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Abstract This paper addresses the problem of task-based stiffness synthesis of a 
variable geometry three DOF (Degrees Of Freedom) planar robot. The 
synthesis considers the case where the robot has a limited number of free 
geometric parameters and constant actuator stiffness coefficients. This 
defines twenty problems of stiffness synthesis, in which, three parameters of 
the stiffness matrix are controlled according to task requirements. These 
problems are modeled as systems of polynomials in the free geometric 
parameters of the robot’s base platform. Using Gröbner bases, the solubility 
of these polynomial systems is characterized. It is shown that arbitrary 
desired values of the Cartesian stiffness elements (kxx and kyy) are 
unattainable when only the geometry of the base platform is variable. An 
example of synthesizing three stiffness elements of the planar robot is solved 
and shown to have at most 48 solutions in the complex plane. In a numerical 
case study, sixteen real solutions are obtained, of which only eight are non-
singular.  
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1.  Introduction  
Robots are used to perform various tasks involving complex 

manipulations and interactions with their environment. Consequently, 
there are inevitable compromises when using a fixed-geometry robot for 
some tasks. To overcome this problem, the use of variable geometry 
robots is considered. In particular we concentrate here on variable 
geometry parallel robots. These robots can change the geometry of their 
base/moving platforms to accommodate the required characteristics, e.g. 
stiffness, specific to each task.    

Researchers used various methods to enhance parallel robots’ 
capabilities for better fitting task requirements in terms of stiffness, 
singularity avoidance, and inclusion of specific paths in the workspace. 



Actuation redundancy was used by Yi and Freeman (1993), Kim et al. 
(2000) for stiffness modulation. Kinematic redundancy of the robot for a 
given task was used by Merlet, et al. (2000) for path inclusion in the 
workspace and singularity avoidance. Stiffness/compliance synthesis 
algorithms were presented by Huang and Schimmels, (1998), and 
Roberts, (1999) for a system of springs supporting a rigid body.  

Works directly addressing variable geometry parallel robots are 
limited in number. Zhiming and Song (1998) investigated the design 
aspects of modular Stewart-Gough platforms with workspace and joint 
limits considerations. Zhiming and Zhenqun (1999) presented an 
algorithm for identifying the parameters of the joint locations on the base 
in a modular Stewart-Gough platform. Merlet, (1997, 2000) presented a 
design algorithm for achieving a constant-orientation workspace of 
Stewart-Gough robots, which can be adapted for workspace modification 
of variable geometry robots♠.  

 In the present investigation, a case study of stiffness synthesis for a 
point in a given path of a planar 3 DOF robot with a variable geometry of 
its base platform is presented. The aim of the synthesis is to obtain a 
specific stiffness in a given position/orientation of the robot’s moving 
platform.  Under a simplifying assumption that the stiffness coefficients 
of the redundant actuators that change the base geometry are 
considerably larger than the coefficients of the other actuators, this work 
may be viewed as an algorithm for changing the geometry of the base 
platform of a variable geometry 3 DOF planar robot for obtaining a 
required stiffness in a point along a path specified by the given task.   

2. Variable Geometry Planar Robot 
The planar robot of Fig. 1 has an 

equilateral triangular moving 
platform connected to a circular base 
by three kinematic chains composed 
of a slider on the circular base, a 
revolute joint, a prismatic joint, and 
a revolute joint on its moving 
platform. The sliders on the circular 
base control the geometry of the 
base platform and the prismatic 
actuators manipulate the moving 
platform. This introduces a kinematic redundancy in this three DOF 
planar robot. The objective of this paper is to determine the geometry of 
                                                 
♠ The authors acknowledge the valuable discussions with J.-P. Merlet on this subject  

Figure 1. Planar Robot with variable 
geometry base platform 
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the base platform by computing the locations of these three redundant 
sliders for achieving a desired stiffness goal in a point of a path defined 
by the task.   

3. Stiffness Polynomial Formulation 
In this section, the stiffness matrix of the robot of Fig. 1 is formulated 

as a function of the positions of the sliders on the circular base and is 
described in a Platform–attached Coordinate System (PCS). The location 
and orientation of the moving platform are given by the task while the 
orientations of the prismatic actuators are given by the stiffness 
synthesis solution and are easily transformed to desired positions of the 
redundant sliders on the circular base.  

The transformation of the desired stiffness from World Coordinate 
System (WCS) to PCS is given by, Tsai (1999): 
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where R is the 3x3 rotation matrix from the PCS to WCS, des
pK and 

des
wK  are the desired stiffness matrix in PCS and WCS, respectively. 
Hereafter, all vectors and matrices are represented in PCS.  

The only controllable geometric variables by the sliders’ locations are 
the unit vectors of the prismatic actuators’ axes, ( il̂ , i=1,2,3), Figs. 1-2.  
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where the symbol ^ indicates a unit vector, êi1 and êi2 are unit vectors 
indicated in Fig. 2, il̂ is a unit vector along the i’th prismatic actuator, and 
ai, bi are the projections of il̂  on êi1 and êi2. In order for il̂  to be a unit 
vector, ai and bi (i=1,2,3) must obey: 
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For an equilateral platform, Eq.  )3(  is an ellipse in ai-bi plane: 

)4(  3,2,1i01baba ii
2

i
2

i ==−++ 
A simplifying assumption is made that 
the sliders on the circular platform have 
a mechanical means to lock rigidly on 
the circular base once the desired 
geometry of the base is obtained or that 
the stiffness coefficients of the sliders 
are considerably larger than the 
stiffness coefficients of the prismatic 
actuators. With this simplifying 
assumption, the stiffness matrix 
depends only on the stiffness coefficients 
of the three remaining active prismatic 

Figure 2. Geometric notations for the   
planar robot 
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actuators. These three active actuators are assumed identical having 
stiffness coefficient kd. The rows of the Jacobian matrix of the robot of 
Fig. 1, with its sliders locked on the circular base, are the Plücker line 
coordinates of the three axes of the prismatic actuators, Eq.  )5( . 
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The 6×6 Stiffness matrix of the planar robot with three identical 
prismatic actuators is given by JJK T

dk= , Tsai (1999), and the reduced 
planar 3×3 stiffness matrix is then, obtained. Notations of the elements 
of this symmetric stiffness matrix are given in Eq.  )6( . 

)6( 















=

θθθθ

θ

θ

kkk
kkk
kkk

yx

yyyxy

xxyxx
K 

4. Stiffness synthesis with limited number of 
variable geometry parameters 

Given a desired triplet of stiffness elements from the upper triangular 
part of K in Eq.  )6( , the problem of stiffness synthesis with limited 
number of variable geometry parameters deals with finding the geometry 
of the base platform (i.e., finding ai, bi, i=1,2,3) of the robot in Fig. 1.  

To fully depict the 3×3 stiffness matrix, all the six equations in Eq.  )7(
given below must be fulfilled together with the three equations in Eq  )4( . 
Since the planar robot of Fig. 1 has a kinematic redundancy of order 
three, only three stiffness equations from Eq.  )7(  can be simultaneously 
fulfilled. 
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Note that this results in ( )6
3 =20 systems of six polynomials with each 

having a total degree of 2 in ai, bi (i=1,2,3). 
Generally, we ask whether it is possible to solve this problem for any 

such triplet and, if so, is changing the directions of the lines in Fig. 2 
enough to allow controlling all such triplets? 

To solve the polynomial systems derived from Eq.  )4(  and Eq.  )7(  ,the 
method of multiplication tables’ eigenvalues (see Stetter (1993)) is used. 
The following sub-section briefly describes this method. Further details 
can be found in Möller and Stetter (1995) and Cox et al. (1998). 
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5. The method of eigenvalues for solving 
polynomial systems 

Let C[x1..xm] represent the ring of polynomials with variables x1..xm, 
and coefficients over the complex field, C. Let also S={p1,p2,..pn | 
p1,p2..pn∈C[x1..xm]} be a system of n polynomials with a corresponding 
zero-dimensional Ideal I =<p1,p2,..pn>, I ⊂C[x1..xm]. The variety V(I) of 
solution is defined by all the m-tuples of x1..xm such that p1=p2=..pn=0, 
i.e., V(I)={[x1..xm]∈Cm | p1=p2=..pn=0}. We seek all the solutions of S. 

The original system of polynomial equations, S, can be replaced by 
another minimal set of polynomials, G={g1...gt}, called standard basis (or 
Gröbner basis) of the ideal I using Buchberger’s algorithm, Buchberger 
(1965), which is not reviewed here for lack of space. Questions regarding 
ideal-membership of a given polynomial to I, solubility of S, and 
finiteness of the dimension of V(I) are readily answered when using this 
basis, Heck (1997). Also, for lexographic ordering G is a system of 
polynomials with successively eliminated number of variables as in the 
result of Gauss-Jordan elimination method for linear equations. 
However, this elimination method is unfavorable for large systems due to 
the computation effort associated with this ordering, Cox et al. (1998).   

Two polynomials ]x..x[g,f m1C∈ , are said to be congruent modulo I 
, Imodgf ≡ , if f-g∈I. Consequently, f and g have the same normal form 
with respect to G and equal cosets [g]=[f]. A coset [f] of f∈C[x1..xm] is the 
sub-group of C[x1..xm] in which all its elements have the same normal 
form with respect to G, [f]=f+I={f+h | h∈I}. The totality of cosets of the 
polynomials in C[x1..xm] is the quotient ring of C[x1..xm] modulo I 
indicated by C[x1..xm]/I, i.e., C[x1..xm]/I={f+I | f∈C[x1..xm]}.  

Given two polynomials ]x..x[g,f m1C∈  then a normal form arithmetic 
similar to number arithmetic exists for addition and multiplication: 

( ) ( ) ( )gnfngfn fff +=+  and ( ) ( ) ( )( )gnfnngfn ffff = . Since every normal 
form is associated with a coset and vise-versa, this arithmetic is also 
translated to an associated coset arithmetic in the ring C[x1..xm]/I 
resulting in the fact that C[x1..xm]/I  is a vector space in nC . Let B be a 
basis of monomials for this space B={bi, i=1..n}. This means that the 
remainder (or normal form) of any f∈C[x1..xm] is given by: 
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Define the monomial basis vector b=[b1, b2, ...bn]t , bi∈B, i=1..n, then each 
polynomial f∈C[x1..xm] has a multiplication table Mf  such that: 

)10(  Imodf f bMb ≡  



Since the congruence relation in Eq.  )10(  indicates that I∈− bMb ff  
then 0bMb =− ff  for all the points of V(I). Consequently, the 
eigenvalues method is based on Eq.  )11( : 

)11(  ( ) 0bIM =− ff  
Equation  )11(  shows that the eigenvalues of Mf are the values of f for all 
the points of V(I). If f is taken as f=x1 then Eq.  )11(  gives all the 
coordinates x1 of the points of V(I). Thus, by constructing the 
multiplication tables xm1x ...MM  and solving for their eigenvalues, all the 
values of the coordinates x1...xm for the points of V(I) are obtained. The 
minimal polynomials of xiM , i=1..m, when written with xi as its variable, 
give the monic generators of the elimination ideals ]x[ iCI ∩ .  

There are both symbolic and numerical advantages of this method 
compared to standard sequential elimination of variables by resultants, 
Raghavan and Roth (1995), Neilsen and Roth (1999). Since this method 
is based on Gröbner basis construction, solvability of the system of 
polynomial equations is readily determined. Moreover, this method is 
unaffected by the term order used for the computation of G, which 
reduces the computation time when using more efficient term orders 
such as total degree order, Cox et al. (1998). Compared to sequential 
elimination methods, in this method the numerical computation is kept 
to a minimum since numerical values are used only in the computation 
procedure of eigenvalues and the solution of each coordinate xi is 
independent of the numerical solutions of the other variables and, thus, 
it is unaffected by computation errors in the other variables xj.   

6. Application to the parallel planar robot 
To answer the questions of section 4, the reduced Gröbner bases 

associated with all the 20 possible systems of equations in the form of Eq. 
 )7(  were computed. A total-degree ordering with a1>b1>a2>b2>a3>b3 was 

used for reducing the computation effort of these bases.  
The non-solubility of a polynomial system is determined by checking 

whether its reduced Gröbner basis is {1}, Adams and Loustanau (1994). 
Performing this task using Maple® shows that all the polynomial systems 
including equations for simultaneously fulfilling the desired values of kxx 
and kyy are unsolvable. Consequently, changing the directions of the 
prismatic actuators relative to the moving platform is not sufficient for 
simultaneously achieving these stiffness elements.  

Next, the problem of Eq.  )7(  for kxx, kxy, and kxθ is solved, i.e., all the 
stiffness elements in the x direction of PCS are prescribed based on task 
requirements. The reduced Gröbner basis for this problem, hereafter 
called G, with total degree ordering a1>b1>a2>b2>a3>b3 has 28 generators 
of degrees ranging from 1 to 5 in the variables. The ith column in table 1 



presents the degrees of the ith basis polynomial in the variables 
corresponding to a1,b1,a2,b2,a3,b3.  It can be seen that the total degree 
ranges from 4 to 8. This basis is not presented here due to lack of space.  

Table 1.  Degrees of the 28 polynomials of G in the variables  

a1 
b1 
a2 
b2 
a3 
b3 
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The leading terms of G are given by: 
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Based on the finiteness theorem, Adams and Loustaunau (1994), the 
system of polynomials corresponding to G is solvable and has a zero-
dimensional variety. This is established by examining the group of 
leading terms in Eq.  )12(  which shows that each variable among 
{a1,b1,a2,b2,a3,b3} appears alone as a leading term in G with the 
corresponding degrees of {2, 2, 2, 3, 2, 5}. Consequently, the group of all 
the remainders in C[a1,b1,a2,b2,a3,b3]/I , denoted by D, has terms with 
maximal degrees of {1, 1, 1, 2, 1, 4} in {a1, b1, a2, b2, a3, b3}, respectively.  

The monomial basis of C[a1,b1,a2,b2,a3,b3]/I, denoted by B, is found 
from D by extracting all the monomials in D that are equal to their own 
normal forms, Cox et al. (1998). This leads to the 48-dimensional 
monomial basis in Eq.  )13( : 

 
)13(  

 
 

Next, three 48×48 multiplication tables, Mf1, Mf2 and Mf3 for 111 baf += , 
222 baf += , 333 baf +=  are computed together with their corresponding 

minimal polynomials mpf1, mpf2, and mpf3. These minimal polynomials 
have only even degrees, so there are at most 24 pairs of complex 
solutions and their conjugate solutions (48 in total). These solutions give 
the values of f1=a1+b1, f2=a2+b2, and f3=a3+b3. The next step is solving for 
the values of a1, b1, a2, b2, a3, b3. These values establish the locations of 
the sliders on the circular base. The solution algorithms for obtaining the 



values of (a1, b1), (a2, b2), and (a3, b3) are identical; hence, only the 
algorithm for obtaining (a1, b1) is presented herein.  

Let ±C be one of the 24 solution pairs of mpf1. The matching solutions 
for (a1, b1) are the intersections of the line and the ellipse of Eq.  )14( . 
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The solutions for +C and for –C are: 
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Since only real solutions for (a1, b1) are of interest, only the admissible 
real solution pairs of mpf1 satisfying 32C ≤  are used in Eq.  )15( . Note 
that the two solutions for +C (and –C) represent a mirror image about 
the bisector of the angle α in Fig. 2 and that the two solutions for +C are 
mirror images of the two solutions for –C about the normal to the 
bisector of the angle α in Fig. 2.  

Once this procedure is repeated for the roots of mpf2 and mpf3, sets of 
solutions for (a1, b1), (a2, b2) and (a3, b3) are obtained and all the 
sextuplets (a1, b1, a2, b2, a3, b3) satisfying Eqs. (4, 7)  are found. 

7. Numerical Example 
To verify the solution procedure, a predefined geometry of the planar 

robot was selected with [a1,b1,a2,b2,a3,b3]=[ 0,1,0,1,33,33 ]. This 
corresponds to [θ1, θ2, θ3]=[30°, 240°, 120°], where θ1, θ2, and θ3 are the 
angles of 1l̂ ,,  2l̂ ,,  and 3l̂   relative to xp in Fig. 2. The corresponding stiffness 
matrix, using a platform radius of 0.1[m] and kd=1e+5 [N/m], is: 
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The aim of the following example is finding all the solutions for (ai, bi), 
i=1,2,3, for obtaining the stiffness elements kxx, kxy, and kxθ of Eq.  )16(  at 
a given manipulation point of the path. The solution method is validated 
if one of the solutions gives the values of the predefined geometry.  

Three minimal polynomials, mpf1, mpf2, and mpf3 are obtained with 
their solutions.  Table 2 lists only the admissible distinct solution pairs 
C1, C2, and C3, of mpf1, mpf2, and mpf3, respectively. These solutions are 
distinct up to 1e-3 resolution from other close solutions. Table 3 lists the 
distinct 16 solutions for ai, bi, i=1,2,3. Note that, as expected,  Table 3 
contains a solution corresponding to the exact values of [ 0,1,0,1,33,33 ] 
of the pre-defined example. These 16 solutions are presented in Fig. 3. 
Note also that only the last eight solutions, (i) through (p), are non-
singular. 



8. Conclusions 
This investigation addresses the stiffness synthesis problem of a 

planar kinematically redundant 3-DOF robot by controlling a limited 
number of its free geometric parameters. It is shown that it is impossible 
to control both Cartesian stiffness elements kxx and kyy, by only changing 
the locations of the sliders on its circular base. In an example of 
controlling kxx, kxy, and kxθ, it is shown that, at most, there are 48 
solutions in the complex plane. The numerical example solved shows only 
eight real non-singular solutions.  
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Table 2. Admissible real distinct solutions of mpf1, mpf2, and mpf3 

C1 ±0.577350 ±(1-4.4e-15)* ±1.145112 ±1.154700 
C2 ±0.38207e-13 ±0.376135 ±0.967869 ±0.999999 
C3 ±0.514087 ±0.968432 ±(1+12e-30)* ±1.154700 
* All numerical computations were made with 32 digits, but results are 
truncated to 6 decimal digits for presesntation purposes 

Table 3. 16 real solutions to  the problem in the numerical example 
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Figure 3. 16 solutions with only eight non-singular solutions (i, through p)  
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