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Singularity Analysis of a Class of Composite Serial
In-Parallel Robots

Nabil Simaan and Moshe ShohaMember, IEEE

Abstract—This paper presents the singularity analysis of a stantaneous direct kinematics matdxand the instantaneous

family of 14 composite serial in-parallel six degree-of-freedom inverse kinematics matriB asparallel andserial singularities
robots, having a common parallel submechanism. The singular respectively.

configurations of this class of robots are obtained by applying line . . . . . i
geometry methods to a single, augmented Jacobian matrix whose Hunt et al. [3] discussed the singular configurations in se

rows are Pliicker coordinates of the lines governing the submecha- "@l, parallel, and composite serial and in-parallel robots, by
nism motion. It is shown that this family of robots possesses three USing motion and action screws. They showed that a work-piece

general parallel singularities that are attributed to the general grasped by a serial kinematic chain robot can only lose DOF (or
complex singularity. The results were verified experimentally gain constraint) and a work-piece grasped by fully in-parallel
on a prototype of a composite serial in-parallel robot that was - manjpulator can only gain DOF (or lose constraint). A com-
synthesized and constructed for use in medical applications. posite serial in-parallel manipulator can either lose or gain DOF.
Index Terms—Composite serial in-parallel robots, geometric  |n a singular configuration, the relation between the input
approach, line geometry, parallel robots, RSPR robot, singularity - yariables’ velocities (active joints’ speeds) and the output vari-
analysis. ables’ velocities (linear/angular velocities of the end effector) is
not fully defined. For serial robots with six DOF, a configuration
. INTRODUCTION is singular when the instantaneous input—output saapJq is

. . singular. For parallel robots with < 6, there exists & x 6
UMEROUS researchers, e.g., [1]-9], have mvesUgatgﬂatriX A, that governs the static equilibrium of the moving

singularity co_nditions Of. parall_el_robot_s since COmF.)Ie'[Elatform. This matrix relates the internal forces/momenisg
knovyledge of t.he singular regions within thglrworkspace is e cting on the moving platform with the wreneh applied by
sential for design and control purposes. Singularity analyasths

based on the instantaneous kinematics of the manipulator, wh|cﬁ moving platform on its environment
is described by AsTin = Se. @)
The internal forces, acting on the moving platform are
Ax =Bq (1) divided into two groups. The first group represents the active
joints’ intensities{r ..., }. The second groupr,+1...76}
where forn degrees-of-freedom (DOF) manipulatér,andB  represents the intensities of the passive forces. These passive
are am x 6 and ann x n matrices referred to in this paper agorces stem from the kinematic constraints imposed by the joint
the instantaneous direct and inverse kinematics (IDK, 1IK) mayads of the links connected to the moving platform. The first
trices, respectively. These matrices were used by Gosselin angolumns ofA, are the action screws associated with the ac-
Angeles [2] for singularity analysis and were respectively callaile joints. The remaining — » columns are the action screws
the direct kinematics and inverse kinematics matrices in [10], @ssociated with the constraints of the passive joints.
direct kinematics and inverse kinematics Jacobians in l§.  Singularity of uncertainty configuration occurs when the
the moving platform twist, and, is the active joints’ speeds. column space oA, has a dimension less than six.Af, has
For fully parallel robots, the IIK matrixB, is a diagonal one a rank ofm < 6, then the manipulator cannot resist external
[4]. Hence, the common definition for the Jacobian matrix afrenches that belong to(& — m)-dimensional space and the
parallel robots takes the forth= B! A and the 1IK problem manipulator is in uncertainty configuration [3], [8].
is defined byq = Jx. The derivation of the Jacobian matrix frafy, is immediate
Based on rank-deficiency of the matricAsandB, Gosselin by writing the expression for the work rate of the forces/mo-
and Angeles [2] divided the singular configurations into thrg@ents acting on the moving platform. The work done by the con-
cases: the first, when onlk is singular; the second when onlystraints is zero. This leads to the result that the firsblumns of
B is singular; and the third when both andB are singular. A, are the rows of the x 6 Jacobian matrix. This result empha-
In this paper, we adopt the terminology in [10] and refer to th&izes the importance of the matu, for complete singularity
singular configurations associated with singularities of the i@nalysis. For robots with < 6, the Jacobian matrix by itself is
not sufficient to determine all conditions for singularity.
Since the IDK matrix is composed of line coordinates, the
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TABLE |
A FAMILY OF 14 COMPOSITESERIAL IN-PARALLEL ROBOTS
RSPR PSPR HSPR PPSR RRSR
HHSR RPSR HRSR HPSR RHSR
PRSR PHSR USR CSR

cobian matrix of fully-parallel Stewart—-Gough robots consists

of Pllcker line coordinates of the lines along the prismatic agig. 1.

tuators, [2], the singularity analysis of these robots is based on
finding geometrical conditions for linear dependence betwee
these lines. Following Dandurand’s observations, a group of

searchers, [1], [7], [15], [16] investigated the parallel singularl-
ties of parallel robots using line geometry. Notash [8] used line
geometry to investigate redundant three-branch platform rob
and their preferable actuation distribution in order to elimina
singularities. Hao and McCarthy [13] discussed the conditiofys.

Waoving
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Force transmission in the tripod mechanism.

ré_hieved by writing loop-closure equations and taking their

erivative with respect to time.

All the robots in Table | have the same system of constraint

Eenches acting on the moving platform. This stems from the

act that all these robots have a common tripod mechanism com-
sed of a moving platform and three passive S-R joint dyads

of joint arrangements that ensure line-based singularities in pl t9- )-

form robots. They showed that in order to have line-based sin-
gularities, the kinematic chains should not transmit torque to the
moving platform. Even though the family of robots investigategd
in the present work does not fulfill this condition, nevertheless 4,
special Jacobian formulation allows maintaining the line-baseq
expression of the Jacobian matrix of the common parallel suh-
mechanism (defined in Section IlI) of this class of robots. &,
Unlike fully parallel robots that have a diagonal nonsingulas,,
IIK matrix, B (for a nonzero length of the linear actuators), com-
posite serial in-parallel robots require both matrideandB to  f,;
be examined for singularity. Singularity of mati#kindicatesa f;, f,
loss of DOF and singularity of matriA indicates gain in DOF
[2]. Se
The structure of a family of composite serial in-parallel robots
is presented next (Sections Il and Ill) and its parallel singulari-
ties are derived based on line geometry (Sections V and VI).
R,
[I. A FAMILY OF COMPOSITESERIAL IN-PARALLEL ROBOTS

A class of 14 composite serial in-parallel robots is listed iRP:
Table I. Each robot is represented by a code depicting the struc-
ture of its kinematic chains from the base platform to the movin
platform. The letter R stands for a revolute joint, S for spherica
P for prismatic, U for universal (Hooke’s), C for cylindrical, an
H for helical joint.

All the robots of this family have three similar kinematic,
chains connected to a moving platform by revolute joints. T
last links in the kinematic chaing};, ¢ = 1...3, are passive
binary spherical-revolute (S-R) dyads. Table | depicts all th
14 possible combinations of joints constituting connectivity th
equals six between the base and the moving platform. Althoug
some investigations use special distribution of actuators [17] an
passive sliders [18]-[20] to simplify the direct kinematics soll?
tion or to minimize singularities via redundancy [8], we limit
our discussion to symmetrical nonredundant robots with three
identical kinematic chains and symmetrical distribution of ac-
tuators.

I1l. L INE-BASED FORMULATION OF THE JACOBIAN

The formulation of the Jacobian matrix based on static
analysis is described next. The same formulation can also be

Nomenclature
Index referring tai'th kinematic chaing = 1,2, 3.
+'th link of the tripod mechanism.
Moving platform’s center point.
Unit vector along thé&'th revolute joint.
Unit vector along link4,; (Fig. 1).
Unit vector parallel tor; and passing through the
+'th spherical joint center.
Magnitude of force acting or;, alongss;.
Force vectors along linkd; and alongs,;, respec-
tively.
Six-dimensional external wrench applied by the
moving platform on its environmeng, = [f,, t.],
wheref, andt, are the resultant external force/mo-
ment, respectively.
Rotation matrix from platform-attached coordinate
system, P, to world coordinate system, W.
A vector fromo,, to a point ont; (written in plat-
form-attached coordinate system).

Link A; is connected to the moving platform by a passive
r?volute joint and to linkB; by a passive spherical joint. Con-
equently, it is capable of exerting on the platform a static force
in a direction spanned by the flat pencilagf andr;, and a mo-
ment in the direction of; x §;; (Fig. 1). Link B; can exert on
'Qk A;, through the center of the spherical joint, a static force in
a direction defined by the flat pencil éf; ands,;. Therefore,
we decompose the force transmitted from lidkto A; into two
1pmponents—one of magnitude; and in the direction of;
and the second of magnitude; and in the direction of,;.

guations (3) and (4) result from static equilibrium of forces
nd moments about the center pait

3 3
Zflié1i+2f2ié2i —fe=0 (3)
im1 im1

3 3
ZVWRPPPZ‘ X f1i81: + ZWRPPPZ‘ X f2i82;
=1 =1

3
+ Z —s1; X f2;80; —te = 0. (4)

i=1
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Rewriting (3) and (4) in a matrix form yields

[ S14 82 } |:f1:| _ |:fe:|
“Rppp; X 81i (“Rppp; —s1i) X 82: | [f2] [ te ('5)

For parallel robots, the expression connecting the associated
active joints’ intensitiesr with s, is given byr = JTs..
Equating this expression with (5) yields the Jacobian of the
tripod mechanisnd.

A ~ T
T S14 S24
J=1, . , . . 6
[“’Rpppi X 81 (“Rppp; —s14) X 522} ©
The forces at the spherical joints are given by

DESCEN:

The rows of the Jacobian matrix of the tripddre the Pliicker
line coordinates of the lines along the links and the line$,;
(Fig. 1). These vectors can be found by the inverse kinematigg 2. RsPR robot.
of the tripod. Actually, the exact values 8f; ands,; are not

needed since, as will be seen in Section VI, the singularity anal- ) S
ysis is purely based on line geometry. In this analysis, the alf#se of [22], but due to formulation of the matiJxit is pos-

is to find the types of parallel singularities rather than the actu@lP!e to apply line geometry to analyze the parallel singularities.
joint values in these singular configurations.
The group of robots in Table | shares the same tripod mecha- IV. THE RSPR RBOT

nism. The complete Jacobian matrix of this group is easily Ob'The RSPR robot and another robot of this family, thiSR

Cmedical robotic assistant for laparoscopic and knee surgery
ﬁ]—[28] (bold letters indicate the active joints). These robots
were compared in terms of their workspace, dimensions, and
required actuator forces, and the RSPR manipulator was chosen
and constructed [41]. The prototype of the RSPR manipulator

T f1 is shown in Fig. 2.
=17 [fJ ) This manipulator consists of three identical kinematic chains
) . ) ] connecting the base and the moving platform. Each chain con-
whereJ, denotes the Jacobian matrix of the serial chains. - (aing a lower link rotating around a pivot perpendicular to the

_ Substituting the expression for the forces at the spherigilge piatform and offset-placed from the center of the base. At
joints, one obtains the other end of the lower link, a prismatic actuator is attached

f1; and fo; and the active joints’ forces. The relation betwee
the actuators’ force intensities and the forces at the spheri
joints is given by

r=J7T El} =JTJ Ts, (9) by a spherical joint. The upper end of the prismatic actuator

] 2 ] ) is connected to the moving platform by a revolute joint. The

hence, the Jacobian of the complete manipulator is axes of the revolute joints constitute an equilateral triangle in
J=J71J. (10)  the plane of the moving platform (Fig. 2).

Comparing (10) with] = B~1A (whereB andA are the IIK This robot is distinguished by the location of the lower links
and IDK matrices, respectively) shows that the IDK matAx, revolute axes being placed offset from the center of the base
and the IIK matrix,B, are the Jacobian matrix of the tripdd platform as compared to the RRPS robot in [29].

and the Jacobian matrix of the serial chaihs respectively.

Every manipulator of this class of manipulators has the same V. SINGULARITY ANALYSIS METHODOLOGY

J matrix, but a differentJ; matrix. For example, the Jacobian

matrices of the RSPR and the USR robots (Table I) were formu-Based on the Jacobian matrix formulation of Section Ill, the
lated in [24] using this method. singularity analysis for every robot in Table | is divided into two

Based on the observation thht(the IDK matrix) is associ- phases. The first phase deals with parallel singularities stem-
ated with the tripod mechanism, we will refer to it as the parall8hing from rank deficiency of the IDK matrixA (referred to
submechanism since it leadsptarallel singularitiescharacter- @sJ in Section Ill). The second phase deals with serial singu-
ized by the addition of DOF to the moving platform (loss ofarities of the IIK matrix,B. In this paper, we present only the
constraint). analysis of the parallel singularities, which is common to the 14

The formulation ofJ presents a matrix composed of linegobots of Table I. In [27], the serial singularities of the RSPR
of the parallel submechanism rather than screws of the whaled the USR robots were derived based on the determinants of
robot as is derived, for example, in [21]. The result obtained their IIK matrices [24].

[22] presents a formulation of the Jacobian matrix of the PPSRSince the IDK matrixJ of a typical manipulator of this class
(Table 1) manipulator in [23] based on the use of reciproc& composed of the Pliicker line coordinates of the parallel sub-
screws. The results of the derivation presented here accede wittchanism, we analyze its singularities using line geometry
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Fig. 3. Inverted tripod with variable moving platform laterals as an equivalent
linkage to the TSSM [35].

technique. Readers interested in a background on line geom
etry should refer to [30]-[33], [12], and [34], where the last

two books present the subject with its relevance to kinematigs. 4. Geometry off and its associated linds. .. s

of mechanisms.
An inversion of the tripod of Fig. 1 was used in [35] and [36]

Nomenclature

as an equivalent mechanism of the Stewart-Gough 3-3 and 3-6he following symbols facilitate the formulation of the ge-

robots for solution of the direct kinematics and Singularities [3@metrica] proofs in this section. All the Symbo|s are exp|ained
(Fig. 3). This suggests that the parallel singularities of the trip¢férein and shown in Fig. 4.

mechanism are categorically the same as the Stewart-Gough;3-6
and 3-3 robots since, in both cases, the basic problem from line-
geometry point of view is finding the possible linear dependep:
cies between the lines of thraechitectural flat pencil{defined 1,

in next section) maneuvering in space. However, the equivg-
lence is not direct since in Fig. 3 the equivalent mechanism pf
the triangular symmetric simplified manipulator (TSSM) [35p¢
is an inversion of the tripod of Fig. 1 with variable laterals ofyq
its triangular platform. Thus, direct geometric interpretation of
the singularities of the tripod of Fig. 1 is not possible by con,
structing its equivalent TSSM and analyzing it for singularity.
The analysis given here shows how, by using geometric assump;
tions stemming from the architecture, one finds the direct geo-
metric interpretation of the singularities with application to theX -
working space of the moving platform. Indeed, our results acX "
cede with [1], [36], and [37], but we showthatthemterpretatlorig
of Fichter's [38] and Hunt's [39] singularities are different inp
our case, which has a direct impact on the motion capab|I|t|@§k
of the moving platform.

Center points of the revolute joints on the moving
platform.i = 1,2, 3.

Vectors of the revolute joints’ axes through.
Center points of the spherical joints= 1, 2, 3.
Normal to the moving platform plane through.
Plane defined by and pointp;, i = 1,2, 3.

Plane defined by points;, i = 1,2, 3.

Plane defined by points;, : = 1,2, 3. This plane is
hereafter referred to as the tripod base plane.
Flat pencil generated by linds andli. k,j €
{1,2,3,4,5,6}, k # j.

Flat pencil generated by linég andl;, that belongs
to category of flat pencils(. (X ;. = Xu;).

Plane and center point of flat pendcil;;.

Line defined by pointg; andpy,.

Group of the lines of, I' = {11,12,13,14,15,16}.
Group of lines of excluding lined; andly, C;, =
{l.: L, e, n# 4, n#£k}

Next, the analysis of parallel singularities begins from the | jnes and planes are regarded as sets of points. Therefore, the
general complex and works out all the cases up to flat peng{mbolsn ande have the same interpretation as for groups of
Singularities. This way we economize the anaIySiS since we |ﬁ0|nts According|y' the expressimb indicates the intersec-
nore the special cases as, for example, flat pencil singularitigsn of two lines,a andb, in a common point, or the intersection
that are special cases of bundle singularities. of two planesa andb, along a common intersection line, or a
line a piercing a pland. The expression € b indicates that a
point, a, is on the line/plandy; or that a linea, lies in the plane
b.

Geometric Relations:The tripod mechanism of Fig. 4 fea-

Fig. 4 presents a geometric interpretation of the Jacewes the following architectural geometric relations:
bian matrixJ of the parallel submechanism (tripod) of the Al:
class of robots shown in Table I. We will use the symbols

VI. SINGULARITY ANALYSIS OF THE PARALLEL
SUBMECHANISM

Pointsp; are not collinear.
A2: by e P1, by € P2, bs € P3.

lg, & = 1...6, to refer to row number in the tripod’'s

Jacobian matrixJ, which are also the Plucker coordinates of A3: r; € PO, r; € PO, r3 € PO.
linesly, 1, 13, 14, 15, andls of Fig. 4. We employ line geometry Ad: Ly |ry, 15 || 2, 16 || ra.

to find all the configurations in which the rows df i.e., lines A5 r; LP1, 1o L P2, rs LP3.

11, 1, 13, 1y, 15, andlg are linearly dependent. o o
First the relevant nomenclature for this section and a list of A6 pidr;i,j=123 14

useful geometric relations, upon which all the following geo- Corollaries: The following corollaries, Crl.. Cr3, result

metrical proofs are based, is presented. from geometric relations Al.. A5. Each corollary is followed



SIMAAN AND SHOHAM: SINGULARITY ANALYSIS OF A CLASS OF COMPOSITE SERIAL IN-PARALLEL ROBOTS 305

12 23|[34][45 36
1324 35 46
[1a 25 36|

15 26

16

) . Fig. 6. The lines of” and linesl~, 15, andly.
Fig. 5. Flat pencil groups. 9 s °

by brackets enclosing a list of geometric relations used to rotheeorem [32]A general linear complex has & pencil of lines in
ity 9 9 P é’very plane and a pencil of lines through every point in space

This theorem means that, for a given general complex, every

Crl [A2]:]; € PL, I, € P2, 13 € Ps. plane in space is associated with a flat pencil that belongs to
Cr2  [A3,Ad]:L || PO, 15 || PO, 1s || PO. it. Accordingly, the tripod base plane, B0, is associated with a
Cr3  [A4,A5:1, L P1, 15 L P2, 16 L P3. flat pencil of lines of the general complex. Any line in BO that

Crd [A2,A4AS:L L1, 1 L1y, 1 L 1. does not belong to this flgt penc_:ll does not belong to the gener_al
i ) i _complex and vise versa; any line belonging to this flat pencil
Categories of Flat PencilsWe use flat pencils as a bas'cbelongs to the general complex.
tool in deriving the singular configurations of the structure. It There are six line quintuplets i = {1, .. .1g}. Each one
is therefore useful to enumerate all possible flat pencils.  jncludes two architectural flat pencils. We consider the general
A group ofn lines in space can form up te(n — 1)/2 flat  complex@ of lines generated by the two architectural flat pen-

pencils. In our case, where= 6, all possible 15 flat pencils of cils F,, andF,; and either lind; or linels as a representative
the tripod are grouped into four groups T, R, S, and F (Fig. R)ase to all other cases.

where each two-digit numbg¥: represents a flat pencil formed  The following proof shows that all the six lines of

by linesl; andl. Due to the similarity of the kinematic chainsp _ {1, ...16} belong to one general comple%, if and
of the tripod, it is sufficient to analyze the singularity of onlyomy if lines1, ls, andly intersect in one point (copunctal).
one member in each group. Proof:

We distinguish betweearchitectural flat pencilsand tem- 1) Linesly, 1, andly fulfill 1; € Fia, g € Fas, 1o € Fa.
porary flat pencilswith temporary flat pencils being configu- 2) 14,1, andl; linearly depend on the flat pencils generated
ration-dependent, i.e., forming under certain conditions on the™ ' it line pairg(l 1), (I Ls), (Is Io).
configuration variables and architectural flat pencil being con- 3) Linesl; andlg fulfill 1, € @, 1y € G andl; € BO
figuration independent. Note that only category F includes ar- Is € BO. ’ ’

chitectural flat pencils. L : :

Next, we adopt the code of Dandurand [14] to indicate the gg }; anlg (;enf(ljnte);;\ezooif:ﬁtep;ebr:)%:eoti]her;ergégel SC);’ i(f);ﬁa
different line varieties. For each rarkr (» < 6) line variety, only if 1; e (15 1s).
we test all the cases in which more thatines belong to this 6) Ifline 15 € G andly € g, thenls € G and vise-versa; if
line group. This is tantamount to finding all the cases in which I; € Gandly € G thenl;): € G = The condition for th’is
r < rank(J) < 6. For example, the term “bundle singularities,” singularity is
includes all the cases in which more than three lines, out of the Singular configuratior$ 1:

six lines ofI", belong to one bundle. This includes singularities

with rank3 < r < 6. PF14 NPFo5 NPE36 N BO # {J}.
. . N Note that this is Fichter’s [38] singularity (5a), but in our
A. Linear Complex Singularities case with the inversion of the equivalent mechanism, rotating

A group of six lines degenerates from the space variety tee moving platform 9% about the vertical axis will not result
the linear complex variety in two ways. If all the six lines ofn singular configuration.
the group belong to a general spatial linear pentagon, then sin2) Six Lines in a Special Linear Complex (5Bgincel in-
gularity of the general complex occurs [30]. If all the six linesludes three permanent flat pencils of type F, all its lines inter-
intersect one common line, then a singularity of the special cosect a common line if this line is the line of intersection of planes
plex occurs. PFy4, PFo5, andPF g or if pointsby, bs, andbs are collinear.

1) Six Lines in a General Complex (5APefine linesl;, 1s, Since plane$ 4, P Fy;, and? F3¢ do not have a common in-
andly as the intersection lines of the flat pendils,, Fo5, F3¢  tersection line the only possible singular configuration occurs

with the base plane BO, respectively (Fig. 6). when pointsby, b2, andb; are collinear (Fig. 7).
1; = PF,, N BO lg = PFo5 N BO lg = PF35 N BO. Singular configuratiors2: Ab; + Bby 4+ Chs = 0,
Next, we prove that all six lines df = {1, .. .15} belong to A,B,CeR, (A B,C)#(0,0,0).

one general comple¥ if and only if linesl;, 1g, andlg intersect ~ This singularity is categorically the same (5b) as Hunt’s [39]
in one point (copunctal). The proof is based on the followingingularity, but co-planarity of one of the links with the moving
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Fig. 7. S2 singularity. Fig. 8. (a) Special cases of S1 singularity:= 1,. (b) Special cases of S1
singularity:1s = lo.
platform does not cause it as is the case with the Stewart-Gough
3-3 and 3-6 robots. Therefore, robots with such tripod may have il fs1
better tilting capabilities than the Stewart—-Gough 3-3 and 3-6 cases a_re Special cases o " »
robots. 3) Parabolic Congruence (4C)This case unifies all flat
We will henceforth exclude the possibility for collinearity ofPencil singularities related with one or more flat pencils of the

b1, bo, andbs since we already proved that this leads to a sifparabolic congruence, therefore, it does not add new singular
gular configuration. configurations to the ones that will be discussed in flat pencil

singularities.

B. Linear Congruence Singularities 4) Degenerate Congruence (4DYhe lines dependent on
four generators of a degenerate congruence are the lines of a
r’kﬁane (3D) and the lines that share the piercing point of the
fourth congruence line with the congruence plane. Since co-pla-
narity of four lines will be investigated in Section VI-C-4 (3D),
e inspect only the case in which two lines pierce the plane de-
Red by the other three lines in a common point. However, if
& considered line triplet is coplanar only when four or more
lines ofI" are coplanar, then degenerate congruence singularity
is marked.

I" has 20 line triplets. Table Il lists all these line triplets and
presents six groups of them, Ul. U6. We consider all the

1y is 13 and Fig. 8(b) shows the cake = 1y. Both these

This section presents the singularities of five lines in o
linear congruence.

1) Elliptic Congruence (4A):Four skew lines in space form
three distinct reguli and a fifth line linearly depends on them if
belongs to one of these requli. Elliptic congruence singulariti
are not possible in our case since there are no four lines in {
same regulus (see the proof in Section VI-C-1).

2) Hyperbolic Congruence (4B)Four lines concurrent with
two other skew lined,, andl,, form a hyperbolic congruence.
Any fifth line concurrent withl, andl,, linearly depends on

th?rshe four Ime_s. i intuplets i — {1 1 ith t cases in which these line triples are coplanar and two other lines
ere are six line quintuplets ifi = {1,...1¢} With WO 0 o0t their plane in a common point.

architectural flat pencils of type F in each quintuplet. Thus, line c } ; : Thi .
. . ) - ase 1: Ul Line Triples:This category includes only one
1, is defined by the centers of these flat pencils andlijnis the P gory y

flat pencils. Next, we prove that Imég or .1‘? intersect lined, plane and that in this casg 1., andl; belong to one flat pencil
andl;, only when the S1 and S2 singularities are formed. IgFig 9)
Fig. 9).

There are two distinct categories of line quintuplets, G1 a

Proof:
G2. They are defined as
y 1) Pointsp; andb; define linel;, and PO = 1...3.
Gl ={(1 121514 15), (li 12 I3 1y 16), (I 12 13 15 16 ) } 2) Pointsh; define BO.
Go={(l1 1214 1516), (I1 15 Ly 15 1), (12 13 14 15 16) }. 3) 1, e Pi,n=P1NP2NP3.

4) SinceP0 = BO then linesly, l,, andls lie in BO and
intersect in the piercing point af with BO. Hence, lines
11, 15, andlz belong to one flat pencil (Fig. 9).

This singularity is named singular configuration S3.

The quintupletgl; 15 13 14 15) and(1; 1> 14 15 1) are used
as category representing ones for G1 and G2, respectively. We
first exclude the possibility thai; € 1, since this clearly leads
to singular configuration S2.

Proof: Singular configuratiors3: BO =P0 = 1,, € Tz,

1) I, = F14°F 5, 1), = PF14 N PFos5. Jik,n=1,2,3, j#k#n.
2) by = ¢I4, by = °Fy5; thereforel, € BO. We will henceforth exclude the possibility that the moving
3) Lineslg andls pass throughbs. platform lies in the tripod base plane since we already showed
4) Leti; be the piercing point df, with BO. that this configuration is singular.
5) Lineslg andl; intersectl, only if they lie in BO. Case 2: U2 Line Triplets:Let (1; 13 15) be a category-repre-
6) Lineslg andl; intersect both lines, andl;, only if they  senting triplet. We assume that lingds 15 1) are coplanar, thus,

pass through poirit and lie in the base plane BO. linesl; andl; define the flat pencit'T3. There are two cases to

7) Insuch acase, linds andls are, respectively, defined by be considered, in which, the line pafis lg) and(1; 1), respec-
pointsb; andi; andbs andi;. Linely is defined by point tively, intersec??:3 in a single point. Lines,, 1», andlg pierce
b3 andi;. This shows that linek, lg, andlg intersectin  PTy3 in pointsby, bs, andbs, respectively. Accordingly, inter-
one point,iy, in BO. Fig. 8(a) shows the case when linesection of two lines out dfy, 15, andlg with PT3 in one point
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TABLE I
ALL 20 LINE-TRIPLESDIVIDED INTO SIX GROUPS

Ul={l L)}
U2={1;15), (L 1; L), I 1, k)}

U3 = {(hi L1y, h L Is), I s1s), (i s k), (1 1s), (L3 1)}
U4 = {(h L1s), (1 14 1e), (215 lg), (I3 ks Xe), (L5 1y L), (1214 1)}
U5 = {(i Is16), (Ll ks), (I3 14 15)}

U6 ={(l;15 ls)} Fig. 10. Special case of S1.

4) Pointbg lies onls, i.e.,bs € 13, andbs € PSy;.
5) Pointsb; andb, satisfy:b; € 14, b € 15; henceb; €
PS,5 andbs € PSys.

6) B0 = PS5 = PO sinceby, by, andbs belong toPS,;.

Case 6: U6 Line Triples:Lines(l4, 15,1s) are coplanar if the
moving platform and the tripod base plane are parallel one to
another. Excluding the ca$® = B0, two lines from the group
(11,12, 13) intersect the tripod base plane in a common point only
if two of the spherical joints coincide. This leads to a special case

Fig. 9. Singularity of type S3. of singular configuration S2 in Fig. 7.
Proof:
is possible only if two spherical joints coincide, i.b,, = b;, 1) Linesly, 1, 15 pierce the base plane in poirits, b, and
1,7 = 1,2,3; 1 # j. This configuration is a special case of S2 bz, respectively.
(Fig. 7). 2) 1, || PO 15 | PO lg || PO [corollary Cr2]. In a singular
Case 3: U3 Line Triples:All the line triplets in this category configuration two lines out ofy, 15, 13 pierce the base
include one flat pencil of type F. L¢t:11:14) be a category-rep- plane in a common point. Therefore, in such singular con-

resenting line triplet. We assume that the lines of this tripletare  figurationb; = b;, i=1,2,3, i # j.
coplanar and we examine the other lines. This examination leads
to a special case of S1 singularity (Fig. 10). In this configuratiop. Planes Singularities

lineslz, s, andly intersect in one common point in BO. This section presents the analysis of singularities that belong

Prgof: . o to a rank-three system. We inspect all the cases, in which, four
1) Linesr; andp:p: are the intersection lines 8’1, and  |ines belong to the planes variety.
iTl? W'T PO, respectively. 1) Regulus Singularities (3A)The group of lineg includes
2) PT1p = PF14 whenlines(l, 1, 14) are coplanar. three architectural flat pencil, 4, F25, andF s, Consequently,
3) Since linesr; andp;p; are distinct and coplanar, theyihe maximal number of skew lines Ihis three. We recall that
define the platform plane PO. all lines in the same regulus are skew and intersect all the lines

4) ForPTy, = PFy4 to be fulfilled then both lines; and i, the conjugate regulus [30]. Therefore, if lings 1, 1; form
p1p2 must belong to bothT, andPF 4. Thus, thisis 5 regulus, then linek, 15, andlg cannot belong to this regulus
achieved only whef T, = PF14 = PO. because ling, intersectd;, 15 intersectd,, andls intersectds.

5) Sincel; || PO andby € I; = 15 € P0. Thus, the four consequently, no group of more than three lines can belong to
linesly, 12, 14, 15 are coplanar (see Fig. 10). the same regulus and singularity of type (3A) is not possible.

In this configuration lines, 1s, andly intersectin one common  2) Union Singularities (3B): The lines that depend on the
point in BO resulting in a special case of S1. generators of a union are all the lines that depend on any of its

Case 4: U4 Line Triples:Let (11, 14,15) line triplet be a cat- two flat pencils. Therefore, this case does not add singularities

egory representing one. Using similar arguments as in the pf§the ones that stem from flat pencil singularities.

vious case, this line triplet is coplanar only if all its lines lie in  3) Bundle Singularities (3C):A bundle that is singular in-

the moving platform plane, PO, i.€54; = P14 = P0. Inthis  cludes more than three lines intersecting in a common point.

case linel; lies in PO since it is defined by poikt; € 1; and |n order to find all singular bundles iR, all the possible line

p2 € P0. This is the singular configuration of Fig. 10. quadruplets are registered and divided into four line quadruplet
Case 5: U5 Line Triples:This case leads to singular config-groups.

uration S3. Next, we assume that the lines in the category repTaple IlI lists all the 15 line quadruplets. A singular bundle

resenting line tripletls, 14, 1;) are coplanar and we show thaforms if all the lines of one of these line quadruplets are

this occurs only if thed>0 = B0 (S3 singularity in Fig. 9). copunctal. This table presents four different quadruplet groups,
Proof: namely, groups Q1, Q2, Q3, and Q4.
1) Ly || PO 15 || PO [corollary Cr2] thereforéS,; || PO. Case 1: Singularities of Q1 Line QuadrupletZhis case
2) Pointp; satisfies:ps € PO, p3 € 1s. leads to special cases of S1 singularity in which the six lines of

3) 13 € PSy5 = p3 € PS4 = PSSy = PO. I" or the four lineg1; 1, 13 1) belong to one bundle (Fig. 11(a)
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TABLE Il
15-LINE QUADRUPLETS IN FOUR DIFFERENT CATEGORIES

Ql={h Lk, 0GLL|Q3={(0LLk),1LLIs),
Is), i L s 16)} (L), U Lisle), (It

Llsls), (b3 14le)}.

Q2={ULLlk), 0Ll |Q={U0Lik), (LILL
le), (13 1s516)} le), (bl 14 1)}

Fig. 11. Special cases of S1 singularity.
and (b), respectively). We choogh 1. 13 1) as a category
representing line quadruplet.

Proof:

1) POintbg fulfills bs =13 Nlg, i.e.,bg = “F3g.

2) Inasingular configuration, linds, 1,, 15, andlg intersect
in one common point.

3) Sincebs = 13N1g andlz # 1g the only possible common
point of intersection for lineky, 15, 13, andlg is bs.

4) by € 13,15 € P3, 1, € P2, andl; € P1; therefore,
the intersection is possible only along the normak= Fig. 12.  Special cases of S1 singularity.
P1NnP2nP3,ie., bz € n.

5) bs € BO and in a singular configuratioh; € n; there-  Case 4: Singularities of Q4 Lines Quadrupletset
fore, bz = n N B0, namely,bs is the piercing pointofi (11 14 15 1) be a category-representing quadruplet. This case

with the tripod base plane BO. leads to two special cases of S1 singularity (Fig. 12).

6) In a singular configuratiofiT;> = “F3s = bs. There- Proof:
fore, there are two possibilitie®T ; is located above the 1) b; = 1; N1y; therefore, in a singular configuratiob; is
moving platform andT, is located beneath the moving the common intersection point of all lines in the quadru-
platform. plet.

7) If °T4, is beneath the moving platform it means that= 2) lg || PO, 15 || PO [corollary Cr2]; thusPSse || PO.
b2 = bgs; therefore, this is a special case of S1 singularity 3) b; € B0 and in singular a configuratiob; = ©Ssg;
[Fig. 11(a).] therefore°S;¢ € BO.

Pointsbs, bs, and®S;s definePS;4. Since all these points be-
long to BO, we conclude that in a singular configuratid ||
PO, i.e., the tripod base plane and the moving platform are par-

case of S1, Fig. 11(b). . . . -
Case 2. Singulariies of Q2 Line Quadrupletiet ?zlilt(iecl).nij%lﬂ presents the two special cases of singular configu

(L Iz L4 1;) be a category representing line quadruplet. This 4) Plane Singularities (3D):Singularities of type 3D are
line quadruplet forms a singular bundle if a pair of sphericaln . . ' . .
joints coincides Characterized by having more than three coplanar lines in the
) T _ ) . groupl’ = {1,15,13,14,15,16}. We inspect all the line quadru-
_ Proof: by = 1Linly, by = 1, N1;. The only possible plets to determine the singularities that stem from this case.
intersection point for the four distinct lineskg = bs. Hence, . . ]
this is the same special case of S2 sinaularity in Fia. 7 There are four line quadruplet groups as shown in Table IlI;
e pecial 9 Y g. 7. therefore, we consider the cases, in which, the lines of each cat-
Case 3: Singularities of Q3 Lines Quadrupletket eaOrV-re fi druplet |
2gory-representing quadruplet are coplanar.

(1 1> 14 I¢) be a category-representing quadruplet. Next, w {case 1: Q1 Coplanar Line Quadruple®ll line quadruplets

assume that this line quadruplet intersects in one point and, . group include lined, , 1, andls. We proved in Sec-

we show tha_t sing_ularity of this category is a special case ﬁncf)n VI-B-IV Case 1 that lined; 1, 13 are coplanar only if
singular configuration S2. B0 — PO leading to S3 sinqularit
Proof: g to S3 singularity.
Case 2: Q2 Coplanar Line Quadrupletet(l; 1,1, 15) be a
1) Pointb, fulfills b, € B0, by = 1; N1,; therefore, in a category representing line quadruplet. In Section VI-B-1V, Case
singular configuration linek;, 1, 1, andlg intersect in 3, we proved that the lines of this quadruplet are coplanar only
point by . when linedl; andl; lie in PO leading to the special case of S1
2) I, € P1,1, € P2; thus, the intersection points of thesesingularity in Fig. 10.
lines is located along = P1 N P2. Case 3: Q3 Coplanar Line QuadrupleChoosgl; 1, 1y 1g)
3) In a singular configuration ling, intersectsl; in point as a category-representing quadruplet. All quadruplets of this
b;. Henceb; = “Ts. category are coplanar only 0 = BO.
4) by =1, N BO, i.e., b, is the piercing point of; with the Proof:
tripod base plane. Therefokg = b, = “T;> and this is 1) Inasingular configuration, the coplanar liigg| PO and
the same special case of S2 shown in Fig. 7. l¢ || PO define a plan&S.s such thatS.e || PO.

If °T45 is above the moving platform thdp = b; bz andl; =
bsobs, thereforel; € B0, 1, € B0. This singularity is a special
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2) Pointp; fulfils p; € 1li, p1 € PO. Pointb; is the
piercing point ofl; with PS4, by = 1; N PSye. Accord-
ingly, the condition to fulfilll; € PS4 is PS4 = PO.

3) Pointp, fulfills p> € PO, thereforel, € PSys when
by € PO. This configuration is S3 singularity (Fig. 9).

Case 4: Q4 Coplanar Line Quadrupletet (1; 14 15 15) be

a category-representing line quadruplet. Based on the proof i
Case 3, all the lines of this quadruplet are coplanRoif= BO.

h - ¢
0| [ ERel) _"..E,_' f’l. T __POj|§va

D. Flat Pencil Singularities (ZB) Fig. 13. Special cases of S1 singularity.

In the following sections, a category representing flat pencil TABLE IV
defined by lined; andl, (1;,1, € ') is tested with each link, SUBCASES OFCASE 4 AND THEIR EQUIVALENT CASES
in the complementary grou@;;. The geometric relations that
renderl,, € flat-pencil(1;,1;) are considered. case: h=h |L=h b=l b=l
Case 1: Lind,, € Tjx, 5,k = 1,2,3,5 # k,1,, € Cj;: Let Equalto: | case 1.2 | case 1.3 | case 2.2 | case 3.2
T2 be a category representing flat pencil. Based on the sym-
metry of the tripod, there are three distinct casgs:= 1, PO0. The special cases of singular configuration S1 are
l, = 14, andl, = lg. The casd,, = 1; is equivalent to case illustrated in Fig. 13.
1, = 14 due to symmetry considerations. Case 4, € Rji, (5. k) € {(1,5), (1,6),(2,4), (2,5), (3,4),
Case 11]-n = 13: This case was inVeStigated in SeC(375)}7 ]-n c Cjk Let R15 be a Category representing flat
tion VI-B-4, Case 1. pencil. This case leads to four cases that we have already dealt

Case 1.2,, =1, (equivalent td,, = 1;): Section VI-B-4, jith Table IV.
Case 3, shows that If;, 1, andl, are coplanar then the
singular configuration in Fig. 10 forms. E. Point Singularities (1A)

Case 1.3l, = lg: This case is a special case of Sec- Gjyen the perpendicularity relation in Cr4, a line of
tion VI-C-3, Case 1.I|m|te.d .for an eqwlater.all—tnangqla[{ll712713} does not coincide with a line ofly,15,16}. Lines
moving platform. Using similar arguments, it is possiblg '}, "an41, belong to three distinct planes P1, P2, and P3, and
to see that this leads to the singularity of Fig. 11 with |Il’leﬁ]ey pass through three distinct poipts, p, andps. Conse-
151, andl, that belong to one flat pencil. Note that an equigyently, no line couple from these lines can be simultaneously
lateral triangular moving platform fulfilis || p1p2, and  concyrrent with the intersection line of the three planes P1,
Ig || P1P2- P2, and P3. This precludes the coincidence of a line-pair of
Case 2: Lindl, € Fj,(5,k) € {(1,4),(2,5),(3,6)}, 1. € {1, 1,15},
Cji: LetF .4 be a category representing flat pencil. Based on | jnes1,, 15, 1, move such that each one is perpendicular to
the symmetry of the tripod, we consider only two cadgs= 1> planes P1, P2, P3, respectively. Since these planes are distinct,

(equivalenttd,, =13) andl, =15 (equivalent td,, = l¢). any two lines of this group cannot coincide regardless of the
Case 2.11, = 1, (equivalent tol,, = l3): This case is configuration of the robot.
identical to Case 1.B, = l,. Based on the above arguments, we conclude that the point
Case 2.21, = 5 (equivalent tol, = lg): In Sec- singularity of the tripod of Fig. 4 is not possible because the

tion VI-B-4, Case 4, we proved that if linds, 14, and lines of I" are architecturally distinct (regardless of the robot

1; are coplanar then the singular configuration in Fig. 1€onfiguration).
forms. This completes the analysis of the parallel singularities that
Case 3: Lind,, € S, (4, k) € {(4,5).(4,6),(5,6)},1,, € characterize the family of composite serial in-parallel robots of
C;r: LetSy4; be a category representing flat pencil. There afEable I. To complete the singularity analysis for each robot in
three distinct cases to be considergd: = 1; (analogous to thistable, one should find the serial singularities stemming from

I, =1),1, =13, andl, = l;. singularities of the IIK matrix of each robot. The serial singu-
Case 3.11,, = 1; (equivalent tol,, = 1,): Same as Case larities of the RSPR and the USR robots were analyzed in [27]
22, based on their IIK matrices [24].

Case 3.2, = l5: In Section VI-B-4, Case 5, we proved Theresults of the analysis of the parallel singularities indicate
that if linesls, L, andl; are coplanar then S3 singularitythat there are three general parallel singularities, S1, S2, and S3,

forms. all of which are connected to the general complex singularity.
Case 3.3, = lg: This case leads to a special case of SRarallel singularities of lower rank were identified as special
singularity (Fig. 13). cases of S1, S2, and S3.
Proof:

1) 14 || PO 15 || PO (corollary Cr2) therefor&S,s || PO. VII. CONCLUSION

2) In a singular configuratiol; € PS4; and?Sy; € lg. This paper presented the analysis of the parallel singulari-
3) by € 1y, by € 1; andbs € lg; thereforeb; € ©Sy5, ties of a class of 14 composite serial in-parallel robots having
by € PSy;, b € PSy; and plane BO fulfillsBO = PS4; || a common tripod mechanism. A unified Jacobian formulation
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of this class of robots was achieved by formulating a line-baseg 5]
Jacobian matrix of the tripod mechanism (called here as the
common parallel submechanism), which is an inversion of th 16]
equivalent mechanism of the Stewart—-Gough 3-3 and 3-6 robots.
This line-based formulation provides a convenient method for
analyzing the parallel singularities of this class of robots utiH{17]
lizing line geometry.

The analysis revealed three general cases (that are in fact spe-
cial cases of the general complex singularity) of parallel singuf1s]
larities that are common to this family of robots. All other sin-
gular configurations were shown to be special cases of the gel[il—
eral complex.

Even though this family of robots suffers also from Hunt's [20]
[1], [39], [40] and Fichter’s [38] singularities, which are typical
of 3-3 and 3-6 Stewart—-Gough platforms; nevertheless, theg;l]
have different interpretation in its working capabilities. It
has been shown that rotation of the moving platform by 90 [22]
about the Z axis which leads to Fichter's singularity in the
Stewart-Gough 3-6 and 3-3 platforms, or aligning one of the
links with the moving platform plane which leads to Hunt's 3
singularity, does not correspond to parallel singularity of the
robots of this family.

This geometrically-based analysis of parallel singularities,[24]
complemented by serial singularity analysis and a comparison
between the USR and the RSPR robots [27], was an importars)
factor in the design and construction of a compact and a light-
weight RSPR robot for medical applications.
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