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Status of Computer VisionStatus of Computer Vision
• CV has been an active area for over 40 years

M h h b d ( i l• Much progress has been made (e.g.  visual  
inspection, medical imaging, and OCR)

• Yet, much remains to be done. CV still cannotYet, much remains to be done.   CV still cannot 
effectively handle many problems that human 
can easily solve

– recognize a person from different face angles and 
under different illuminations

t bj t ( d ) f i ith– segment an object (e.g dog) from an image with 
cluttered background. 

– recognize human activities from low resolution video. 
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Why Lack of Significant 
P ?Progress? 

– CV is a highly ill-posed problem

– Image data is uncertain, ambiguous, and often 
incompleteincomplete

– Lack of effective use of prior knowledge– Lack of effective use of prior knowledge
• Human brain encodes prior knowledge about the world. 
• Human uses prior along with sensory data for visual understanding 
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How to Solve this Challenge?How to Solve this Challenge?

• Identify the related prior knowledgeIdentify the related prior knowledge 
external to image data from different 
sourcessources

• Capture and represent such knowledge
S t ti ll bi th t d• Systematically combine the captured 
knowledge with image data to perform 
i l i f d d t divisual inference and understanding
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Types of Prior KnowledgeTypes of Prior Knowledge
• Permanent-physics, physiology, geometry, 

anatomy kinematics biomechanics etcanatomy, kinematics, biomechanics etc..
– Various knowledge, theories or principles that govern 

the properties and behavior of the objects
– Tend to be generic, applicable to different objects and 

different situations.  
H d t t– Hard to capture

• Temporary-statistical pattern-based
Tend to be object situation or database specific– Tend to be object, situation or database specific

– widely used in CV.
E act ers s appro imate• Exact versus approximate
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Visual Cortex
•The primary visual 
cortex is organized 
hierarchically and each y
layer consists of neurons 
and synapse

• Encoding (learning) is g ( g)
used to identify and store 
spatial-temporal patterns  
by establishing 
connections among g
neurons at the same 
level and at  next higher 
level.

•Visual decoding is  
performed to combine 
the visual observations 
with the captured p
knowledge via inference
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Probabilistic Graphical Models 
Probabilistic graphical model (PGM) is a graphical representation  of 
probabilistic relationships among random variables. 

• Representation
– Its hierarchical structure allows  

effectively capturing the prior knowledge 
at different levels of abstraction.

– Its probability foundation allows to model, 
capture, and propagate uncertainties

L i ( di )• Learning (encoding) 
– It offers mechanisms to automatically 

learn the model structure and parameters 
to store the knowledgeto store the knowledge 

• Inference (decoding)
– It provides inference mechanism to 

t ti ll bi th isystematically combine the prior 
knowledge with image data to perform 
effective visual tasks 9



Constrained Model Learning and 
I f A h b id hInference: A hybrid approach

C bi th d i• Combine the domain 
knowledge and the 
statistics learned 
f d t th h

Domain 
knowledge

Training 
data

from data through 
constrained 
learning: PGMg
– Hard constraints

• Constrained ML/EM 
– Soft constraintsSoft constraints

• Sample the 
constraints to 
produce constraint 
datadata

• Inference with 
constraints 
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Prior model for Computer Vision 
A li iApplications

• Facial action modeling and recognition 

• Image segmentation

• Human body trackingHuman body tracking

H ti it d li d iti• Human activity modeling and recognition 
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Facial Action Units Recognition
(Tong and Ji, CVPR07, PAMI07, and PAMI 10)

Facial Action Units (AUs) capture the non-rigid muscular activities 
that produce facial appearance changes (defined in Facial Action 
Coding System)g y )

• Each AU is related to the contraction of a set of facial muscles.
A small set of AUs can describe a large number of facial behaviors

16(a) A list of AUs and their interpretations (b) Muscles underlying facial AUs



Existing MethodsExisting Methods 

– mainly data-driven 
tend to recognize each AU independently– tend to recognize each AU independently

– ignore the fact that often facial actions act in a 
“synchronized smooth symmetrical andsynchronized, smooth, symmetrical, and 
consistent” way to produce a meaningful facial 
expressionp
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Spatial Relationships among AUs
In a spontaneous facial behavior, there are some spatial 
relationships among AUs:
• Groups of AUs often appear together to show meaningful expression• Groups of AUs often appear together to show meaningful expression

Due to the underlying facial anatomy
C l ti hi h AU1 (i b i ) d AU2

Happiness
AU6+12+25

Surprise
AU1+2+5+25+27

Sadness
AU1+4+15+17

• Co-occurrence relationships such as AU1 (inner brow raiser) and AU2 
(outer brow raiser) 

• Mutually exclusive relationships, e.g. AU24 (lip presser) and AU25 
(lips apart)
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Dynamic Relationships among AUs
Dynamic characteristics are crucial for interpreting 
spontaneous facial behavior. They include:

• Self development of each AU• Self development of each AU
• Dynamic dependencies between the consecutive occurrences of 

certain AUs
For example in a smile AU12 (lip corner raiser) is followed by AU6For example, in a smile, AU12 (lip corner raiser) is followed by AU6 
(cheek raiser) and AU25 (lips apart).
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Anatomic ConstraintsAnatomic Constraints 

– Positive and negative causal influences g
• Mouth stretch increases the chance of lips apart; it decreases 

the chance of cheek raiser and lip presser.
• Cheek raiser and lid compressor increases the chance of lipCheek raiser and lid compressor increases the chance of lip 

corner puller.
• Outer brow raiser increases the chance of inner brow raiser.
• Upper lid raiser increases the chance of inner brow raiser• Upper lid raiser increases the chance of inner brow raiser 

and decreases the chance of nose wrinkler.
• Lip tightener increases the chance of lip presser.

Li i th h f li d d• Lip presser increases the chance of lip corner depressor and 
chin raiser.
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Positive and Negative InfluencesPositive and Negative Influences

For an AUi with positive influence by its parent node AUjP(AUi =1| AUj 
=1)>P(AUi =1| AUj =0)=1)>P(AUi =1| AUj =0) 

For an AUi with negative influence by its parent node Auj
P(AUi =1| AUj =1)<P(AUi =1| AUj =0) 

23



Dynamic Bayesian Network
DBN is a directed acyclic graph (DAG)  consists of two 
parts:
• Static network                    models the static relationships among 

variables
• Transition network                        models the dynamic relationships 

0 0 0( , )B G θ=

( , )B G θ→ → →= y p
among variables

( , )→ → →

0B B→ Unrolled 
DBN
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• DBN learning:  constrained learning from both the training data and 
the anatomic constraints (CVPR08, ECCV08)



Constrained DBN LearningConstrained DBN Learning

• Learning the DBN model with analyticLearning the DBN model with analytic 
solution by KKT conditions (Tong and Ji, CVPR08)

• Learning the DBN model with iterative 
t i d ti i ticonstrained optimization (Campos, Tong and Ji, ECCV08)
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The Learnt DBN for AU 
R l ti hi M d liRelationship Modeling

• Solid line: spatial 
relationship among AUs

• Self-arrow: temporal 
evolution of a single AU

• Dashed line from time t-
1 to time t: temporal 
relationship between two 
different AUs 
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AU Recognition 
Experimental ResultsExperimental Results 

Compared with the AdaBoost,p ,
The overall average recognition performance improves 
– Average false negative error decreases from 44% to 24.3%
– Average false positive error decreases from 8.58% to 5.3%

Significantly improves the recognition performances of 
difficult AUs

– False negative rate of AU23 (lip tighten) decreases from 94.4% 
to 25.9%, with a moderate increase in false positive error rate 
from 3.6% to 5.8%

– False negative error of AU12 (lip corner puller) decreases from 
53% to 37.8%, and its false positive error decreases from 32% to 
12 8%
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A Hybrid Framework for 
Image SegmentationImage Segmentation (PAMI, Zhang and Ji, 2010)

Image segmentation aims to partition an image into constituent regions 
of interest.

Challenges in image segmentation:
appearance changespp g
illumination changes
low contrast edges
noisesnoises
occlusion
cluttering

Existing methods are mostly data-driven 
Incorporation of prior knowledge help solve the problems. A flexible 
f k i d d t i t t diff t i k l d ith iframework is needed to integrate different prior knowledge with image 
measurements.
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Heterogeneous Relationships between Image Entities
Image entities: regions (superpixels), edges, vertices.

Causal relationships:p
Two regions intersect to form an edge.
Multiple edges intersect to form a vertex (or junction).
Image entities produce their measurementsImage entities produce their measurements.

Mutual dependencies:
Spatial correlations between adjacent regions and edgesSpatial correlations between adjacent regions and edges

Local image constraints: local smoothness constraint and connectivity 
constraint  
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A Hybrid Graphical Model for Image 
Segmentation (zhang& Ji, CVPR09, PAMI10)

CRF

BN
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Experimental Results on Weizmann and VOC Datasets
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ConclusionsConclusions
• Computer vision is a very ill-posed problem

• Image data alone is not enough to address this problem

• To achieve human level of perception additional prior knowledgeTo achieve human level of perception, additional prior knowledge 
from different sources should be systematically exploited and used 
to help regularize the problem.

A l i ll l ibl d l PGM ff f k th t• As a neurologically plausible model, PGM offers a framework that
– is similar to visual cortex in knowledge representation and processing
– allows representing knowledge from different sources as well as the 

uncertainties 
– admits methods for automatic model learning and inference 

• Much work remains to be done in PGM model learning in particular 
structure learning in large model and in semi supervised andstructure learning in large model and in semi-supervised and 
unsupervised learning.  
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