Search," IEEE Computer Vision and Pattern Recognition (CVPR), 2009.
- J. Wang, T. Jebara, S.-F. Chang, "Graph Transduction via Alternating Minimization.," International Conference on Machine Learning (ICML), 2008.

Comparison with Other Systems

• Comparison of BCI based image retrieval systems

System	C3Vision [8]	HAC [31]	HAC-CV [15]	BCI-VPM
System Structure	pure BCI	pure BCI	hybrid BCI+CV	hybrid BCI+CV
Neural Signal Trials	single trial	single/multiple trials	multiple trials	single trial
	single subject	single/multiple subjects	single/multiple subjects	single subject
Object Class	people vs. background	face vs. animal	face, animal,	general object class
		animal vs. inanimate	and inanimate	
Target Frequency	2%	25%	50%	$\sim 2\%$
Manual Labels	No	Yes	Yes	No
Image Presentation Speed	$5-10~\mathrm{HZ}$	1-2 HZ	1-2 HZ	5-10 HZ
Learning Method	unsupervised	supervised	supervised	unsupervised

C3Vision: Cortically-Couple Computer Vision;

HAC: Human Aided Computing;

HAC-CV: HAC with computer vision component (spatial pyramid matching tech) BCI-VPM: Brain computer interface and visual pattern Mining