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1 Introduction

Line geometry has been applied by several researchers to gta
kinematics and statics of parallel manipulatpts-7]. Line geom-

Geometric Interpretation of the
Derivatives of Parallel Robots’
Jacobian Matrix With Application
to Stiffness Control

This paper presents a closed-form formulation and geometrical interpretation of the de-
rivatives of the Jacobian matrix of fully parallel robots with respect to the moving plat-
forms’ position/orientation variables. Similar to the Jacobian matrix, these derivatives are
proven to be also groups of lines that together with the lines of the instantaneous direct
kinematics matrix govern the singularities of the active stiffness control. This geometric
interpretation is utilized in an example of a planar 3 degrees-of-freedom redundant robot
to determine its active stiffness control singularity.
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matics matrix. Finally, an example of this singularity for a planar
degrees-of- freedom redundant parallel robot is presented in a
finess modulation singular position.

etry is used because the rows of the Jacobian matrix in a linearly
actuated fully-parallel manipulator are the &ker line coordi-
nates of the axes of its extensible linlg. Hence, linear depen- 2 Jacobian Formulation

dency of these lines determines the conditions for instability and
singularity of a parallel manipulator as Dandurd®di has shown
in the context of stability of spatial grids.

In contrast to the numerous investigations devoted to the f
mulation of parallel manipulators’ Jacobian matrix e[d0—-13,
there are only a few studies addressing the formulation of i
derivative. Dutreet al.,[14] addressed this problem and obtaine
a closed form analytic expression for the derivative of the inver %
Jacobian matrix with respect to time and with respect to the activ
joint variables. Merlet and Gosseljd5] formulated the time de- J

Consider a general Stewart-Gough type parallel manipulator
subject to a wrenchFg,,=[fl,, .mi,]" applied by the en-
vironment, Fig. 1. Let the position/orientation vector of the
oving platform relative to world coordinate system be
=[x,Y,z, 0X,0y,02]T, wherex, y, z are the Cartesian coordinates
thd 0y, 6y, and g, are three orientation variables of the moving
latform, and letx denote the end effector twist argdthe corre-
onding active joints’ rates.
For parallel manipulators, the commonly used expression of the
acobian matrix is:

rivative of the Jacobian of a fully parallel manipulator for use in

acceleration analysis.

L. JQ;
Duffy [16] presented the infinitesimal motion and stiffness q=Jx, (Jij: I) (1)

analysis of a planar parallel manipulator and obtained a stiffness \

ax;

matrix of the manipulator with a preloaded spring model. Hgnhich is the inverse of that of serial manipulatorgJg, (J;;
showed that the part of the stiffness matrix that corresponds to theyx; /Jq;).

preload effect is a product of two matrices having line-coordinates|n this paper we use the Jacobidn,n Eq. (1) to map the end

as their columns.

effector twist,x, to active joint ratesf]. This Jacobian matrix is

This paper is organized as the following: the first part, sectiordso used to relate the required active joints’ forcesfor a de-
2 and 3, formulates the derivatives of the Jacobian matrix witired external Wrencﬁe=[fl ,ml]T to be exerted on the environ-
respect to the moving platform position/orientation variables andent (F,= —Fen)-
associates a geometric interpretation to these derivatives as groups
of lines. These derivatives play a major role in stiffness analysis Jr=F, (2)
and controlmodulation [17,18], dynamic manipulability analysis
[19], and force-controlled compliant motiorj44]. The second
part, section 4 emphasizes the contribution of these derivatives to

manipulator’s rigidity and active stiffness control and relates each
one of these Jacobian derivatives with a direction of the controlled
stiffness. Section 5 relates singularities of the Jacobian derivatives
with singularities of the stiffness control scheme and singularities
of the derivatives of the instantaneous direct kinematics matrix,
presented in the next section. Section 6 shows that the stiffness
modulation singularities can be obtained by line-based interpreta-
tion of the Jacobian derivatives and the instantaneous direct kine-
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Fig. 1 Typical Stewart-Gough manipulator
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Fig. 2 Static equilibrium on base and moving platform

) ) o Fig. 3 Lines of the Jacobian in W (world coordinate system )
Using the loop closure methdd9], or the static equilibrium

method[4,9,10, along with Egs(1) and (2), respectively, yields

the commonly used formulation of the Jacobian matrix. 0 -p, By
T ("Rpuyxiy’ [px]=| P, O  —py 8)
J= A 3) “pPy Px O
Tg (WRPUGXTG)T Equations(5) and(6) yield:
0 - ' : : . J’=B"!A 9)
wherel; denotes a unit vector along théh active prismatic joint

pointing from its joint at the base to its joint at the moving platwhereB ! is given by:

form. The platform-attached and the base-attached coordinate sys-

tems are referred to by the lettdPsand W, respectively, Fig. 1. B-1— ' 0
Accordingly, "R, is the rotation matrix fronP to W, andu; is the [-px] |

constant position vector of th¢h joint in P, Fig. 1. L . .
Contrary to"Rpu;, which is a varying vector iW, the vector

In order to interpret the Jacobian matrix as lines, the following . S 2. . S
basic definitions of line geometry are reviewed. A given sextupl8t IS constant inV. This simplifies the expression of the derivative
of JT. In this formulation, the lines of pass through fixed points,

of numberg 1,1,y .lyz.lmx. I my.Im2] | rEPresents a line in space . - > :

only when it belongs to a five-dimensional quadratic manifoli: in W and therefore their derivatives are easily shown to be

calied the Grassmannid,20], the Plicker hypersurfacg21,22  n€s as will be shown later. o . o

or Klein quadric[6,20] or, in other words, it fulfils Eq(4). The physical interpretation of multiplying a Rker line’s co-

ordinates by the matriB ! is a translation the line while main-

Ldmxt Loylmyt 1210, =0 (4) taining its direction. Figure 3 shows a 6-6 Stewart-Gough plat-

Observing Eq(3), it is clear that the rows of the Jacobian ard®™M manipulator with the lines of the Jaccib_lan\Ahln_dlcated by

the Plicker ray coordinates of lines along the prismatic actuator$lin arrows. Another important feature Bf — is that its determi-

This geometrical interpretation is correct in a coordinate systef@nt is equal to 1, which means that the above multiplication, Eq.

having its origin attached to the moving platform. In this reprel9), does not add to the singularities &f

sentation each row of the Jacobian matrix is a functiofRft, 3 ormyation of the Derivative of the Jacobian

and the direction numbers &f, which are both functions of the .

moving platform position. Matrix

(10)

The derivatives ofJ' with respect to the moving platform’s

2.1 The Lines of the Jacobian Matrix in World Coordinate l;i))(()sition variables is obtained from E¢) as:

System. Consider another representation of the Jacobian mat
in the form: dJ" dB?! dA

—= +B71t (11)
Nr=F, (5) dx - dx

dx

_reT o THT The matricesdJ"/dx, dB~/dx, dA/dx are three-dimensional
where P, =[f,,my]" represents the wrench exerted by the basgex 6x6 matrices for non-redundant six degrees-of-freedom ma-

LastilplerstiI::?nlqaths(etar':?gs\llgguglt?;fr?srn;n%nr(teh?eesre“r/ilﬁrogm?:nt'orfleg'og: B|¥ipulators. Theath plane of these matrices is their derivative with
9 P q P Doy Fe respect to theth position/orientation coordinatg;, of the mov-

tains: ing platform.
A7=BF, (6) The multiplication in Eq(11) is performed plane by plane, i.e.,
where: the derivative ofJ' with respect to theth position/orientation
' variable is obtained by multiplying thi¢h planes otlB~/dx and
i [P | 0 dA/dx with A andB ™1, respectively.
A= - - = } (7) The derivative ofB™! is simple and yields a matrix whose
byxly +r beXle [p>] 1 structure is similar t&~* so the first expression on the right hand
| —3X 3 unit matrix side of Eq.(11) yields a matrix whose columns are the translated
b, —position vector of the spherical joint of thiéh prismatic ac- lines of A under the transformatiodB~/dx. If the derivative
tuator at the base iW coordinate system. dA/dx yields a matrix whose columns are also lines and the trans-

[px]—skew-symmetric matrix representing vector multiplicationlated linesB~*dA/dx intersect the lines ofiB~*/dxA, then the
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derivative ofJ" is also a matrix with lines as its columns. This isVhere the abbreviations, and c,, stand for sinx and cosx
true since any linear combination of two given intersecting linggspectively. ] o )
spans a flat pencil of ling21]. Substituting Eq(22) in (14) and eliminatingdy; /Jx; yields:

3.1 Derivative of the Matrix A. The matrixA in Eq. (7) is i g Ip;
> ST (bxp) T+
i i

|
composed of the lines along the robot’s prismatic joints. Each unit 8_Xj -
vector along these lines is characterized by its direction cosines
a;, Bi, andvy;, Eq.(12).
%i

li=[coga), cogp;), cogy)]" (12) _ _ _ _
. . ) . N The first and the second brackets in the expressiatt 66x; in
The matrixdA/dx is a three-dimensional66X 6 matrix with the Eq. (23) are the 6<1 column vectorsil; /da; and dl; /13, , re-

ith plane,gA/dx; , being the derivative oA with respect to theth  gpeciively. Both these brackets represent lines according toEg.
position/orientation coordinate; , of the moving platform. Since anq it is easy to see that both lines are perpendiculdy. t@he

A has the lines; as its columns, we are interested in finding th%xpressionsaai /ox; and B, 1dx; are scalars. Consequently, the
derivatives of these lines. columns of JA/dx; in Eq. (13) are lines that pass through the

Using Eqg.(7) while keeping in mind that the vectoly are  gpherical joints in the pointb, and belong to the flat pencils of
constant one can write: dli lda; and dl; /9B, . This interpretation will prove to be helpful
IA in section 6 where geometric interpretation to the stiffness modu-
= (13) lation singularities is sought.

[r (byxr)TT

T

a;>=a;

C,S
[

Pi _|: _Sailovc_

ri:

i

a,dl,

IXi [ X O Summarizing this section, we conclude that the lines of the
where derivative of A are perpendicular to the lines &f and intersect
them in the pointsb;, i.e., in the spherical joints at the base
oy dli day ’9_|i‘9_ﬁjJr KR (14) platform. This fact is used to show that the derivative of the Jaco-
X, da; o IB; I dyj I bian matrix, Eq.(11), is also a group of lines.

In order to write Eq.(14) in a matrix form, we define three 3.2 Explicit Expressions ofd,, Jg, and J,. The explicit
matricesdA/da, dA/dB, anddA/dy. expressions of,,, Jg, andJ, which constitute the derivative of

A, Egs.(17) and (16), are developed below. Figure 4 depicts a
%: ﬂ ol ﬁ: ﬂ ‘”“} %_[ﬂa_ln} fully-parallel robot with six independent closed loops. Each loop
da |day  dan| 9B |dB1  IBnl Iy |Iy1  IYn is governed by the loop equation:

. ) ) (15) p+WRpUi = bi + QiTi (24)
We aIsp de.flne.]dai, Jag,» ‘].dyi as three diagonal matrices havingyhere g represents the length of thieh prismatic joint,p the
on their main diagonals thi¢h columns ofJ,, Jz, andJ,, respec- position of the moving platform iW. Taking the time derivative

tively, whereJ,,, J5, andJ, are given by: of Eq. (24) yields:
S _ 9P _n e p—"Ryu X "eP =gl + g/, (25)
fmn Xy P %y’ mn 9Xn where "wP the angular velocity of the moving platform .

Using these definitions one can write E@3) in matrix form as: Rewriting the right-hand side of Eq25) in terms of the vector
of linear/angular velocities of the moving platformx

JA  JA JA JA =" (Yo" T1T. vi :
= dt e da, o=, ar) PN, yelds o
X  da P dy p—"RpU; X “aP=[1,[ — ("R,u;) X ]]x=M;X (26)
The derivatives of the lines with respect to their variatilesep- Expressior; in Eq. (25) is expressed in terms éfby using the
ing in mind thatb; are constantare: velocity relationg=Jx with reference to théth row of J asJ;,
) and using Eq(12) for I;:
Al T T 9T ; T
ﬁ_ai:[lvaf Ima] lva:[_SIn(ai)vovo] A Coqai)‘]i
_ gili=| coIBi)Ji [x=N;x  N; e ®3*® (27)
lma:[bix(_sm(ai):O,O)]T (18) cog vi)J,;
dl; oo ] N Substituting back into Eq25) yields:
or,_lBi_[lvB lmﬁ] Ivﬂ_[ov_SIr(Bi)vo] —sin(a;) &;
Img=[0, (0~ sin(),0)]" (19) G| —SIAOA | =[MiZNJk M N eR= e (28)
—sin(y;) ¥,

al; -
’7_')’i - [ll—y I-Im'y]T |v7= (0.0~ Sm(’}/i)]-r

lmy=[0;x(0,0,—sin(y;))]" (20)
It can be seen that Eq&l8)—(20) are also lines that intersect the
lines of the matrixA at pointsb; .
For each lind;, the direction cosines are related by E2):
cog a;)?+cog Bj)*+cog y)?=1 (21)

Differentiating Eq.(21) with respect to; and solving fordy; / x;
yields:

3y " CaSq da; T CpSp B
aXi  CyS, X C,S, dX

(22) Fig. 4 Kinematic closed loops
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Solving Eq.(28) for its unknownsa; , B;, and; yields: 3.3.1 Formulation of 8 Ydx A. The derivatives of3 ™!
are simple and can be written as:

- . -1
@;= -—[MiNi]J v Bim| =7 [Mi=Nilz |, -1 0
q; sin(e;) i q; sin(3;) _
| A<D (34)
IXi
Y= q; sin(y;) [Mi—Ni]s|X (29)  The last three derivatives op <] with respect to the orientation
angles of the moving platform are three null matrices.
. . . Let T1 be the three dimensional matri8~*/dx A and T1k/
WEere[Mi—gl\g]j 1S thekj]th rr]ow Of['\]f'i_Ni]' Jzé' 2,3 be thejth column of itskth plane,j, k=1, ... 6. Thefirst three
quation(30) gives theith rows ofJ,, Jg, andJ, as: planes ofT1 are given by:
1 -1 T11'=[0 0 0 O cosy) -—codp)]"
[Ja]i:[ﬁ[MiNi]l}v [Jpli= s-—)[MiNi]z}v , ' P
q; sin(ey g; sin(B; T12=[0 0 0 —cogy) O cose)]"} (35)
4 T13=[0 0 O co$B) -—coda;) O]
J)i=|——=—[M—N; 30
L2 q; sin( ')’i)[ ' ']3} (30) The last three planes B~ Y/dxA, i.e., T14 T15andT16, are

66 null matrices. The special forithe first three Ploker co-

This completes the formulation of the necessary terms in(Eq). ordjqates are zeyof T11, T12, andT13 shows that the lines of
and, thus, the derivative d is fully defined and proven to be a dB™/dxA are lines at infinity{23].
matrix whose columns are lines. These lines are perpendicular t%.s.z Formulating the Expressions Bf 19A/ax,. Accord-

the lines ofA and interest them at the spherical joints at the base, . . .
b; . What remains is to show that the supm of theJ terms in(Ed). Ing to Eqs.(17) and(10) we obtain the following expressions for

gives a set of lines. the iFh cglijmn ofB"19A/dx; . Let T2 be the three di_mensio_nal
matrix B”*dA/dx. We refer to thekth plane of this matrix,
B~ 19A/ax,, by the abbreviatiom2k wherek=1 ... 6. The ex-
3.3 Intersection of the Lines ofdB~Y%dx;A and the Lines pressions off21 throughT26 are given in the Appendix-A2.
of B~*dA/dx;. Recalling the definition oK and matrixB (sec- By substituting the expressions of thix columns ofT1k and

tion 2) and observing Eq(11), one concludes that the last threel2k, k,i=1...6 in Eq.(32) one can see that E(B2) is fulfilled.
planes ofdJ/dx, i.e., 3/ dx, (k=4,5,6) are the translated lines of This means that the lines dil and the lines off 2 intersect each

9Aldx, (k=4,5,6) under the transformatidi*. other. This completes the proof that the derivativesbfwith
This can be written as: respect to position variables are groups of lines. In total, we ob-
tained 36 lines divided to six line-sextuplets with each line-
o3T A sext_qplet r_epres_,enting_the derivative .il_ﬁ with respect to one
—_ Bl i=456. (31) position/orientation variable of the moving platform.
% % 3.4 Simulation Results. Numerical and graphical simula-
) o ) tions are given below in order to visualize the results. Figure 5
It remains to prove that the derivatives with respect to the Cartgnows the lines of the Jacobian matrix with arrows indicating the
sian coordinatesiJ/dx; for i=1, 2, 3, represent lines. In order togijrection of the internal forces of the linear actuators. The dashed
prove this, one must prove that the linesd ™ */dx;A intersect |ines in Fig. 5 are the lines of the derivative 3f with respect to
the lines ofB™*9A/dx; . the x coordinate of the moving platform.

The following proof relies on the condition of intersection
between two given lines,1=[ly,l5,13,04.15.16]" and m
=[m;,m,,mg,m,,ms,mg]". This condition is given in Eq(32)
and has the interpretation of the moment of a force acting alor~
line | about linem [23].

[1my+1oms+1smg+1,m;+1smy,+1gm;=0 (32)

This is proven symbolically using Maple@ symbolic manipu-
lation program and also verified numerically with a numerical , |
and a graphical simulation using Matlab®. ’

Theith column of A andith row of J are given by Eq(33).
Theith rows ofJ,, Jg, andJ, are given in Appendix-Al.

\

AN
\
“A

I

‘]i = [Caivcﬁiycyiv poBi - pycyi + biyc'yi - bizCBi’ - pZC(xi + pXC‘yi 014 ;
+b; c,—bjC,,PyCo—PxCa th; Cs—Dbj C, ] 0.05
1274 Y Py a; X* Bi ix"B; ly~a (33) .
AI:[Cai'cﬁi’cyi'biycﬁ_bizcﬁi'bizcai_bixc'yi’bixCBi_binai] .0'1%

In the following sub-sections we formulate the derivative
dB~Y/dx A andB~19A/dx; . The resulting expressions are used
in Eq. (32) to complete the proof that the derivatives of the Jac@sig. 5 The lines of the Jacobian and the lines of its derivative
bian are lines. with respect to x coordinate
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Numerical Example:

The following are numerical results of a simulation of the Stewart-Gough 6-6 platform with a moving
having radii of 0.05 and 0.09 m, respectively. The moving platform is positiongd=ht0.1, —0.02, 0.0

and rotated 30 degrees

about the axi$1, 1, 1] relative to the Cartesian coordinate system in Fig. 5. Equat@B)gjive the transpose of the Jacobian matrix and
its derivatives with respect to x, anj, as an example.

~0.5742 —0.6348 —0.2662 —0.1886 —0.6702 —0.579
-0.3223 —0.2715 —0.0610 —0.3012 0.0799  0.3001
07526 07234 09620 09347  0.7379  0.75]9
“| 00154 00322 00245 —0.0441 —0.0349 0.0109
~0.0269 0.0070  0.0317 0.0196  0.0107-0.0270
0.0002 00309  0.0088 —0.0026 —0.0328 0.0190
3.3431 24014 49488 58132 27368  3.4710
—0.9232 —0.6932 —0.0866 —0.3424 0.2661  0.9080
A" 21555  1.8473  1.3640  1.0626 24570  2.2932
o | 00440 00823 00348 —0.0501 —-0.1161 0.0330 (36)
-0.1226  0.0976  0.1547 —0.0075 —0.0213 —0.1594
-0.1208 —0.0703 —0.1163 02719 01316  0.013
(-0.1226 0.0976  0.1547 —0.0075 —0.0213 —0.159)
-0.0433 00076 00103  0.0355 —0.0043  0.0423
g(J) | —0.1121 00885 00435  0.0099 —0.0189 —0.1386
96, | —0.0169 00105 00032 0.0057  0.0005 0.01§5
00373 —0.0272 —0.0252 0.0011  0.0059  0.0474
[ 0.0041 -0.0092 —0.0054 0.0004 —0.0019 —0.001)

It is easy to see, using Eqel) and(32), that the columns ad”
and its derivatives intersect each other and that the columns of tress effect of introduced “preloadbias forces stemming from,

derivatives ofJT are a group of lines.

In the remaining part of this papésections 4—pthe impor-

Unlike the definition in[24], this definition includes the stiff-

e.g., gravity or external loadn non-redundant manipulators, or

antagonistic actuation in redundant robots. This effect is expressed

tance of the derivatives af" is emphasized for active stiffnessby the termaJ;/ dx;7, which is referred to as the “active stiff-
control (stiffness modulationin redundant parallel robots. It will ness” or “antagonistic stiffness[25]. The other term in Eq(37)
be shown that, in particular, this line-based formulation simplifigs referred to as the “passive stiffness” of the manipuldior,26.

the analysis of stiffness modulation singularities.

Denoting thejth column ofJ by JJ and treating the m actuators of
the robot as springs with a stiffness mati; in joint space

platform and a base platform

L L . results in:
4 Application of the Derivatives of the Jacobian to

Stiffness Control —=JTK I

Stiffness analysis of parallel manipulators plays a key role in 9Am 9X;

determining the degree of adequacy of a given robot to a specificstiffness modulation is possible when actuation redundancy is
task that involves interaction with the environment. This sectigtroduced to the system, thus, allowing the use of antagonistic
relates the Jacobian derivative with active stiffness control, alggtyatiorn[17,27—-29. In this case, the actuation forces are divided

known as stiffness modulation. The interpretation of this derivanto 7 and 7, , where 7, denotes the actuation forces balancing

tive as lines is helpful in determining to what extent the stiffnesge external load and, denotes the internal actuation fora@s-
can be controlled. tagonistic actuation forcgsAntagonistic actuation forces do not
affect the net force applied by the moving platform on its envi-

4.1 Active Stiffness and the Derivative of the Jacobian. ronment since they belong to the null space of the Jacobian ma-

The stiffness matrix maps the change of the wrench that the roliox, Eq. (39).

applies on its environment with the twist deflection of the moving

platform. Denoting theth row of J7 by J!, one can write the

elements of the stiffness matrik,, as:

b _ o0l
Uax ax; X;

a7 JdQqm

‘]Tﬁ—‘]rz _

i (?Xj - = (38)

=7t1 J7=F J7=0 (39)

Equation(37) can be rewritten in a matrix form as in E@0),
where the matrixdJ'/dx, is a three-dimensional matrix, as in Eq.
(11), with the dimensions of 8mXx6 for m actuators fi>6).
The multiplication in Eq.(40) should be performed according to

T
T
7% (37)
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Eq.(37), i.e., in order to obtain the active stiffness elemédt;, , Previous workq16,25,26,28 addressed the problem of active
one should take the scalar product of tlie row of thejth plane stiffness generation via redundancy and mentioned “second order

in the three- dimensional matriglJ"/dx, with 7. geometric singularities” that prevent exact stiffness modulation.

All the above-mentioned works dealt with non-fully parallel ma-

g7 237 nipulators having serial chains supporting the moving platform.
K=——7+ JKJ=K1+K2 Kil= i K2=J"Ky4J The formulations in these works lead to a matrix similad tthat

(40) is composed of an augmented Hessian matrix. The singularities in
stiffness modulation were attributed in these works to both the
4.2 Stiffness Directions and the Derivative of the Jacobian singularity of the Hessian matrix and the singularities of the Jaco-

Equation(37) can be written in a matrix form as: bian. However, geometrical interpretations were given to the sin-
gularity of the Jacobian only. In the above-mentioned investiga-
AFo=KAxXx=KIAx;+K2Ax,+ K3A X5+ K4AX, tions the definition of the Hessian matrix varied from one work to
another. Yi, Freeman, and Tesét6,26 defined an augmented
+K5Axs+KBAXg (41) Hessian matrix having the Hessians of the inverse kinematics

functions of the serial chains, whi[@5] defined this augmented

whereK' denotes thé'th column of the stiffness matri¥<, AF, Hessians matrix based on the Hessians of the auxiliary equations
the change in the reaction wrench of the moving platform on it§at relate the values of passive joints with the values of the active
environment for a positional perturbatidx. ones. These matrices were not given a geometric interpretation as

Equation(41) shows tha', theith column ofK, is the stiff- lines of the Jacobian and it_s deriva_tives since the Jacobian matrix
ness in thex; direction since it determines the net change in thef @ non-fully parallel manipulator is generally not composed of
moving platform’s reactionAF,, for a perturbation in they di- rows of lines. o ) .
rection. Larger norms of this column cause higher reaction forceThe present investigation shows that an arbitrary stiffness
of the robot for the same displacement. modulation is precluded iflA/dx or A are singular. We also ob-

By Egs. (40), (41), the ith derivative of the Jacobian matrix tain, _fc_)r the first time, a geometric interpretation to the singularity
maps the joint effortsy, into theith column of the active stiffness conditions ofdA/dx.
matrix, K1, thus, modifying the stiffness of the robot in its corre-
sponding direction in the Cartesian world.

Next, the effect of the singularitiegank deficiency of the . . . . ~
Jacobian derivatives on stiffness modulation capabilities § Geometric Interpretation of the Singularities of J

presented. In this section we will prove that the singularity df has a
geometric interpretation and is directly related to the linear depen-
dencies of the lines 0bA/dx;. The cases wheré is singular

. . . (rank(@)<n) are excluded since in these cases the robot is singu-

5 _Stlffness Control in R_edqndant Robots and Singu- lar from structural rigidity considerations. We also limit the dis-

larity of the Jacobian Derivatives cussion to the cases where the number of actuatgrylfills m

Equation(37) gives the expression of the elements of the stiff=2n which means that there are enough redundant actuators to
ness matrix. The equation for theh column of the stiffness ma- fully control a column in the active stiffness matrikl, of Eq.

trix is given by: (40).
proof:
AL ar " : N .
Kl=— 74+ J"—= — 7+ J'KJ! (42) From the definition of] and Eq.(11) one obtains
X ax; X

T -1

The fi ibuti J=—(1-3"0")= A+ B‘la—A)(I—JT+JT) (45)
e first term of Eq(42) corresponds to the contribution of the X X

active stiffness gained by redundant actuation. If a given stiffness ) !
is required, then the unknowns in Eg2) are the actuator forces, By Eq. (9) and the fact thaB~! is a non- singular square
7, needed to cause the required stiffness colhnThe general matrix one obtains:

solution of the static equilibrium problertEq. (2)) is given b

[30]: q b q ’ g J7I =B lA)"(BlA)=A*B 1B lA=ATA  (46)

IX;

_ Tt T aT (Note that we usedg *A)*=A*B~1" which is true only ifB~*
=3 Fet(1=37J)¢ (43) andA are of the same rank, i.eA (andJ) is non-singular.

where theJ”" indicates the Moore- Penrose pseudo inversa'of

and (—J7 J") is a projector of any arbitrary actuation intensities
vector £ R™ to the kernel of]J". The minimum-norm solution
for ¢ that satisfies Eq42) is given by:

~.| RN LI -
£=J% K’—JTKdJJ—WJT Fo|=Jb (44)
]

whereJ is given byJ=aJ3"ax;(1-37 J7).

Equation(44) has an exadtcompatible solution in the general
case only if rank §)=n where n is the number of the robots’
degrees-of-freedom. By the definitidnit is clear that ifaJT/ax,« (b)
is rank-deficient then in general there is no exact solution to Eg.

(42). We note that additional singularities dMmay also stem from Fig. 6 Line and flat pencil singularities of the derivatives of

the matrix ( —JT+JT). the matrix A
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(b)

Fig. 7 Line and flat pencil singularities of the Jacobian

S0

59.739333

110.202632

Fig. 8 A planar redundant parallel manipulator in a stiffness
modulation singularity

Applying the properties of the generalized inverse, the first ter

on the right-hand side of in E¢45) vanishes:

BB A B paea

X ( )= X X
—aBilA aBilA—o 47
X ax; (47

then:

- alr N IA

Y gt a1 At

J axj(l J7IH)=B axj(l AtA) (48)

Thus, we proved that the singularity dfstems from the singular-
ity of dA/dx; .

Table 1 Singular values of J ~

3, 3, 3,
1.2050 1.0353 1.3279
0.6957 0.9204 0.7667
9.330%-006 4.7368-016 5.5248-006
0 0 0
0 0 0
0 0 0

6(a)] and point singularityFig. 6(b)] of JA/dx; for a planar 3
DOF non-redundant manipulator. In both configurations the ma-
trix J has a rank of 2, which means that E¢3) has no exact
solution for an arbitrarK’. Figure 7a) and 7b) show flat pencil
and point singularities of the matrik (andJ).

Figure 8 illustrates a redundant planar parallel manipulator with
six linear actuators. The dimension of the nullspace of the Jaco-
bian of this planar robot is 3 or higher. This means that we can
control the stiffness elements in theh column of the stiffness
matrix provided that rank of the matri associated with this
column is no less than 3.

The manipulator in the configuration of Fig. 8 illustrates a sin-
gularity of J (rank{@)<3) caused by flat pencil singularity of
dAlax; since the lines oBA/Jx; intersect in one point as shown
in the figure. The singular values dfare given by Table 1, where
the J, is associated with the derivative of the Jacobian with re-
spect to the X coordinatd, with respect to the Y coordinate and
Jy, With respect to the rotation about the Z axis. The third singular

value is small enough to indicate singularitgractically J has
rank 2 since the formulation of and the SVD process have cu-
mulative numerical errors and because the dimensions in Fig. 8
were given with 6 digits accuragy

Conclusions

This paper presents a line-based analytical formulation to the
derivatives of the Jacobian of parallel robots. The derivatives were
mken with respect to the position/orientation variables of the mov-
ing platform rather than time or active joints’ variables. The Jaco-
bian derivatives formulation resulted in 36 lines divided into six
line-sextuplets, each one representing the derivative of the Jaco-
bian with respect to one position/orientation variable of the mov-
ing platform.

The problem of controlling the stiffness of the robot in Carte-
sian spacdalso known as the stiffness modulation probjemas
solved and each derivative of the Jacobian was associated with
active stiffness modification in a corresponding direction in space.
The significance of the line-based formulation of the Jacobian
derivatives for stiffness modulation was emphasized and used to
interpret stiffness modulation singularities of redundant parallel
robots. It was shown that these stiffness modulation singularities
are function ofA (the instantaneous direct kinematics matard
its derivative. This interpretation allows the use of line geometry
tools for stiffness modulation singularity analysis similarly to the
line-based structural rigidity singularity analysis of parallel robots.
In this sense, this paper adds to the knowledge of previous inves-

The importance of this proof is that it is easy to visualize thégations that analyze the stiffness modulation singularities stem-
lines of 9A/dx; for planar manipulators and special cases of spaiing only from the classical first-order singularities of the Jaco-

tial manipulators. One should recall that the linesi8f 9x; pass

bian matrix.

through the joints in the base platform and are perpendicular toThe authors believe that the line geometry-based formulation of
the actuators. For planar robots, when more than two lines thie Jacobian derivatives facilitates the geometrical interpretation
dAldx; intersect at one point it causes flat pencil singularity of thef rigidity, stability and dynamics that are based on the derivative

Jacobian derivatives. Figure 6 shows a flat pencil singullity.
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Appendix A-1

Theith rows of the Jacobian,, Jg, andJ, are given by:
r N
] Sa; Calp, Caly, ca’_p:cﬂ’_—car_pycy’_+ca’_biycy’_—ca’_bizcﬂ’_
“ q;i’ q4iSa, ' q4iSa, ' 9iS o '
2 2 2 2
—qicy’_+p:sa’_—bizsa’_+ca’_pxcy’_—ca’_bixcy’_ qicﬂ’_—pysa’_+biysa’_—car_pxcﬂ’_-l—ca’_bixcﬂ’_
qisa,- ’ qisa,-
2 2
Calp, Sp, Cply, q,vcy’_—p:sﬂ’_+bizsﬂ’_—cﬂ’_pycy’_+cﬁ’_biycy’_
[Jsli= T , )
q4:5g; q; 4qi5p, 45,
S 2 2 ’
—ca’_p:cﬂ’_+cﬁr_pxcy’_+ca’_bizcﬂ’_—cﬂ’_bixcy’_ —qica’_-l—pxsﬂ’_—bixsﬂ’_+cﬂr_pyca’_—cﬂ’_biyca’_
458, ’ q:5 B,
2 2
(0] Caly, CpCy, Sy, —qicﬂ’_+pysy’_—bivsy’_+cyr_p:cﬂ’_—cy’_bizcﬂ’_
Jyli= ) T, - )
7 qiSy,  4iSy, q; 48+,
2 2
GiCa,PxSy, this, —Cypcotey by ca’_pycy’_—cﬁ’_pxcy’_-l—cﬁ’_bixcy’_—ca’_blycy’}
L qisy,- qisy,- J
Appendix A-2
.,6.

The following equations give the explicit expression of ttte column of T2K, k, i=1, ..
bizcaicﬂi biycaicvi

Sii CoCp CoCy PLaCp  PyCoyCy,
T21=| —,— — — + + ,
i i i i i *] i
pZSii PxCa;Cy, bizsii bixC“iCVi pys‘z"i PxCq;Cp; biys‘z"i bixCaiCBi
— — + s + —
q; i *] q; i i i i
T2 Cflicﬁi szi CB C7i pzsf%i pyCBiCyi bizséi binBiC}/i pzcaicﬁi pXCBiCYi
=|— Nt ) + )
i i i [°] i di i i *]
biCaCps  DiCsCy  PyCaCp PxSh bi Ca,Cp bixséi}
- + ,— — + +
Qi i °] i i *]
2 2 2
CaCy  CpCy Sy PLC, PyS; bicgc, bis, pc,c,
T23=| — ,— =, + + ,
i i i i i i i i
pxsi’i bizC“iCVi bixsii PyCqCy  PxCpCy bin“iCVi bixCBiCVi:|
+ ,— + +
i i i di i i *]

- Cﬁipycyi + CBibinVi + quVi _pzsfs‘*'bizszﬁi

caipzcﬂi—caipycyinLcaibi c,/i—cﬂibizcﬁi
T24=| — ! . :
q; q;
—cyibizcﬁi—#c,/ipzcﬁi—qicﬁi+pysii—biysii pz(_CBipyCyi+Cﬁibiycyi+Qicyi_pzsf?ierizséi)
Qi ' Qi
N Py(—C,bi Cp +C,PCs—diCp+ pysii—biysii) N bi (= CPyCy,+CpbiCyHaliCy, pzs§i+bizs§i)
di di

bi, (=€, bi,C4,+ €, PoCs —GiCs + PyS3, —bi S3) PoCaPoCp— CaPyCyyt Cabi €y = CaiDi C)
' Qi

- di
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2 2
Px(— Cyibizcﬁi FCy P2~ diCp + PyS,, — binVi) biz(caipzcﬁi ~CaPyCy,t C“ibiyc“yi B C“ibilcﬁi)

di di
bi, (= Cybi,Cp+CyPoCs ~GiCs T PyS3 i S3)  Py(CaPuCp —CaPyCy+Cabi €y = CabiCp)
+ =
i i

Bi, (= Cybi,Cp,+ CyPoCp — UiCh + pysii B biysz’i)

py(cai pzcﬂi - Caipycyi + Caibiycyi - Caibizcﬁi)

+
i

i

2 2
Px(—Cp,PyCy, + cﬂibiycyi +0iCy, — PSS+ bizsﬁi) pz(CaipoBi— Cu,PyCy, T caibiycyi - caibizcﬁi)

+
i

*]

2 2
Px(— Cnbizcﬂi +Cy,P;Cp —diCp +PyS; — biysyi) biz(cuipzcﬁi— Cq,PyCy + caibiycyi - caibizcﬁi)

i

bix( B Cyibizcﬁi t Cyi pZCIBi - qicﬁi + pys?/i N biysii)

i

py(cai pZCBi - Caipycyi + Caibiycyi - Caibizcﬂi)

+
i

i

2 2
Px(—Cp,PyCy,+ cﬁibiycyi +0iCy, — PSS+ bizSBi) . biy(cai P2Cp,—Ca,PyCy+ caibiycyi - Caibichi)

+
i

2 2
bix( —Cp,PyCy,+ cﬁibiycyi +0iCy,— P,S, + bizsﬁi)

i

2 2
Ca,PxCy, —Ca bi Cy = TiCy, + DS, — b S5,

i

—CqPsCp T CpPxC, +Cy T Caibizcﬁi — Cﬁibixcvi

T25=| - -
°]

_ P S
CVibizC“i CyPzLo; +GiCy, px57i+b|xs7’i

i

P2(—CyPCp +CpPxCy +Co b Cp—Cpbi )

i

i

2 2
Py(Cy D Co = CyP2C, T 0iCa —PxSy, D SY) i (—Co P2Cp +CpPxCy, +Cobi €5 —Cpbi C,))
+ +

i

°]

by (Cy,bi Cay = Cy\PaCa, + UiCa, ~ PuSy, D1 5) PolCaPuCy = Co By €y = 0iCy, + PS5 — by S7)

i

i

17

P(Cy,Di Ca, = Cy P+ 0iCa,~ PuS, D1, S5) Dy (CoPxCy = Co by € —iC, + PS5 — by S%)

°]

i

bi (€01 Co, = Cy\P Loyt UiCa,~ PS5, TD1S5)  Py(CaPxCy,— Cabi €y —iC,, + PS5 — by S5)

+
i

Px(—Ca,PCp, T Cp,PxCy, + Cubi Cp, —

Cp,D1,C) PoCaPACy — Co b1 Cy —GiC,, +PS7, —bi S3)

i

i

[*]

17

P(Cy,Di Ca, = Cy P+ 0iCa, — PuS5, D1 S5) Dy (CoPxCy = Co by €y —iC, + PS5 — by S%)

di

i

by (Cy,Di Co, = Cy\PoCay T UiCa,~ PS5, TD1S5)  Py(CaPxCy— Caby €y —iC, + PS5 — by S5)

+
i

i

2 2
px( - Caipzcﬂi + CBi pXCyi + Caibizcﬁi - Cﬂibixcyi) n biy(cai pxc'yi - Caibixcyi - qic'yi + szai - bizsai)

i

bix( —CqPsCp,+Cp PxCy, + caibizcﬁi — Cﬁibixcvi

)

i
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_ . . _ 2 2 _ . A 2 K &2
caipxcﬁi+caiblxc/3i+q|cﬁi pysai+b|ysai cﬁib,ycai+cﬁipycai 0iCa, T PxSp, b'xsﬁi

T26=| — ,— )
i ;
2 2
Ca,PyCy, —Cp PxCy, + Cﬁibixcvi — (:aibiycyi p,(— c,;ibiycc,i +CpPyCq, ~ UiCo T PxS bixsﬁi)
i ' i
_ . A 2 K 2
. py(cai pycyi—cﬁipxcyi+cﬁibixcyi—caibiycyi) . biz( c,,jiblycai+cﬁipycai 0iCa, T PxSp, bleBi)
i i
2 2
bi (€4, PyCy, = CpPxCy, T Cp DI Cyp = Cabi Cy) Pol—CaPxCp+Cabi Cp +0iCs— PyS,, i S5,
i ' Qi
2 2
B pX(CaipyCyi —CpPxCy + Cﬁibixcyi - Caibiycyi) biz( ~CyPxCp, T Caibixcﬁi +0iCs— PySy, biysai)
°] i
2 2
bix(cai pycyi - C,Bi pXC'yi + cﬁibixc'yi - Caibiycyi) py( - CaipXCBi + Caibixcﬁi + quBi - pysai + biysai)
i ' i
2 2 2 2
py(— c,;ibiycai +CpPyCs —GiCo, T PxSp,— bixsﬁi) . biy( —Cq,PxCp, T caibixcﬁi +0iCq- PySq, + biysai)
°] °]
2 2
by (= CgPy Cuy € PyCa, ~ GiCa + PSF, b1, S5)
i
[
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