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This paper presents a closed-form formulation and geometrical interpretation of the
rivatives of the Jacobian matrix of fully parallel robots with respect to the moving p
forms’ position/orientation variables. Similar to the Jacobian matrix, these derivatives
proven to be also groups of lines that together with the lines of the instantaneous d
kinematics matrix govern the singularities of the active stiffness control. This geom
interpretation is utilized in an example of a planar 3 degrees-of-freedom redundant r
to determine its active stiffness control singularity.
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1 Introduction
Line geometry has been applied by several researchers to

kinematics and statics of parallel manipulators@1–7#. Line geom-
etry is used because the rows of the Jacobian matrix in a line
actuated fully-parallel manipulator are the Plu¨cker line coordi-
nates of the axes of its extensible links@8#. Hence, linear depen
dency of these lines determines the conditions for instability
singularity of a parallel manipulator as Dandurand@9# has shown
in the context of stability of spatial grids.

In contrast to the numerous investigations devoted to the
mulation of parallel manipulators’ Jacobian matrix e.g.,@10–13#,
there are only a few studies addressing the formulation of
derivative. Dutre´, et al.,@14# addressed this problem and obtain
a closed form analytic expression for the derivative of the inve
Jacobian matrix with respect to time and with respect to the ac
joint variables. Merlet and Gosselin@15# formulated the time de-
rivative of the Jacobian of a fully parallel manipulator for use
acceleration analysis.

Duffy @16# presented the infinitesimal motion and stiffne
analysis of a planar parallel manipulator and obtained a stiffn
matrix of the manipulator with a preloaded spring model.
showed that the part of the stiffness matrix that corresponds to
preload effect is a product of two matrices having line-coordina
as their columns.

This paper is organized as the following: the first part, secti
2 and 3, formulates the derivatives of the Jacobian matrix w
respect to the moving platform position/orientation variables a
associates a geometric interpretation to these derivatives as g
of lines. These derivatives play a major role in stiffness analy
and control~modulation! @17,18#, dynamic manipulability analysis
@19#, and force-controlled compliant motions@14#. The second
part, section 4 emphasizes the contribution of these derivative
manipulator’s rigidity and active stiffness control and relates e
one of these Jacobian derivatives with a direction of the contro
stiffness. Section 5 relates singularities of the Jacobian derivat
with singularities of the stiffness control scheme and singulari
of the derivatives of the instantaneous direct kinematics matrixA,
presented in the next section. Section 6 shows that the stiff
modulation singularities can be obtained by line-based interpr
tion of the Jacobian derivatives and the instantaneous direct k
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matics matrix. Finally, an example of this singularity for a plan
3 degrees-of- freedom redundant parallel robot is presented
stiffness modulation singular position.

2 Jacobian Formulation
Consider a general Stewart-Gough type parallel manipula

subject to a wrenchFenv5@ fenv
T ,menv

T #T applied by the en-
vironment, Fig. 1. Let the position/orientation vector of th
moving platform relative to world coordinate system beX
5@x,y,z,ux ,uy ,uz#

T, wherex, y, z are the Cartesian coordinate
andux , uy , anduz are three orientation variables of the movin
platform, and letẋ denote the end effector twist andq̇ the corre-
sponding active joints’ rates.

For parallel manipulators, the commonly used expression of
Jacobian matrix is:

q̇5Jẋ, S Ji j 5
]qi

]xj
D (1)

which is the inverse of that of serial manipulators’:ẋ5Jq̇, (Ji j
5]xi /]qj ).

In this paper we use the Jacobian,J, in Eq. ~1! to map the end
effector twist,ẋ, to active joint rates,q̇. This Jacobian matrix is
also used to relate the required active joints’ forces,t, for a de-
sired external wrenchFe5@ fe

T ,me
T#T to be exerted on the environ

ment (Fe52Fenv).

JTt5Fe (2)

the
d

Fig. 1 Typical Stewart-Gough manipulator
003 by ASME MARCH 2003, Vol. 125 Õ 33
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Using the loop closure method@19#, or the static equilibrium
method@4,9,10#, along with Eqs.~1! and ~2!, respectively, yields
the commonly used formulation of the Jacobian matrix.

J5F l̂1
T ~wRpu13 l̂1!T

] ] ]

l̂6
T ~wRpu63 l̂6!T

G (3)

where l̂ i denotes a unit vector along thei th active prismatic joint
pointing from its joint at the base to its joint at the moving pla
form. The platform-attached and the base-attached coordinate
tems are referred to by the lettersP and W, respectively, Fig. 1.
Accordingly,wRp is the rotation matrix fromP to W, andui is the
constant position vector of thei th joint in P, Fig. 1.

In order to interpret the Jacobian matrix as lines, the follow
basic definitions of line geometry are reviewed. A given sextup
of numbers@ l vx ,l vy ,l vz ,l mx ,l my ,l mz#

T represents a line in spac
only when it belongs to a five-dimensional quadratic manifo
called the Grassmannian@1,20#, the Plücker hypersurface@21,22#
or Klein quadric@6,20# or, in other words, it fulfils Eq.~4!.

1vx1mx11vy1my11vz1mz50 (4)

Observing Eq.~3!, it is clear that the rows of the Jacobian a
the Plücker ray coordinates of lines along the prismatic actuato
This geometrical interpretation is correct in a coordinate sys
having its origin attached to the moving platform. In this rep
sentation each row of the Jacobian matrix is a function ofwRpui

and the direction numbers ofl̂ i , which are both functions of the
moving platform position.

2.1 The Lines of the Jacobian Matrix in World Coordinate
System. Consider another representation of the Jacobian ma
in the form:

Jb
Tt5Fb (5)

whereFb5@ fb
T ,mb

T#T represents the wrench exerted by the ba
rather than the moving platform on the environment, Fig. 2.
using simple statics equations and representingFb by Fe one ob-
tains:

At5BFe (6)

where:

A5F l̂1 ¯ l̂6

b13 l̂1 ¯ b63 l̂6
G B5F I 0

@p3# I G (7)

I2333 unit matrix
bi2position vector of the spherical joint of thei th prismatic ac-
tuator at the base inW coordinate system.
@p3#2skew-symmetric matrix representing vector multiplicatio

Fig. 2 Static equilibrium on base and moving platform
34 Õ Vol. 125, MARCH 2003
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@p3#5F 0 2pz py

pz 0 2px

2py px 0
G (8)

Equations~5! and ~6! yield:

JT5B21A (9)

WhereB21 is given by:

B215F I 0

@2p3# I G (10)

Contrary towRpui , which is a varying vector inW, the vector
bi is constant inW. This simplifies the expression of the derivativ
of JT. In this formulation, the lines ofA pass through fixed points
bi , in W and therefore their derivatives are easily shown to
lines as will be shown later.

The physical interpretation of multiplying a Plu¨cker line’s co-
ordinates by the matrixB21 is a translation the line while main
taining its direction. Figure 3 shows a 6-6 Stewart-Gough p
form manipulator with the lines of the Jacobian inW indicated by
thin arrows. Another important feature ofB21 is that its determi-
nant is equal to 1, which means that the above multiplication,
~9!, does not add to the singularities ofJ.

3 Formulation of the Derivative of the Jacobian
Matrix

The derivatives ofJt with respect to the moving platform’s
position variables is obtained from Eq.~9! as:

dJT

dx
5

dB21

dx
A1B21

dA

dx
(11)

The matricesdJT/dx, dB21/dx, dA/dx are three-dimensiona
63636 matrices for non-redundant six degrees-of-freedom m
nipulators. Thei th plane of these matrices is their derivative wi
respect to thei th position/orientation coordinate,xi , of the mov-
ing platform.

The multiplication in Eq.~11! is performed plane by plane, i.e
the derivative ofJt with respect to thei th position/orientation
variable is obtained by multiplying thei th planes ofdB21/dx and
dA/dx with A andB21, respectively.

The derivative ofB21 is simple and yields a matrix whos
structure is similar toB21 so the first expression on the right han
side of Eq.~11! yields a matrix whose columns are the translat
lines of A under the transformationdB21/dx. If the derivative
dA/dx yields a matrix whose columns are also lines and the tra
lated linesB21dA/dx intersect the lines ofdB21/dxA, then the

Fig. 3 Lines of the Jacobian in W „world coordinate system …
Transactions of the ASME
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derivative ofJT is also a matrix with lines as its columns. This
true since any linear combination of two given intersecting lin
spans a flat pencil of lines@21#.

3.1 Derivative of the Matrix A. The matrixA in Eq. ~7! is
composed of the lines along the robot’s prismatic joints. Each
vector along these lines is characterized by its direction cos
a i , b i , andg i , Eq. ~12!.

l̂ i5@cos~a i !, cos~b i !, cos~g i !#
T (12)

The matrixdA/dx is a three-dimensional 63636 matrix with the
i th plane,]A/]xi , being the derivative ofA with respect to thei th
position/orientation coordinate,xi , of the moving platform. Since
A has the linesl i as its columns, we are interested in finding t
derivatives of these lines.

Using Eq. ~7! while keeping in mind that the vectorsbi are
constant one can write:

]A

]xi
5F ] l l

]xi
•••

] ln
]xi

G (13)

where

] l j

]xi
5

] l i
]a j

]a j

]xi
1

] l i
]b j

]b j

]xi
1

] l j

]g j

]g j

]xi
(14)

In order to write Eq.~14! in a matrix form, we define three
matricesdA/da, dA/db, anddA/dg.

]A

]a
5F ] l1

]a1
¯

] ln
]an

G ]A

]b
5F ] l1

]b1
¯

] ln
]bn

G ]A

]g
5F ] l1

]g1
¯

] ln
]gn

G
(15)

We also defineJda i
, Jdb i

, Jdg i
as three diagonal matrices havin

on their main diagonals thei th columns ofJa , Jb , andJg respec-
tively, whereJa , Jb , andJg are given by:

Jam,n
5

]am

]xn
, Jbm,n

5
]bm

]xn
, Jgm,n

5
]gm

]xn
(16)

Using these definitions one can write Eq.~13! in matrix form as:

]A

]xi
5

]A

]a
Jda i

1
]A

]b
Jdb i

1
]A

]g
Jdg i

(17)

The derivatives of the lines with respect to their variables~keep-
ing in mind thatbi are constant! are:

] l i
]a i

5@ lva
T lma

T #T lva5@2sin~a i !,0,0#T

lma5@bi3~2sin~a i !,0,0!#T (18)

] l i
]b i

5@ lvb
T lmb

T #T lvb5@0,2sin~b i !,0#T

lmb5@bi3~0,2sin~b i !,0!#T (19)

] l i
]g i

5@ lvg
T lmg

T #T lvg5@0,0,2sin~g i !#
T

lmy5@bi3~0,0,2sin~g i !!#T (20)

It can be seen that Eqs.~18!–~20! are also lines that intersect th
lines of the matrixA at pointsbi .
For each linel̂ i , the direction cosines are related by Eq.~21!:

cos~a i !
21cos~b i !

21cos~g i !
251 (21)

Differentiating Eq.~21! with respect toxi and solving for]g i /]xi
yields:

]g i

]xi
5

2ca i
sa i

cg i
sg i

]a i

]xi
1

2cb i
sb i

cg i
sg i

]b i

]xi
(22)
Journal of Mechanical Design
s
es

nit
nes

e

g

e

Where the abbreviationssa and ca stand for sina and cosa
respectively.
Substituting Eq.~22! in ~14! and eliminating]g i /]xj yields:

] l i
]xj

5
]a i

]xj
@pi

T ~bi3pi !
T#T1

]b i

]xj
@r i

T ~bi3r i !
T#T

(23)

pi5F2sa i ,0,
ca i

sa i

cg i

GT

r i5F0,2sb i
,
cb i

sb i

cg i

GT

The first and the second brackets in the expression of] l i /]xj in
Eq. ~23! are the 631 column vectors] l i /]a i and ] l i /]b i , re-
spectively. Both these brackets represent lines according to Eq~4!
and it is easy to see that both lines are perpendicular tol i . The
expressions]a i /]xj and ]b i /]xj are scalars. Consequently, th
columns of]A/]xi in Eq. ~13! are lines that pass through th
spherical joints in the pointsbi and belong to the flat pencils o
] l i /]a i and] l i /]b i . This interpretation will prove to be helpfu
in section 6 where geometric interpretation to the stiffness mo
lation singularities is sought.

Summarizing this section, we conclude that the lines of
derivative ofA are perpendicular to the lines ofA and intersect
them in the pointsbi , i.e., in the spherical joints at the bas
platform. This fact is used to show that the derivative of the Ja
bian matrix, Eq.~11!, is also a group of lines.

3.2 Explicit Expressions ofJa , Jb , and Jg. The explicit
expressions ofJa , Jb , andJg which constitute the derivative o
A, Eqs. ~17! and ~16!, are developed below. Figure 4 depicts
fully-parallel robot with six independent closed loops. Each lo
is governed by the loop equation:

p1wRpui5bi1qi l̂ i (24)

where qi represents the length of thei th prismatic joint,p the
position of the moving platform inW. Taking the time derivative
of Eq. ~24! yields:

ṗ2wRpui3
wvp5q̇i l̂ i1qi l̇̂ i (25)

where wvp the angular velocity of the moving platform inW.
Rewriting the right-hand side of Eq.~25! in terms of the vector
of linear/angular velocities of the moving platform,ẋ
5@ ṗT (wvp)T#T, yields:

ṗ2wRpui3
wvp5@ I ,@2~wRpui !3## ẋ[M i ẋ (26)

Expressionq̇i l̂ i in Eq. ~25! is expressed in terms ofẋ by using the
velocity relationq̇5Jẋ with reference to thei th row of J asJi ,
and using Eq.~12! for l̂ i :

q̇i l̂ i5F cos~a i !Ji

cos~b i !Ji

cos~g i !Ji

G ẋ[Ni ẋ NiPR336 (27)

Substituting back into Eq.~25! yields:

qiF2sin~a i !ȧ i

2sin~b i !ḃ i

2sin~g i !ġ i

G5@M i2Ni # ẋ M i ,NiPR336 (28)

Fig. 4 Kinematic closed loops
MARCH 2003, Vol. 125 Õ 35
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Solving Eq.~28! for its unknownsȧ i , ḃ i , andġ i yields:

ȧ i5F 21

qi sin~a i !
@M i2Ni #1G

ẋ

, ḃ i5F 21

qi sin~b i !
@M i2Ni #2G ẋ,

ġ i5F 21

qi sin~g i !
@M i2Ni #3G ẋ (29)

Where@M i2Ni # j is the j th row of @M i2Ni #, j 51, 2, 3.
Equation~30! gives thei th rows ofJa , Jb , andJg as:

@Ja# i5F -1

qi sin~a i !
@M i2Ni #1G , @Jb# i5F 21

qi sin~b i !
@M i2Ni #2G ,

@Jg# i5F 21

qi sin~g i !
@M i2Ni #3G (30)

This completes the formulation of the necessary terms in Eq.~17!
and, thus, the derivative ofA is fully defined and proven to be
matrix whose columns are lines. These lines are perpendicula
the lines ofA and interest them at the spherical joints at the ba
bi . What remains is to show that the sum of the terms in Eq.~11!
gives a set of lines.

3.3 Intersection of the Lines ofdBÀ1ÕdxiA and the Lines
of BÀ1dAÕdxi . Recalling the definition ofX and matrixB ~sec-
tion 2! and observing Eq.~11!, one concludes that the last thre
planes ofdJ/dx, i.e.,]J/]xk (k54,5,6) are the translated lines o
]A/]xk (k54,5,6) under the transformationB21.
This can be written as:

]JT

]xi
5B21

]A

]xi
i 54,5,6. (31)

It remains to prove that the derivatives with respect to the Ca
sian coordinates,]J/]xi for i 51, 2, 3, represent lines. In order t
prove this, one must prove that the lines of]B21/]xiA intersect
the lines ofB21]A/]xi .

The following proof relies on the condition of intersectio
between two given lines, l5@ l 1 ,l 2 ,l 3 ,l 4 ,l 5 ,l 6#T and m
5@m1 ,m2 ,m3 ,m4 ,m5 ,m6#T. This condition is given in Eq.~32!
and has the interpretation of the moment of a force acting al
line l about linem @23#.

l 1m41 l 2m51 l 3m61 l 4m11 l 5m21 l 6m150 (32)

This is proven symbolically using Maple®~a symbolic manipu-
lation program! and also verified numerically with a numeric
and a graphical simulation using Matlab®.

The i th column ofA and i th row of J are given by Eq.~33!.
The i th rows ofJa , Jb , andJg are given in Appendix-A1.

Ji5@ca i
,cb i

,cg i
,pzcb i

2pycg i
1bi y

cg i
2bi z

cb i
,2pzca i

1pxcg i

1bi z
ca i

2bi x
cg i

,pyca i
2pxcb i

1bi x
cb i

2bi y
ca i

#
(33)

A i5@ca i
,cb i

,cg i
,bi y

cg i
2bi z

cb i
,bi z

ca i
2bi x

cg i
,bi x

cb i
2bi y

ca i
#

In the following sub-sections we formulate the derivativ
dB21/dx A and B21]A/]xi . The resulting expressions are us
in Eq. ~32! to complete the proof that the derivatives of the Ja
bian are lines.
36 Õ Vol. 125, MARCH 2003
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3.3.1 Formulation of dB21/dx A. The derivatives ofB21

are simple and can be written as:

]B21

]xi
5F 0 0

]~@p3# !

]xi
0G (34)

The last three derivatives of@p3# with respect to the orientation
angles of the moving platform are three null matrices.

Let T1 be the three dimensional matrixdB21/dx A andT1k j

be the j th column of itskth plane,j, k51, . . . ,6. Thefirst three
planes ofT1 are given by:

H T11i5@0 0 0 0 cos~g i ! 2cos~b i !#
T

T12i5@0 0 0 2cos~g i ! 0 cos~a i !#
T

T13i5@0 0 0 cos~b i ! 2cos~a i ! 0#T
J (35)

The last three planes ofdB21/dxA, i.e.,T14 T15 andT16, are
636 null matrices. The special form~the first three Plu¨cker co-
ordinates are zero! of T11, T12, andT13 shows that the lines of
dB21/dxA are lines at infinity@23#.

3.3.2 Formulating the Expressions ofB21]A/]xi . Accord-
ing to Eqs.~17! and~10! we obtain the following expressions fo
the i th column ofB21]A/]xi . Let T2 be the three dimensiona
matrix B21dA/dx. We refer to thekth plane of this matrix,
B21]A/]xk , by the abbreviationT2k wherek51 . . . 6. The ex-
pressions ofT21 throughT26 are given in the Appendix-A2.

By substituting the expressions of thei th columns ofT1k and
T2k, k, i 51 . . . 6 in Eq.~32! one can see that Eq.~32! is fulfilled.
This means that the lines ofT1 and the lines ofT2 intersect each
other. This completes the proof that the derivatives ofJT with
respect to position variables are groups of lines. In total, we
tained 36 lines divided to six line-sextuplets with each lin
sextuplet representing the derivative ofJT with respect to one
position/orientation variable of the moving platform.

3.4 Simulation Results. Numerical and graphical simula
tions are given below in order to visualize the results. Figure
shows the lines of the Jacobian matrix with arrows indicating
direction of the internal forces of the linear actuators. The das
lines in Fig. 5 are the lines of the derivative ofJT with respect to
the x coordinate of the moving platform.

Fig. 5 The lines of the Jacobian and the lines of its derivative
with respect to x coordinate
Transactions of the ASME
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Numerical Example:
The following are numerical results of a simulation of the Stewart-Gough 6-6 platform with a moving platform and a base p
having radii of 0.05 and 0.09 m, respectively. The moving platform is positioned atp5@20.1,20.02, 0.06#T and rotated 30 degree
about the axis@1, 1, 1# relative to the Cartesian coordinate system in Fig. 5. Equations~36! give the transpose of the Jacobian matrix a
its derivatives with respect to x, anduy , as an example.

JT5S 20.5742 20.6348 20.2662 20.1886 20.6702 20.5792

20.3223 20.2715 20.0610 20.3012 0.0799 0.3001

0.7526 0.7234 0.9620 0.9347 0.7379 0.7579

0.0154 0.0322 0.0245 20.0441 20.0349 0.0109

20.0269 0.0070 0.0317 0.0196 0.010720.0270

0.0002 0.0309 0.0088 20.0026 20.0328 0.0190

D
]~JT!

]x
5S 3.3431 2.4014 4.9488 5.8132 2.7368 3.4710

20.9232 20.6932 20.0866 20.3424 0.2661 0.9080

2.1555 1.8473 1.3640 1.0626 2.4570 2.2932

0.0440 0.0823 0.0348 20.0501 20.1161 0.0330

20.1226 0.0976 0.1547 20.0075 20.0213 20.1594

20.1208 20.0703 20.1163 0.2719 0.1316 0.0131

D (36)

]~JT!

]uy
55

20.1226 0.0976 0.1547 20.0075 20.0213 20.159

20.0433 0.0076 0.0103 0.0355 20.0043 0.0423

20.1121 0.0885 0.0435 0.0099 20.0189 20.1386

20.0169 0.0105 0.0032 0.0057 0.0005 0.0135

0.0373 20.0272 20.0252 0.0011 0.0059 0.0474

0.0041 20.0092 20.0054 0.0004 20.0019 20.001
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It is easy to see, using Eqs.~4! and~32!, that the columns ofJT

and its derivatives intersect each other and that the columns o
derivatives ofJT are a group of lines.

In the remaining part of this paper~sections 4–6! the impor-
tance of the derivatives ofJT is emphasized for active stiffnes
control ~stiffness modulation! in redundant parallel robots. It wil
be shown that, in particular, this line-based formulation simplifi
the analysis of stiffness modulation singularities.

4 Application of the Derivatives of the Jacobian to
Stiffness Control

Stiffness analysis of parallel manipulators plays a key role
determining the degree of adequacy of a given robot to a spe
task that involves interaction with the environment. This sect
relates the Jacobian derivative with active stiffness control, a
known as stiffness modulation. The interpretation of this deri
tive as lines is helpful in determining to what extent the stiffne
can be controlled.

4.1 Active Stiffness and the Derivative of the Jacobian.
The stiffness matrix maps the change of the wrench that the r
applies on its environment with the twist deflection of the movi
platform. Denoting thei th row of JT by Ji

T , one can write the
elements of the stiffness matrix,K , as:

ki j 5
] f i

]xj
5

]~Ji
Tt!

]xj
5

]Ji
T

]xj
t1Ji

T
]t

]xj
(37)
Journal of Mechanical Design
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Unlike the definition in@24#, this definition includes the stiff-
ness effect of introduced ‘‘preload’’~bias forces stemming from
e.g., gravity or external load! in non-redundant manipulators, o
antagonistic actuation in redundant robots. This effect is expres
by the term]Ji

T/]xjt, which is referred to as the ‘‘active stiff-
ness’’ or ‘‘antagonistic stiffness’’@25#. The other term in Eq.~37!
is referred to as the ‘‘passive stiffness’’ of the manipulator@17,26#.
Denoting thej th column ofJ by Jj and treating the m actuators o
the robot as springs with a stiffness matrixKd in joint space
results in:

Ji
T

]t

]xj
5Ji

T (
m

]t

]qm

]qm

]xj
5Ji

TKdJj (38)

Stiffness modulation is possible when actuation redundanc
introduced to the system, thus, allowing the use of antagon
actuation@17,27–29#. In this case, the actuation forces are divid
into tp and th , wheretp denotes the actuation forces balanci
the external load andth denotes the internal actuation forces~an-
tagonistic actuation forces!. Antagonistic actuation forces do no
affect the net force applied by the moving platform on its en
ronment since they belong to the null space of the Jacobian
trix, Eq. ~39!.

t5tp1th JTtp5Fe JTth50 (39)

Equation~37! can be rewritten in a matrix form as in Eq.~40!,
where the matrix,dJT/dx, is a three-dimensional matrix, as in Eq
~11!, with the dimensions of 63m36 for m actuators (m.6).
The multiplication in Eq.~40! should be performed according t
MARCH 2003, Vol. 125 Õ 37
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Eq. ~37!, i.e., in order to obtain the active stiffness element,K1 i j ,
one should take the scalar product of thei th row of the j th plane
in the three- dimensional matrix,dJT/dx, with t.

K5
]JT

]x
t1JTKdJ[K11K2 K1[

]JT

]x
t K2[JTKdJ

(40)

4.2 Stiffness Directions and the Derivative of the Jacobian
Equation~37! can be written in a matrix form as:

DFe5KDx5K1Dx11K2Dx21K3Dx31K4Dx4

1K5Dx51K6Dx6 (41)

whereK i denotes thei’th column of the stiffness matrix,K , DFe
the change in the reaction wrench of the moving platform on
environment for a positional perturbationDx.

Equation~41! shows thatK i , the i th column ofK , is the stiff-
ness in thexi direction since it determines the net change in
moving platform’s reaction,DFe , for a perturbation in thexi di-
rection. Larger norms of this column cause higher reaction fo
of the robot for the same displacement.

By Eqs. ~40!, ~41!, the i th derivative of the Jacobian matri
maps the joint efforts,t, into thei th column of the active stiffness
matrix, K1, thus, modifying the stiffness of the robot in its corr
sponding direction in the Cartesian world.

Next, the effect of the singularities~rank deficiency! of the
Jacobian derivatives on stiffness modulation capabilities
presented.

5 Stiffness Control in Redundant Robots and Singu-
larity of the Jacobian Derivatives

Equation~37! gives the expression of the elements of the st
ness matrix. The equation for thej th column of the stiffness ma
trix is given by:

K j5
]JT

]xj
t1JT

]t

]xj
5

]JT

]xj
t1JTKdJj (42)

The first term of Eq.~42! corresponds to the contribution of th
active stiffness gained by redundant actuation. If a given stiffn
is required, then the unknowns in Eq.~42! are the actuator forces
t, needed to cause the required stiffness columnK j . The general
solution of the static equilibrium problem~Eq. ~2!! is given by
@30#:

t5JT1
Fe1~ I2JT1

JT!j (43)

where theJT1
indicates the Moore- Penrose pseudo inverse ofJT

and (I2JT1
JT) is a projector of any arbitrary actuation intensiti

vector jPRm to the kernel ofJT. The minimum-norm solution
for j that satisfies Eq.~42! is given by:

j5 J̃1FK j2JTKdJj2
]JT

]xj
JT1

FeG[ J̃1b (44)

whereJ̃ is given byJ̃5]JT/]xj (I2JT1
JT).

Equation~44! has an exact~compatible! solution in the genera
case only if rank (J̃)5n where n is the number of the robot
degrees-of-freedom. By the definitionJ̃ it is clear that if]JT/]xj
is rank-deficient then in general there is no exact solution to
~42!. We note that additional singularities ofJ̃ may also stem from

the matrix (I2JT1
JT).
38 Õ Vol. 125, MARCH 2003
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Previous works@16,25,26,28# addressed the problem of activ
stiffness generation via redundancy and mentioned ‘‘second o
geometric singularities’’ that prevent exact stiffness modulati
All the above-mentioned works dealt with non-fully parallel m
nipulators having serial chains supporting the moving platfor
The formulations in these works lead to a matrix similar toJ̃ that
is composed of an augmented Hessian matrix. The singularitie
stiffness modulation were attributed in these works to both
singularity of the Hessian matrix and the singularities of the Ja
bian. However, geometrical interpretations were given to the
gularity of the Jacobian only. In the above-mentioned investi
tions the definition of the Hessian matrix varied from one work
another. Yi, Freeman, and Tesar,@16,26# defined an augmented
Hessian matrix having the Hessians of the inverse kinema
functions of the serial chains, while@25# defined this augmented
Hessians matrix based on the Hessians of the auxiliary equa
that relate the values of passive joints with the values of the ac
ones. These matrices were not given a geometric interpretatio
lines of the Jacobian and its derivatives since the Jacobian m
of a non-fully parallel manipulator is generally not composed
rows of lines.

The present investigation shows that an arbitrary stiffn
modulation is precluded ifdA/dx or A are singular. We also ob
tain, for the first time, a geometric interpretation to the singular
conditions ofdA/dx.

6 Geometric Interpretation of the Singularities of J̃

In this section we will prove that the singularity ofJ̃ has a
geometric interpretation and is directly related to the linear dep
dencies of the lines of]A/]xj . The cases whereJ is singular
~rank(J),n) are excluded since in these cases the robot is sin
lar from structural rigidity considerations. We also limit the di
cussion to the cases where the number of actuators,m, fulfills m
>2n which means that there are enough redundant actuato
fully control a column in the active stiffness matrix,K1, of Eq.
~40!.

proof:

From the definition ofJ̃ and Eq.~11! one obtains

J̃5
]JT

]xj
~ I2JT1

JT!5S ]B21

]xj
A1B21

]A

]xj
D ~ I2JT1

JT! (45)

By Eq. ~9! and the fact thatB21 is a non- singular square
matrix one obtains:

JT1
JT5~B21A!1~B21A!5A1B211

B21A5A1A (46)

~Note that we used (B21A)15A1B211
which is true only ifB21

andA are of the same rank, i.e.,A ~andJ! is non-singular!.

Fig. 6 Line and flat pencil singularities of the derivatives of
the matrix A
Transactions of the ASME
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Applying the properties of the generalized inverse, the first te
on the right-hand side of in Eq.~45! vanishes:

]B21

]xj
A~ I2JT1

JT!5
]B21

]xj
A2

]B21

]xj
AA1A

5
]B21

]xj
A2

]B21

]xj
A50 (47)

then:

J̃5
]JT

]xj
~ I2JT1

JT!5B21
]A

]xj
~ I2A1A! (48)

Thus, we proved that the singularity ofJ̃ stems from the singular-
ity of ]A/]xj .

The importance of this proof is that it is easy to visualize t
lines of ]A/]xj for planar manipulators and special cases of s
tial manipulators. One should recall that the lines of]A/]xj pass
through the joints in the base platform and are perpendicula
the actuators. For planar robots, when more than two lines
]A/]xj intersect at one point it causes flat pencil singularity of t
Jacobian derivatives. Figure 6 shows a flat pencil singularity@Fig.

Fig. 7 Line and flat pencil singularities of the Jacobian

Fig. 8 A planar redundant parallel manipulator in a stiffness
modulation singularity
Journal of Mechanical Design
rm

he
a-

r to
of

he

6~a!# and point singularity@Fig. 6~b!# of ]A/]xj for a planar 3
DOF non-redundant manipulator. In both configurations the m
trix J̃ has a rank of 2, which means that Eq.~43! has no exact
solution for an arbitraryK j . Figure 7~a! and 7~b! show flat pencil
and point singularities of the matrixA ~andJ!.

Figure 8 illustrates a redundant planar parallel manipulator w
six linear actuators. The dimension of the nullspace of the Ja
bian of this planar robot is 3 or higher. This means that we c
control the stiffness elements in thej th column of the stiffness
matrix provided that rank of the matrixJ̃ associated with this
column is no less than 3.

The manipulator in the configuration of Fig. 8 illustrates a s
gularity of J̃ ~rank(J̃),3) caused by flat pencil singularity o
]A/]xj since the lines of]A/]xj intersect in one point as show
in the figure. The singular values ofJ̃ are given by Table 1, where
the J̃x is associated with the derivative of the Jacobian with
spect to the X coordinate,J̃y with respect to the Y coordinate an
J̃uz

with respect to the rotation about the Z axis. The third singu

value is small enough to indicate singularity~practically J̃ has
rank 2 since the formulation ofJ̃ and the SVD process have cu
mulative numerical errors and because the dimensions in Fi
were given with 6 digits accuracy!.

Conclusions
This paper presents a line-based analytical formulation to

derivatives of the Jacobian of parallel robots. The derivatives w
taken with respect to the position/orientation variables of the m
ing platform rather than time or active joints’ variables. The Ja
bian derivatives formulation resulted in 36 lines divided into s
line-sextuplets, each one representing the derivative of the J
bian with respect to one position/orientation variable of the m
ing platform.

The problem of controlling the stiffness of the robot in Cart
sian space~also known as the stiffness modulation problem! was
solved and each derivative of the Jacobian was associated
active stiffness modification in a corresponding direction in spa
The significance of the line-based formulation of the Jacob
derivatives for stiffness modulation was emphasized and use
interpret stiffness modulation singularities of redundant para
robots. It was shown that these stiffness modulation singulari
are function ofA ~the instantaneous direct kinematics matrix! and
its derivative. This interpretation allows the use of line geome
tools for stiffness modulation singularity analysis similarly to t
line-based structural rigidity singularity analysis of parallel robo
In this sense, this paper adds to the knowledge of previous in
tigations that analyze the stiffness modulation singularities st
ming only from the classical first-order singularities of the Jac
bian matrix.

The authors believe that the line geometry-based formulatio
the Jacobian derivatives facilitates the geometrical interpreta
of rigidity, stability and dynamics that are based on the derivat
of the Jacobian matrix.

Table 1 Singular values of J ˜

J̃x J̃y J̃uz

1.2050 1.0353 1.3279
0.6957 0.9204 0.7667
9.3307e-006 4.7369e-016 5.5241e-006
0 0 0
0 0 0
0 0 0
MARCH 2003, Vol. 125 Õ 39



Appendix A-1
The i th rows of the JacobiansJa , Jb , andJg are given by:

Appendix A-2
The following equations give the explicit expression of thei th column ofT2K , k, i 51, . . . ,6.
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