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Image Retrieval in the “Blink of an Eye”

• Volumes of imagery and media

• Can we smartly “triage” information?



NSF HNCV10
3

• Volumes of imagery and media

• Can we smartly “triage” information?

• Human Vision:  
Superb by quick “gist”
But limited in throughput (5-10Hz)

Image Retrieval in the “Blink of an Eye”

(Hubel, 1995)
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• Volumes of imagery and media

• Can we smartly “triage” information?

• Human Vision:  
Robust  and quick “gist”
But still limited in throughput

• Computer Vision: 
Can be very fast but suffer from 
sensitivity to variance and low accuracy

www.cs.umass.edu

Image Retrieval in the “Blink of an Eye”
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• Goal: optimally integrate neuro-vision and computer 
vision/machine learning to maximize information 
throughput and retrieval accuracy of image content

Image Retrieval in the “Blink of an Eye”
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System Designs: Integration of 
HV (EEG) and CV
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System Designs: Integration of 
HV (EEG) and CV

Goal: generality in 
detecting any target 

catching user’s interest.
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The Paradigm

Database (any target  that may interest users)
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Database

Neural (EEG) decoder

EEG-scores

The Paradigm
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Database

Neural (EEG) decoder

Exemplar labels (noisy)

Semi-supervised 
computer vision

retrieval

The Paradigm

image features

prediction score
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Pre-triage Post-triage

The Paradigm
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Pre-triage Post-triage

The Paradigm

Human inspects 
only a small 

sample set via BCI

Machine filters out  
noise and retrieves 
targets from very 

large DB

• General: 
no predefined target models, 
no keyword

• High Throughput: neuro-vision as 
bootstrap of fast computer vision
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The Neural Signatures of “Recognition”

From  D. Linden, 2005

Novel (P3a)

Novel
Target 
Standard

Target (P3b)

time

Standard

Target

Novel
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Single-trial EEG Analysis
• Typically EEG is averaged over trials to increase the amplitude of the 

signal correlated with cortical processes relative to artifacts (very low SNR)

• High-density EEG systems were designed without a principled approach to handling 
the volume of information provided by simultaneously sampling from large electrode 
arrays.

• Our solution: identifying neural correlates with individual stimuli via single trial EEG 
analysis.

• We apply principled methods to find optimal ways for combining information over 
electrodes and moments in time contained in individual trials

Single-trial EEG Event Related Potentials
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Identifying Discriminative Components 
in the EEG Using Single-Trial Analysis

LDA or Logistic Regression is used to learn the contributions of 
EEG signal components at different spatial-temporal locations

Optimal spatial 
filtering across 
electrodes within 
each short window 
(e.g., 100ms)

Optimal temporal 
filtering over time 
windows after onset

(Parra, Sajda et al. 
2002, 2003)
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Hierarchical Discriminant Components
… use factorization to greatly reduce the number of parameters (100K -> 100)…

Discover  distribution  of 
discriminative components
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System Designs: Integration of 
HV (EEG) and CV
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EEG “Teacher” and Manifold Learning

Opportunities and Issues:
• EEG results used as exemplars indicating user interest
• Propagate “interest” scores over manifolds in the image space
• But EEG labels are noisy and limited
• No prior knowledge about target models
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Graph-based Semi-Supervised Learning in the 
Image Space

• Given few noisy labels and a large # of unlabeled data

Input samples with sparse labelsInput samples with sparse labels Label propagation on graphLabel propagation on graph Label inference resultsLabel inference results

Unlabeled Positive NegativeNegativePositive

- - prediction
- - label matrix

- - risk function
- - graph node
- - weight matrix

- - graph
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A hot topic in Machine Learning
Given initial labels, Y, find predictions F over all nodes

20

Gaussian fields & Harmonic functions (Zhu et al ICML03)

(Zhou, et al NIPS04)

Prediction 
smoothness

Fitness with 
given labels
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Important Issues

Unbalanced 
Labels

Bad Label 
Locations

Noisy 
Labels

LGC 
Method

GFHF 
Method

21
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Graph Transduction via Alternating Minimization (GTAM)

• Propagation Step
• Given label (Y), find prediction F over graph

• Label Tuning Step
• Iteratively remove bad labels and add good labels

(Wang, Jebara, Chang, ICML08) (Wang and Chang, CVPR09)

-- Bivariate Optimization over Labels (Y) and Prediction (F)

22
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The values of the cost function Q during 
optimization procedure of LDST and GTAM methods.

Iteration # 2 

Iteration # 4 

Iteration # 6 

Initial Labels

Label Diagnosis 
and Self Tuning

(Wang and Chang CVPR’09)
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Experiments
• CalTech101: 3798 images from 62 categories

Satellite images

• EEG decoder trained per user using images (Soccer Ball or Baseball Gloves) 
from Caltech256

• A subset of 1000 images randomly sampled to construct 6-Hz RSVP sequence

• Initial Trials: 4 subjects, 3 targets (Dalmatian,  Chandelier/Menorah, & Starfish)

24
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Example results

Top 20 results of 
EEG detection

Top 20 results of 
Hybrid System (BCI-VPM)
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Retrieval on Satellite Imagery

The experimental results of “helipad” target RSVP, showing the top 20 ranked images . 
a) ranking by original EEG scores; b) ranking by the BCI-VPM refined interest score.
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Performance Evaluation 

• Neuro (EEG detector) vs. 
Hybrid Neuro-Computer System (BCI -VPM)

(Varying depths on the ROC curve)
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Dependency of Neuro & CV Components
… not every case improves …

• Among 12 cases (4 subjects & 3 targets), 8 cases are clearly improved. 
When the EEG decoder fails, the hybrid system also fails.

Question: 
• what’s the required EEG accuracy for 
the hybrid system to work?
• are some categories more difficult? 

EEG accuracy
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What’s Next
• Consider case when we do not instruct the subject to look for a 

particular class of image. Pick an image, any image…
• “Readout” what has grabbed a user’s attention/interest without prior cuing or instruction-

-the “mind reading” trick.
• Deliver visually relevant content based on what is “interesting” -- can be subjective, 

based on user’s intent.
• Can integrate non-visual information (such as metadata).

• Current experiments are for one iteration. What if there is feedback? 
• Co-learning between subject and machine 

• Human learner
• EEG machine learner
• Computer Vision machine learner

• Systems for consumer use
• Low cost EEG systems that are usable (wireless, simple to setup) - gaming applications

• Detector improvement in both neuro and computer vision components
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Comparison with Other Systems
• Comparison of BCI based image retrieval systems

C3Vision: Cortically-Couple Computer Vision;
HAC: Human Aided Computing;
HAC-CV: HAC with computer vision component (spatial pyramid matching tech)
BCI-VPM: Brain computer interface and visual pattern Mining


