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Abstract— This paper reports some recent analysis and 
modeling results obtained while developing a tele-robotic 
system for minimally invasive surgery of the throat. One of 
the main enabling components of this system is a Distal 
Dexterity Unit that implements a novel design using a flexible 
multi-backbone snake-like unit with actuation redundancy 
and push-pull actuation. The design of this snake-like unit is 
compared to other alternative designs that use a single 
flexible-backbone and wire-actuation. A unified kinematic 
and virtual work model is used to perform this comparison 
between a multi-backbone snake like unit with an equal-
diameter snake-like unit using a single flexible backbone and 
wire actuation. The comparison is presented for several 
actuation redundancy resolutions that minimize the load on 
the flexible backbones. The results show that the multi-
backbone design is superior to the alternative wire-actuated 
designs using a single flexible backbone. The advantages 
manifest in smaller required actuation forces on the 
backbones and, as a result, a reduced risk of buckling of the 
backbones and enhanced potential downsize scalability. 
   

Index Terms - Flexible backbone robot, snake robots, 
surgical assistant, master-slave mode, actuation redundancy.  

I.  INTRODUCTION 

In our previous papers [1, 2], we reported our efforts to 
develop a high-dexterity robotic system for Minimally 
Invasive Surgery (MIS) of the throat. The primary enabling 
mechanical component of this system is a novel Distal 
Dexterity Unit (DDU) that overcomes the constraint to the 
traditional four Degrees-of-Freedom (DoF) associated with 
standard rigid tools used in MIS. This DDU enables 
complex tissue manipulation tasks in confined spaces that 
are otherwise very difficult to perform. The DDU is a 
hybrid five-DoF robot composed from a parallel 
manipulation unit and a Snake-Like Unit (SLU). This SLU 
features a novel design that uses several flexible backbones, 
actuation redundancy, and push-pull actuation. This paper 
focuses on the advantages of this SLU over wire-actuated 
designs.  

Snake robots have been widely investigated for various 
applications that benefit from their high dexterity and 
obstacle-avoidance capabilities (see [3], [4] for a historical 
perspective). Due to their inherent large number of DoF, 
solving the inverse kinematics efficiently was one of the 
main theoretical problems that precluded their use.  
Chirikjian [5] and Zanganeh [6] addressed this problem by  
using variational calculus methods. Early articulated 

designs of snake robots were very cumbersome to 
construct, required many mechanical joints and; hence, 
suffered from serious mechanical backlash problems [4]. 
To overcome these problems, several works by Walker and 
Gravagne, [7-9], addressed the kinematics and control of 
flexible continuous backbone designs that inspired this 
work. While all these works used designs based on single 
flexible backbone actuated by wires, we use in our design 
several flexible backbones actuated in push-pull modes.      

Applications of snake-like robots for surgical tool 
manipulation are gaining increased attention from the 
research community. For example Dario et al. [10] 
presented a 1 DoF planar SMA actuated bending snake-like 
device for knee arthroscopy. Recently, Reynaerts et al. [11] 
presented a two DoF 5 mm diameter wire-actuated snake-
like tool using super-elastic NiTi tube with flexure joints. 
Guthart and Salisbury [12] developed a snake-like robot 
with a discrete backbone and wire actuation. More recent 
works also presented miniaturized linkage designs for 
snake-like robots [13], wire actuated robots [14], and 
snake-like units with miniature gear-motors embedded 
inside the links [15].  

In this paper we compare the proposed design of our 
SLU with other alternative wire-actuated designs such as 
the single-flexible backbone design. We focus on the 
required actuation forces and the compression loads on the 
backbones. Our main premise is that these compression 
loads are a major hindrance for downsize scalability of 
SLU’s due to the buckling of their backbones. We will 
show in this paper that this problem is exacerbated in wire-
actuated designs that rely on a single flexible backbone.       

II. THE BENDING SNAKE-LIKE UNIT  

 Figure 1 presents the DDU of our system. It is 
composed from a SLU and a 3 DoF parallel manipulation 
unit. The SLU is a two DoF mechanism that enables the 
surgeon to orient surgical tools in any direction in 3D. The 
parallel manipulation unit is for high-accuracy motions and 
for attaching different surgical tools to the tip of the SLU.  

The SLU is composed from a base disk, several spacer 
disks, an end disk and four flexible super-elastic hollow 
tubes that we call backbones. One out of these four 
backbones is rigidly attached to all disks, Fig. 1. This 
backbone is called the primary backbone and it is located at 
the center of the SLU between three other secondary 
backbones that are radially displaced around it and 
equidistant from each other. All secondary backbones are 
connected only to the end disk. The spacer disks maintain 
fixed radial distance between the secondary backbones and 
the primary backbone. By actively changing the lengths of 

 
♣ This research was conducted while Nabil Simaan was at 

Johns Hopkins University ERC-CISST (www.cisst.org), 
Baltimore, Maryland 21218.  

Proceedings of the 2005 IEEE
International Conference on Robotics and Automation
Barcelona, Spain, April 2005

0-7803-8914-X/05/$20.00 ©2005 IEEE. 3023



two out of the three secondary backbones the end disk can 
be manipulated in 2 DoF to be oriented in any required 
direction. In this work we use three secondary backbones to 
provide actuation redundancy for optimizing the 
distribution of the loads between the secondary backbones 
and the primary backbone.  

 
Fig. 1 The Distal Dexterity Unit (DDU) composed from a multi-

backbone snake-like robot equipped with a parallel tip. 

The advantages of the design in Fig. 1 were presented in 
[1, 2]. These advantages include a high number of DoF, 
design simplicity, and backlash elimination due to the use 
of flexible backbones that remove the dependency on high-
precision miniature mechanical joints. All the backbones of 
the SLU are hollow tubes that can be used for secondary 
purposes. This provides the SLU with multi-functionality in 
the surgical arena for applications such as surgical tool 
manipulation, aspiration, drug delivery, controllable light 
source, and visualization. However, these advantages come 
with a price of complicated kinematics and design.    

In this paper, we focus on the pros of using push-pull 
actuation through the secondary backbones. The first 
obvious alternative to this design is replacing the secondary 
backbones of Fig. 1 with three wires. In sections VI, VII, 
we will compare this alternative design to our design in 
terms of resultant compressive forces on the backbones, 
and the corresponding implications on downsize scalability.  

The first obvious advantage of the design of Fig. 1 is 
illustrated in Fig. 2. The figure shows that the minimal 
number of wires required to bend the central backbone in 
any direction is three while in the case of push-pull 
actuation it is two. In wire actuation, the wires apply on the 
central backbone a resultant bending moment rm  that is a 
combination of their uni-directional actuation bending 
moments im i=1, 2, 3. Since the actuation moments are 
uni-directional then a pair of wires spans only a convex 
cone♠ of possible resultant moments. To fully cover the 
plane, three convex cones are required. Hence, the minimal 
number of actuation wires is three. If push-pull actuation is 
used, Fig. 2-b, then any resultant bending moment can be 
spanned by a linear combination of two actuation moments 

1 2 and m m ; hence, two actuated backbones are sufficient.  
Figure 3 shows an early model of the SLU of Fig. 1. 

The figure shows the central backbone before its failure. 
This unit was bent by pulling on one backbone only. The 
primary backbone of this unit buckled when the actuated 

                                                           
♠ A convex cone of vectors a and b is defined as all their 
positive linear combinations: { }  | , 0= α +β α β ≥c a b .  

secondary backbone (backbone no. 1 in Fig. 3) was pulled 
on to increase the bending angle of this unit. The improved 
design of Fig. 1 uses three secondary backbones that are all 
actuated in push-pull mode to prevent this failure.  

 
Fig. 2 The resultant bending moment, mr , as a linear combination of 
actuation moments. Wire actuation (a) push-pull actuation (b).  

 
Fig. 3 A picture of an early SLU model an instance before its 
primary backbone buckled. It was actuated by pulling on one secondary 
backbone only.  

The first prototype of the SLU was presented in [1]. 
Figure 4 shows an improved 4.2 mm diameter version of 
this SLU that is currently used for initial experiments. It is 
designed to apply 1 N at its tip in any direction. In fig. 4 it 
is manually actuated by using two backbones in push-pull  
mode, it is capable of applying more than 1 Newton at its 
tip and bending more than 70° in any direction [2]. 

 
Fig. 4 The prototype of the SLU performing spatial motions 

III. KINEMATIC MODELLING 

The outline for the direct kinematics and the 
instantaneous kinematics of the SLU was presented in [1]. 
In this paper, we assume that the SLU is installed on a 
rotation stage that rotates its base disk. We also include a 
gripper that is affixed to the end disk of the snake and we 
define additional transformations accordingly.  

Figure 5 shows the SLU with only the primary and one 
secondary backbone illustrated. Three coordinate systems 
were defined in [1]: the Base Disk coordinate System 
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(BDS) { }b b bˆ ˆ ˆ,  ,  x y z , the Snake Plane coordinate System 

(SPS) { }1 1 1ˆ ˆ ˆ,  ,  x y z , the End Disk coordinate System (EDS) 

{ }e e eˆ ˆ ˆ,  ,  x y z . In addition, we include here the gripper 

coordinate system { }g g gˆ ˆ ˆ,  ,  x y z and the World Coordinate 

System (WCS) { }w w wˆ ˆ ˆ,  ,  x y z to facilitate the description of 
suturing tasks in confined spaces in section IV.  

The gripper coordinate system is attached to an 
imaginary gripper affixed to the end disk. The three 
secondary backbones are equidistant from each other and 
from the central backbone. They are numbered as in Fig. 5 
according to the right-hand rule about bẑ . Without loss of 
generality, we assume that the base disk lies at the origin of 
WCS and that wẑ  is normal to it. Unit vector bx̂  is defined 
such that its points from the center of the base disk to the 
first secondary backbone. SPS is defined such that the plane 
in which the snake-like unit bends is defined by unit vectors 

1x̂ and 1ẑ . EDS is obtained from SPS by a simple rotation 
about 1ŷ such that 1ẑ  becomes the backbone tangent at the 
end disk. The gripper coordinate system is defined like 
BDS, but it is physically attached to the end disk. As such, 

gx̂  points from the center of the end disk to the first 

secondary backbone and gẑ  is normal to the end disk.     

 
Fig. 5 Kinematic nomenclature for the SLU. The SLU with a central 
and a secondary backbone shown (left). Top view of the base disk (right). 

The following symbols are used:  
i - index of the secondary backbones i=1,2,3.  
s - arc-length parameter of the primary backbone. s=0 

at the base disk and s=L at the end disk.   
Li - length of the ith secondary backbone measured from 

the base to the end disk.  
r - radius of the base, spacer, and end disks. 

(s)ρ - radius of curvature defined as ds d (s)θ  . 
θ(s) - the angle of the primary backbone tangent in the 

1x̂ 1ẑ  plane. θ(s=L) and θ(s=0) are designated by θL 
and θ0, respectively.   

θb  - is the angle of rotation of the base disk about bẑ . 

( )t t
b b w b wˆ ˆ ˆ ˆAtan2 /θ = x y x x . 

β - division angle ( n/2π=β where n is the number of 
secondary backbones). 

δi - the right-handed rotation angle from  1x̂  about 1ẑ  to 
a line passing through the primary backbone and the 
i’th secondary backbone at s=0. 

( ) 3,2,1i,1ii =β−+δ=δ . 
δ - the angle of the snake plane. It is defined as 1δ = δ . 

i∆  - the offset from the primary backbone to the 
projection of the i’th secondary backbone on the 
snake plane. 

ξ - the right-handed rotation from 1x̂ to wx̂ about 1ẑ .  
x  - time derivative of variable x. 

xyJ  - Jacobian matrix such that yJx = .  

yp ysE , E  - Young’s modulus for the primary and secondary 
backbones, respectively. 

p sI , I  - the cross-sectional moments of inertia. Ip is used 
for primary and Is for secondary backbones.  

 
As in [1] the analysis assumes a quasi-static motion. 

The direct kinematics of the snake is represented in a 2-
dimensional space such that the position and orientation 
(pose) of the end disk relative to the base disk is 
characterized by two angles θL and δ. The length of the i’th 
backbone depends on the angle of the end disk relative to 
the base disk, but not on the shape of the backbone, [1], [7]. 
 [ ]0L0Lii ,0)(LL θ∈θθ−θ∆+=  (1) 

For given L1 and L2, the angle Lθ  is found by: 
 ( )L 0 i iL Lθ = θ − − ∆  (2) 

where i ir cos( ) i 1,2,3∆ ≡ δ = . The angle of the snake 
plane δ is found by imposing a kinematic compatibility 
condition stating that the angle Lθ , as found from Eq. (1) 
for i=1, and 2, is the same [1]. The two solutions in Eq. (3) 
represent a single configuration of the snake-line unit and 
correspond for two opposing directions of 1x̂  of Fig. 5.  
 ( ) ( )Atan2 A B or Atan2 A Bδ = + π  (3) 

where A and B were defined in  [1] as: 
( ) ( ) ( ) ( ) ( )1 2 1A L L cos L L , B L L sin   = − β − − = − β    (4) 

The length of the third secondary backbone, L3, can be 
found by using Eq. (2). The position, Lp , and the 

orientation, w
gR , of the gripper are found by integrating 

along the tangent of the backbone and by a successive 
rotation sequence as in Eq. (5). The matrix w

bR  is a 

rotation of bθ  about wẑ , 1
b R  is a rotation matrix of (-δ) 

about bẑ , e
1R  is a rotation matrix of 0 L( )θ − θ  about 1ŷ , 

e
gR  is a rotation matrix of δ  about eẑ .  
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 ( ) ( )
tL L

w
L 1

0 0
w w b 1 e

g b 1 e g

cos (s) ds,0, sin (s) ds ,

           

 
= θ θ 

  
=

∫ ∫p R

R R R R R

 (5) 

These results depend on a shape function, ( )sθ , that 
minimizes the potential energy of the system. For an ideal 
light-weight and unloaded SLU, ( )sθ  will be a circular 
section of length L [7]. Otherwise, numerical or direct 
variational methods can be used to approximate ( )sθ .   

IV. SUTURING IN CONFINED SPACES 

The previous section can easily be used to enable 
suturing in confined spaces without resorting to using the 
inverse Jacobian relationship as often done for serial 
manipulators. The chosen mode-of-operation is called 
“rotation about the primary backbone” mode. In this 
operation mode, the SLU transforms rotation of its base 
disk to rotation of its end disk about its normal gẑ  while 
maintaining its end point fixed. If the rotation point is 
located at the center of a circular suturing needle, then 
suturing will be performed with minimal tissue tear while 
using the rotation of the snake-like unit about its backbone.   

To achieve this goal, assume that the given start pose 
of the snake is characterized by s L Ls,  δ = δ θ = θ  to which 
the corresponding SPS angle in WCS is sξ . Assume also 

that the base disk rotates about wẑ  at an angular speed bθ . 
To maintain the snake end point fixed, the three secondary 
backbones are actuated such that the orientation of SPS in 
WCS remains fixed and the following constraint is fulfilled. 

    s b b

L Ls L

constant 
constant  0

ξ = θ − δ = ⇒ δ = θ
θ = θ = ⇒ θ =

 (6) 

To fulfill this constraint, the inverse kinematics of the SLU 
is solved for ( ) ( ) ( )s b L Lst t ,  tδ = ξ + θ θ = θ .  
Figure 6 demonstrates the rotation about the primary 
backbone on a large scale SLU installed on a rotation stage. 

 
Fig. 6 A large snake-like unit  rotating about its primary backbone 

V.  VIRTUAL WORK MODEL 

The static analysis is based on a linearized virtual work 
model. The effects of the actuation forces and the 
gravitation potential energy on the total deformation energy 
of the backbones are neglected compared to the total 
deformation energy of the backbones. Under this 
assumption, the energy of the system of backbones is a 
function of their bending. The shape of the snake-like unit 
is characterized by ( ) ( )s,fs Lθ=θ  that minimizes the 
elastic energy of the backbones and by δ. In a reverse 

direction, the elastic energy may be presented as a function 
of ( ) ( )s,fs Lθ=θ  and δ. Specifically for our SLU we write:  

 ( )
32 yp p ys s

bending L L 0
i 1 i

E I E I
E E( , )

2L 2L=

  
= θ δ = θ − θ +     

∑ (7) 

Assume that an external wrench [ ]tt
e

t
ee , mfw =  acts on 

the end disk where ef  indicates the force and em the 
moment. This external wrench perturbs the posture 
(position and orientation) of the end disk by x∆ . To this 
pose perturbation there is a corresponding change 

[ ] t
32l L,L,L ∆∆∆≡∆L  in the lengths of the secondary 

backbones. The actuation forces that are required to act on 
the secondary backbones to maintain the equilibrium are 

[ ] t
32l τ,τ,τ≡τ . The change in the potential energy of the 

backbone system E∆  that corresponds to x∆  is given by:  
 0Ett

e =∆−∆+∆ Lτxw  (8) 

The virtual displacement of the SLU is characterized by 
[ ] t

L , δ∆θ∆=∆ψ .  The entities x∆  and L∆ are related to 
ψ∆  according to Eqs. (9).  

 ψJL ∆=∆ ψL              ψJx ∆=∆ ψx  (9) 

where ψxJ is the instantaneous direct kinematics Jacobian 
outlined in [1] and ψLJ  is found by taking the time 
derivative of Eq. (1) for iL , i=1,2,3.  

Next, the virtual work principle is rewritten as in Eq. 
(10). The equilibrium condition requires the terms 
associated with each independent DoF to vanish. This 
results in a system of two equations in three unknowns 

[ ] t
32l τ,τ,τ≡τ . The matrix form of this system of 

equations is given in Eq. (11) where E∇  represents the 
gradient of the elastic energy.  
 [ ] 0E t

L
t

x
t

e =∆∇−∆+∆ ψψ ψψJτψJw  (10) 

 e
t

x
t

L E wJτJ ψψ −∇=  (11) 

The resultant force on the primary backbone, pτ , is found 

from force equilibrium of the end disk in the eẑ  direction: 

 ( )
3

t
p i e e

i 1
ˆ

=

 
τ = − τ + 

 
∑ f z  (12) 

By using 
3

t t
i e e

i 1
ˆ

=
τ =∑ τ Z z  where [ ]e e e eˆ ˆ ˆ=Z z z z , the  

condition p 0τ =  is given by:   
 e e= −Z τ f   (13) 

VI. GENERALIZED REDUNDANCY RESOLUTIONS 

The SLU of Fig. 1 has one redundant secondary 
backbone. This backbone can be actuated to reduce the 
amount of force acting on the primary backbone, hence, 
reducing the risk of its buckling. This section presents a  
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generalized redundancy resolution that achieves this goal. 
This is important to allow effective downsize scalability 
while preventing the thin backbones from buckling. 

Eq. (11) is a system of two equations in three unknowns 
τ . Let ( )+= −N I A A  be the nullspace projector of 

t
Lψ=A J . Let ( )t

x eE ψ= ∇ −b J w  be the generalized 

virtual work vector. The general solution of Eq. (11) is: 
 += + λτ A b Nη  (14) 

where the (+) superscript indicates the generalized inverse 
and  3ℜ∈η  is a vector of homogeneous actuation forces  
used to optimize the loads on the backbones and λ is a 
scaling factor that scales the homogeneous solution Nη  

with respect to the particular solution +A b . For SLU’s that 
use secondary backbones in push-pull actuation λ=1. 

Equation (14) can treat wire-actuated SLU’s. In this 
case λ is chosen such that all the wires are kept in tension 
and sI 0=  is used in Eq. (7). In our simulations we chose 

[ ]t1,  1,  1=η , but any ( )col∈η N  can be used [16]. 
Different redundancy resolutions use a different η  in 

Eq. (14) based on the optimized criteria. Equation (15) 
defines a general objective function that accounts for the 
load on the primary backbone and the compressive loads on 
the secondary backbones.  

 ( ) ( ) ( ) ( )t t
e e f e eMin J τ= + + + − −Z τ f w Z τ f τ τ w τ τ

η
(15) 

τ  is the desired reference average actuation force. This 
function can be expressed in a matrix form: 

 
t

e efe e
3 3

J           = + +     −   −              τ

Z ZW 0f fτ τ0 WI Iτ τ (16) 

By using τ  in Eq. (14) and solving dJ
d

= 0
η

 for η , the 

general solution for η  minimizing J is found: 

 [ ]+ + = − − η RPN RQ RPA b  (17) 

in which the following definitions have been used: 
 e

3

 =   
ZP I

,  e = −  
fQ τ ,  f =   τ

W 0W 0 W ,  t t=R N P W  (18) 

If one wishes to maintain zero load on the primary 
backbone, regardless of the loads on the secondary 
backbones, then 0τ =w  and f 3 3×=w I  can be used. This is 
equivalent to solving Eq. (11) with Eq. (13) as a “secondary 
task”, [17]. The general solution Eq. (17) simplifies to: 
 ( ) ( )e e e

+ += − −η Z N f Z A b  (19) 

VII. SIMULATION RESULTS 

We performed static simulations throughout a pre-
defined workspace to compare the SLU of Fig. 1 with 
SLU’s that use wire actuation and a single flexible primary 
backbone. The parameters used for these simulations are 

given in Table I. All symbols in this table were defined in 
sections III and VI, except for do and di that designate the 
outside diameters and the bores of the backbone tubes. The 
wrench we was defined as the equivalent of a 1 N force and 
1 Nmm moment acting on the tip of the SLU. 

TABLE I 
THE PARAMETERS USED FOR THE SIMULATION RESULTS OF FIGURE 7 

[0 : 12 : 2 ]δ ∈ π π  0 2θ = π  L [ 6 : 18 : 2]θ ∈ π π π  

[ ]e
t0.6, 0.6, 0.6, 0.006, 0.006, 0.006  [N, Nm]=w  p sE E 65 [GPa]= =  

L 28 mm=  r 1.5 mm=  
od 0.62 mm=  id 0.50 mm=  

3 310τ ×=w I  f 3 3×=w I  t[ 5, 5, 5]= − − −τ  

In our kinematic model, tension forces are defined negative 
and compression forces positive according to the definition 
of [ ] t

32l L,L,L ∆∆∆≡∆L . The ultimate strength of the 
backbones is 1070 MPa. For the combined optimization, 
the weights τw , fw  were set such that the actuation axial 
stress is less than 500 MPa throughout the SLU workspace.  

Figure 7 presents the results of our static simulations. 
The left column shows the actuation forces and the load on 
the primary backbone when using a multi-backbone SLU 
with push-pull actuation based on the general combined 
optimization of Eq. (17). The right column shows the 
corresponding results for a wire-actuated SLU that uses a 
single flexible backbone. Note that the manifolds of the 
forces on the backbones when using a multi-backbone SLU 
are smoother than in the case of a wire-actuated SLU. The 
case of minimal effort solution ( =η 0  in Eq. (14)) was also 
simulated and its results are shown in table II, which 
summarizes the results of Fig. 7. Both this table and Fig. 7 
show that the compressive load on the primary backbone 
for the multi-backbone SLU is much smaller than in the 
wire actuated case. Also, for a small price of increasing the 
tension forces in the backbones and allowing a small 
compression load on the primary backbone, the maximal 
compression loads on all backbones are kept small (less 
than 36 N). The maximal compression load is 59.52 N for 
the wire-actuated SLU compared to 35.32 N for the multi-
backbone SLU that uses the combined optimization. 
Accordingly, we believe that the multi-backbone SLU with 
push-pull actuation and the combined optimization 
actuation redundancy is more compatible for small-size 
snake like robots than wire-actuated SLU’s. 

VIII. CONCLUSIONS 

This paper reported our recent work on designing a 
Distal Dexterity Unit (DDU) for Laryngeal minimally 
invasive surgery. One of the main components of this DDU 
is a Snake-Like Unit (SLU) that uses a novel multi-flexible-
backbone design and implements actuation redundancy. We 
examined the advantages of this design in terms its 
potential downsize scalability. We based our comparison on 
the premise that the reduction of compressive forces in the 
backbones reduces their risk of buckling and facilitates 
downsize scalability. We reviewed the kinematic and static 
modeling of this SLU and compared it to the other 
alternative designs implementing a single wire-actuated 
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flexible backbone. The results of this paper show that the 
load on the central backbone can be significantly reduced in 
the multi-backbone design compared to designs that use 
wire actuation and a single flexible backbone. For these 
reasons we believe that the multi-backbone design is more 
suited for miniaturization since it allows using the push-pull 
actuation and actuation redundancy to prevent buckling of 
the backbones. Although this paper is limited to modeling 
and simulation, we plan to support its results by 
experimental validation and exact models that determine 
the buckling limits as a function of the geometry of the 
snake and its design parameters.  

 
Fig. 7 Loads on secondary and primary backbones: Multi-backbone 
SLU using push-pull actuation and combined optimization (left). Wire 
actuated SLU (right).  All forces are in Newton and all angles in radian.  

TABLE II 
MAXIMAL TENSION AND COMPRESSION FORCES ON THE BACKBONES. 
 Min effort Combined optimization Wire actuation 

τ1 -28.83, 39.15 -32.74, 35.32 -25.33, -1.00 

τ2 -36.34, 31.11 -40.22, 27.24 -29.83, -1.00 

τ3 -36.52, 31.36 -40.33, 27.44 -36.48, -1.00 

τp -1.03, 0.43 10.74, 11.87 8.88, 59.52 
All forces are in Newton. Negative forces indicate tension. Positive 
forces indicate compression.  
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