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Cooling of mesoscopic mechanical resonators represents a primary concern in cavity optomechanics. In

this Letter, in the strong optomechanical coupling regime, we propose to dynamically control the cavity

dissipation, which is able to significantly accelerate the cooling process while strongly suppressing

the heating noise. Furthermore, the dynamic control is capable of overcoming quantum backaction and

reducing the cooling limit by several orders of magnitude. The dynamic dissipation control provides new

insights for tailoring the optomechanical interaction and offers the prospect of exploring mesoscopic

quantum physics.
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One of the ultimate goals in quantum physics is to
overcome thermal noise, so that quantum effects can be
observed experimentally. A prominent example is cavity
optomechanics [1,2], which enables not only the funda-
mental test of quantum theory and the exploration of the
quantum-classical boundary but also important applica-
tions in quantum information processing and precision
metrology. For these applications, the first crucial step is
to prepare the mechanical resonator in the quantum regime
[3–5]. So far, numerous experiments have focused on
backaction cooling [6–12] in the weak optomechanical
coupling regime, offering the potential for ground-state
preparation of mechanical resonators in the resolved side-
band condition [13–15], along with backaction evading
quantum nondemolition measurements [16–19]. A further
step lies in strong coupling, essential for coherent quantum
optomechanical manipulations [5,20–24] and electrome-
chanical interactions [25,26]. However, to date, optome-
chanical cooling in the strong coupling regime has
predicted only limited improvement over weak coupling
due to the saturation effect of the steady-state cooling rate
[22,27,28]. Although strong coupling allows state swapping
[5,21], it cools the mechanical resonator only at a single
instant in the Rabi oscillation cycle. Thus it is urgent that
these limitations for cooling and manipulating mesoscopic
mechanical systems in the quantum regime be overcome.

For this purpose, in this Letter we show the dynamic
tailoring of the cooling and heating processes by exploiting
the cavity dissipation, overcoming the saturation of the
steady-state cooling rate. This greatly accelerates the cool-
ing process and thereby strongly suppresses the thermal
noise. Moreover, heating induced by swapping and inter-
action quantum backaction are largely suppressed by peri-
odic modulation of the cavity dissipation, which breaks the
fundamental limitation of backaction cooling.

We consider a generic optomechanical system in which
an optical cavity driven by a laser is coupled to a mechani-
cal resonance mode, as illustrated in Fig. 1(a). In the

rotating frame at the driven laser frequency !, the system
Hamiltonian reads H ¼ �ð!�!cÞayaþ!mb

ybþ
gayaðbþ byÞ þ ð�ay þ��aÞ [29], where a (b) repre-
sents the annihilation operator for the optical (mechanical)
mode with !c (!m) being the corresponding angular reso-
nance frequency; g denotes the single-photon optomechan-
ical coupling rate, and � represents the driving strength.
For strong driving, the Hamiltonian can be linearized, with
a � a1 þ �, b � b1 þ �. Here a1 and b1 describe the
fluctuations around the mean values � � hai and � �
hbi, respectively. Neglecting the nonlinear terms, this
yields the Hamiltonian

HL ¼ ��0ay1a1 þ!mb
y
1b1 þ ðGay1 þG�a1Þðb1 þ by1 Þ;

(1)

where �0 ¼ !�!c þ 2jGj2=!m is the optomechanical-
coupling modified detuning, and G ¼ �g describes the
linear coupling strength. Taking the dissipations into con-
sideration, the system is governed by the quantum master

equation _�¼ i½�;HL�þ�D½a1��þ�ðnthþ1ÞD½b1��þ
�nthD½by1 ��, where D½ô��¼ ô�ôy�ðôyô�þ�ôyôÞ=2
denotes the Liouvillian in Lindblad form for operator ô;
� � !c=Qc (� � !m=Qm) represents the dissipation rate

FIG. 1 (color online). (a) Sketch of a typical optomechanical
system. (b) Level diagram of the linearized Hamiltonian [Eq. (1)].
jn;mi denotes the state of n photons and m phonons in the
displaced frame. The solid (dashed) curves with arrows corre-
spond to the cooling (heating) processes.
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of the optical cavity (mechanical) mode, and nth ¼
1=ðe@!m=kBT � 1Þ corresponds to the thermal phonon num-
ber at the environmental temperature T.

Figure 1(b) displays the level diagram of HL and the
coupling routes among states jn;mi with n (m) being the
photon (phonon) number in the displaced frame. We note
that there are three kinds of heating processes denoted by
the dashed curves in Fig. 1(b), corresponding to swap
heating (B), quantum backaction heating (D), and thermal
heating (F). Suppressing thermal heating is the ultimate
goal while swap heating and quantum backaction heating
are the accompanying effect when radiation pressure is
utilized to cool the mechanical motion. Swap heating
emerges when the system is in the strong coupling regime
which enables reversible energy exchange between pho-
tons and phonons. Meanwhile, quantum backaction heat-
ing can pose a fundamental limit for backaction cooling.
The solid curves (A, C, and E) illustrate cooling processes
associated with energy swapping, counter-rotating-wave
interaction, and cavity dissipation, which one seeks to
enhance while suppressing heating for efficient mechanical
motion cooling.

We focus on the resolved sideband regime � <!m and
we set �0 ¼ �!m, in which the beam splitter interaction

ay1b1 þ a1b
y
1 is on resonance. In this case the dynamical

stability condition from the Routh-Hurwitz criterion [30]
requires 2jGj<!m. To realize cooling, the cooperativity
C � 4jGj2=ð��Þ � 1 should also be satisfied. Starting
from the master equation, we obtain a set of differential
equations for the mean values of the second-order

moments �Na ¼ hay1a1i, �Nb¼hby1b1i, hay1b1i, ha1b1i, ha21i,
and hb21i (see the Supplemental Material [31]). In the
steady state we obtain the phonon occupancy [22,27]

�Nstd ’ �ð4jGj2 þ �2Þ
4jGj2ð�þ �Þ nth þ

�2 þ 8jGj2
16ð!2

m � 4jGj2Þ ; (2)

where the first term is the classical cooling limit and the
second term originates from the quantum backaction, con-
sisting of both dissipation quantum backaction related to
the cavity dissipation (with the associated fluctuation-
dissipation theorem) and interaction quantum backaction
associated with the optomechanical interaction (see the
Supplemental Material [31] for a full description). In the
weak coupling regime, Eq. (2) reduces to �Nwk

std ’�nth=
ð�þ�Þþ�2=ð16!2

mÞ with � ¼ 4jGj2=�, which agrees
with Refs. [13,14], and with �2=ð16!2

mÞ the dissipation
quantum backaction from the fluctuation-dissipation theo-
rem. In the strong coupling regime, we obtain �Nstr

std ’
�nth=ð�þ �Þ þ jGj2=½2ð!2

m � 4jGj2Þ�. In this case the
classical limit is restricted by the cavity dissipation rate
�, while the interaction quantum backaction limit suffers
from the high coupling rate jGj.

To study the cooling dynamics beyond the steady state,
we solve the differential equations to obtain the time
evolution of the mean phonon number �Nb. For weak

coupling, we have �Nwk
b ’ nthð�þ �e��tÞ=ð�þ �Þ þ

½�2=ð16!2
mÞ�ð1� e��tÞ, which shows that the mean pho-

non number decays exponentially with the cooling rate �.
This cooling rate is limited by the coupling strength, since
in the cooling route A ! E the energy flow from the
mechanical mode to the optical mode (process A) is slower
than the cavity dissipation (process E).
In the strong coupling regime, we obtain the time evo-

lution of the mean phonon number described by (see the
Supplemental Material [31])

�Nstr
b ¼ �Nstr

b;1þ �Nstr
b;2;

�Nstr
b;1’nth

�þ 1
2e

�ð�þ�Þt=2½���þð�þ�Þcosð!þ�!�Þt�
�þ�

;

�Nstr
b;2’

jGj2½1�e�ð�þ�Þt=2 cosð!þþ!�Þtcosð!þ�!�Þt�
2ð!2

m�4jGj2Þ ;

(3)

where !� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

m � 2jGj!m

p
are the normal eigenmode

frequencies. The phonon occupancy exhibits oscillation
under an exponentially decaying envelope and can be
divided into two distinguished parts �Nstr

b;1 and
�Nstr
b;2, where

the first part originates from energy exchange between
optical and mechanical modes, and the second part is
induced by quantum backaction. �Nstr

b;1 reveals the Rabi

oscillation with frequency �2jGj, whereas the envelopes
have the same exponential decay rate �0 ¼ ð�þ �Þ=2
regardless of the coupling strength jGj. This is because,
in the strong coupling regime, the cooling route A ! E is
subjected to the cavity dissipation (process E), which has a
slower rate than the energy exchange between phonons and
photons (process A). This saturation prevents a higher cool-
ing speed for stronger coupling. In Figs. 2(a) and 2(b) we
plot the numerical results based on the master equation for
various G. It shows that for weak coupling the cooling rate
increases rapidly as the coupling strength increases, whereas
for strong coupling the envelope decay no longer increases;
instead the oscillation frequency becomes larger.
Fast cooling to the steady-state limit.—To speed up the

cooling process in the strong coupling regime, here we take
advantage of high cavity dissipation to dynamically
strengthen the cooling process E. The internal cavity dis-
sipation is abruptly increased each time the Rabi oscilla-
tion reaches a minimum-phonon state, such as through
rf-synchronized carrier injection to the optical cavity [32].
At this time the system has transited from state jn;mi to
state jnþ 1; m� 1i. Once a strong dissipation pulse is
applied to the cavity so that processE dominates, the system
will irreversibly transit from state jnþ1;m�1i to state
jn;m� 1i [Fig. 1(b)]. The dissipation pulse essentially
behaves as a switch to halt the reversible Rabi oscillation,
resulting in the suppression of swap heating. To verify this
dissipative cooling, in Figs. 2(c) and 2(d) we plot the
modulation scheme and the corresponding time evolution
of the mean phonon number �Nb for �=!m ¼ 0:05 and
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G=!m ¼ 0:2. At the end of the first half Rabi oscillation
cycle t� �=ð2jGjÞ, a dissipation pulse of pulse width
0:01�=ð2jGjÞ is applied. Detailed tradeoffs of the dissipa-
tion quantum backaction and the interaction quantum
backaction for varying pulse widths are shown in the
Supplemental Material [31]. After incidence of the dissipa-
tion pulse, the phonon number reaches and remains near
the steady-state limit. For short time scales, the remain-
ing small-amplitude oscillations mainly originate from
counter-rotating-wave interactions. Note that without
modulation (blue dashed curve), the steady-state cooling
limit is reached only after t ’ 400=!m; while with the
modulation (red solid curve), it only takes t ’ 8=!m to
cool below the same limit.

Breaking the fundamental limit of backaction cooling.—
By periodically modulating the cavity dissipation so as to
continuously suppress the swap heating, the phonon occu-
pancy can be kept below the steady-state cooling limit.
Actually, each time after the dissipation pulse is applied,
the photon number quickly drops to the vacuum state,
which equivalently reinitializes the system. By periodic
pulse application, the system will periodically reinitialize,
which keeps the phonon occupancy in an instantaneous-
state cooling limit as verified in Fig. 3. The instantaneous-
state cooling limit is given by (see the Supplemental
Material [31])

�Nins ’ ��nth
4jGj þ �2jGj4

ð!2
m � jGj2Þð!2

m � 4jGj2Þ : (4)

Here the first term comes from �Nstr
b;1 for t ’ �=ð2jGjÞ,

which reduces the steady-sate cooling limit by a factor of
��=ð4jGjÞ. The second term of ��2jGj4=!4

m, obtained
from �Nstr

b;2 when t ’ �=!m, reveals that the second-order

term of jGj=!m in quantum backaction has been removed
in our approach, leaving only the higher-order terms. Note
that the cooling limit [Eq. (4)] is the sum of the individual
minimum of �Nstr

b;1 and �Nstr
b;2 in their first oscillation cycle.

Notably, in Fig. 3 we demonstrate that the modulation is
switchable. If we turn on the modulation (‘‘ON’’ region),
the system will reach the instantaneous-state cooling limit;
if we turn off the modulation (‘‘OFF’’ region), the system
transits back to the steady-state cooling limit.
In particular, from Eq. (3), the interaction quantum

backaction heating term �Nstr
b;2 forms a carrier-envelope

type evolution, where the carrier oscillation represents
the counter-rotating-wave interaction and the envelope
oscillation is a result of coherent energy exchange due to
strong coupling. The minimum of �Nstr

b;2 is dependent on the

carrier-envelope frequency matching. If ð!þþ!�Þ=
ð!þ�!�Þ¼k (k ¼ 3; 5; . . . ), yielding jGj=!m ¼ k=
ðk2 þ 1Þ ¼ 0:3, 5=26; . . . , �Nstr

b;2 reaches a minimum

� ��jGj
8ð!2

m�4jGj2Þ for t ’ �=ð2jGjÞ. Here we obtain the opti-

mized instantaneous-state cooling limit as [31]

�Nopt
ins ’

��

4jGj
�
�nth
�

þ jGj2
2ð!2

m � 4jGj2Þ
�
; (5)

which reduces both the classical and quantum steady-state
cooling limits by a factor of ��=ð4jGjÞ. Remarkably, this
reduction is significant when the system is in the deep
strong coupling regime. Besides, the leading order of
the interaction quantum backaction heating scales as

FIG. 2 (color online). (a) Time evolution of mean phonon
number �Nb for G=!m ¼ 0:005, 0.01, 0.02, and 0.1 (numerical
results). (b) �Nb for G=!m ¼ 0:005 and 0.01 with a wider time
interval. The shadowed region shows the same time interval with
(a). (c) Modulation scheme of the cavity dissipation rate �ðtÞ for
fast cooling to the steady-state limit and (d) the time evolution of
mean phonon number �Nb with (red solid curve) and without
(blue dashed curve) modulation for G=!m ¼ 0:2. Other parame-
ters are nth ¼ 103, �=!m ¼ 10�5, and �=!m ¼ 0:05. The dotted
horizontal lines correspond to the steady-state cooling limits,
given by Eq. (2).

FIG. 3 (color online). Modulation scheme of �ðtÞ=�ð0Þ (a) and
the corresponding time evolution of �Nb (b) for G=!m ¼ 0:1,
�ð0Þ=!m ¼ 0:01 (red solid curve) and 0.02 (blue dashed curve).
In (b), the two dotted horizontal lines (from top to bottom)
denote the respective steady-state cooling limits depending on
the cavity decay �ð0Þ, given by Eq. (2); the dash-dotted line
denotes the instantaneous-state cooling limit independent of
�ð0Þ, given by Eq. (4); the ‘‘ON’’ and ‘‘OFF’’ regions correspond
to the modulation turned on and off, respectively; the vertical
coordinate range from 10 to 103 is not shown. Other parameters
are nth ¼ 103 and �=!m ¼ 10�5.
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�jGj=!2
m, which can be a few orders of magnitude lower

than the steady-state case, representing a large suppression
of quantum backaction.

To verify suppression of the interaction quantum back-
action heating, in Fig. 4 we plot the cooling dynamics with
dissipation modulation for G=!m ¼ 0:3 and �=!m ¼
0:003. The single modulation pulse brings down the pho-
non occupation to the optimized instantaneous-state cool-
ing limit described in Eq. (5), with the time-dependent
effective cooling rate �eff ¼ ðd �Nb=dtÞ= �Nb shown in the
inset. With short-pulse modulation (blue dashed curve),
the remaining oscillation, mainly induced by the counter-
rotating-wave interaction, has a quasiperiod of �=ð2jGjÞ
due to frequency matching. This small-amplitude fluctua-
tion around the instantaneous-state cooling limit might
affect future quantum protocols, but in the sense of time
averaging through time scales larger than �=ð2jGjÞ, the
cooling limit can be viewed as stable. By using long-pulse
modulation, the quasiperiodic fluctuations can be sup-
pressed (red solid curve). This is because the large dissi-
pation suppresses the interaction quantum backaction. The
cost is that the dissipation quantum backaction takes effect
and gradually increases the phonon number. This tradeoff
can be balanced by optimizing the pulse width as shown in
the Supplemental Material [31].

Figure 5 plots the cooling limits as functions of G=!m,
which reveals that instantaneous-state cooling limits are
much lower than steady-state cooling limits. For small
coupling rates, we observed that interaction quantum back-
action is insignificant and suppression of swap heating is
the main origin of cooling limit reduction. For large cou-
pling rates, suppressing interaction quantum backaction is
crucial for obtaining lower limits. Typically, the cooling
limits can be reduced by a few orders of magnitude. For

example, when G=!m ¼ 0:3 and �=!m ¼ 0:003, we

obtain �Nstd ¼ 3:4, while �Nopt
ins ¼ 0:03, corresponding to a

phonon number suppression of more than 100 times.
Experimentally, the dynamic control of cavity dissipa-

tion can be realized, for example, by modulating the free-
carrier plasma density [32–34] or using a light absorber or
scatterer [35]. Note that we assume that G is kept
unchanged when the dissipation pulses are applied, which
corresponds to the invariableness of the intracavity field �.
This can be fulfilled by simultaneously changing the driv-
ing �ðtÞ, so that the equation ½i�0 ��ðtÞ=2��� i�ðtÞ¼0
is satisfied all the time (see Section VI of the Supplemental
Material [31]). Here modulated square-shaped dissipation
pulses are used and further simulations show that the
results are irrespective of the pulse shape, as long as they
are executed quickly with a strong enough peak value at the
desired time. This is because the pulse dissipation mainly
relies on the pulse area.
In summary, we examined cooling of mesoscopic me-

chanical resonators in the strong coupling regime and
propose dynamic dissipative schemes which possess large
cooling rates, low cooling limits, and long-time stability.
By making use of the cavity dissipation, swap heating can
be strongly avoided and the interaction quantum backac-
tion is largely suppressed, with great advantages over the
current conventional cooling approaches. For example, a
single dissipation pulse enables a more than 50 times
higher cooling rate; with periodic modulation of cavity
dissipation, the cooling limit can be reduced by more
than 2 orders of magnitude. Unlike the cooling schemes
with modulated coupling [36–40], we take advantage of
large cavity dissipation, usually regarded as a noise source.
Together with recent proposals of other dissipative effects
such as two-level ensembles [41] or the photothermal
effect [42,43], we demonstrate that cavity dissipation
(even in the presence of the considered dissipation quan-
tum backaction) can be viewed as a resource. Compared
with the dissipative coupling [44–46], this active dissipa-
tion control does not require coupling between the cavity

FIG. 4 (color online). Different pulse widths (a) and the cor-
responding time evolution (b) of �Nb. The horizontal lines in-
dicate the three cooling limits given by Eqs. (2), (4), and (5),
from top to bottom. The inset shows the effective cooling rate as
a function of time. Parameters are nth ¼ 300, G=!m ¼ 0:3,
�=!m ¼ 0:003, and �=!m ¼ 10�5.

FIG. 5 (color online). Cooling limits given by Eqs. (2) (black
dotted curves), (4) (blue dashed curves), and (5) (red solid
curves) versus G=!m for nth ¼ 103 (thin curves), 3� 102

(thick curves). Other parameters are �=!m ¼ 0:003 and
�=!m ¼ 10�5.
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dissipation and the mechanical resonator. The dynamic
dissipative cooling provides a new way for exploring
the quantum regime of mechanical devices, ranging
from mechanical ground state preparation to generation
of mesoscopic quantum states and quantum-limited
measurements.
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This Supplementary Material is organized as follows. In Sec. I, we present the linearization of the optomechanical
Hamiltonian. Using the quantum master equation, we describe the covariance approach to calculate the mean phonon
number in Sec. II. With this approach, we derive the steady-state cooling limit in Sec. III and the time evolution of
mean phonon number in Sec. IV. In Sec. V, we calculate the instantaneous-state cooling limit in the strong coupling
regime and optimize the result according to the frequency matching condition. In Sec. VI, the dynamic modulation of
cavity dissipation is introduced. In Sec. VII, we discuss the dissipation quantum backaction and interaction quantum
backaction. In Sec. VIII we investigate the effect of dissipation pulsewidth. The discussion on the bad-cavity limit is
studied in Sec. IX.

I. LINEARIZED OPTOMECHANICAL HAMILTONIAN

The optomechanical Hamiltonian with one optical mode coupled to one mechanical mode is given by [1]

H = −∆a†a+ ωmb
†b+ ga†a(b+ b†) + (Ωa† +Ω

∗
a), (1)

where we work in the frame rotating at the input laser frequency ω. Here ∆ = ω − ωc is the input-cavity detuning,
a (b) is the annihilation operator of the optical (mechanical) mode with ωc (ωm) being the corresponding angular

resonance frequency; g represents the single-photon optomechanical coupling rate; Ω =
√
κexP/(~ω)eiϕ denotes the

driving strength, where P is the input laser power, ϕ is the initial phase of the input laser and κex is the input-cavity
coupling rate.
The quantum Langevin equations are given by

ȧ =
(
i∆− κ

2

)
a− iga(b+ b†)− iΩ−

√
κexain,ex −

√
κ0ain,0, (2a)

ḃ =
(
−iωm − γ

2

)
b− iga†a−√

γbin, (2b)

where κ0 is the intrinsic cavity dissipation rate; κ = κ0 + κex is the total cavity dissipation rate; γ is the dissipation
rate of the mechanical mode; ain,0, ain,ex and bin are the noise operators associated with the intrinsic cavity dissipation,
external cavity dissipation (input-cavity coupling) and mechanical dissipation, respectively.
Coherent laser input results in the displacements of both the optical and mechanical harmonic oscillators. For

convenience, a displacement transformation is applied, i. e., a ≡ a1 + α, b ≡ b1 + β, where α and β are c-numbers,
denoting the displacements of the optical and mechanical modes; a1 and b1 are the displaced operators, representing
the quantum fluctuations of the optical and mechanical modes around their classical values. By separating the classical
and quantum components, the quantum Langevin equations are rewritten as

α̇ =
(
i∆′ − κ

2

)
α− iΩ, (3a)

β̇ =
(
−iωm − γ

2

)
β − ig |α|2 , (3b)

ȧ1 =
(
i∆′ − κ

2

)
a1 − igα(b1 + b†1)− iga1(b1 + b†1)−

√
κexain,ex −

√
κ0ain,0, (3c)

ḃ1 =
(
−iωm − γ

2

)
b1 − ig

(
α∗a1 + αa†1

)
− iga†1a1 −

√
γbin, (3d)
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where the optomechanical-coupling modified detuning ∆′ = ∆ − g(β + β∗). Under strong driving condition, the

classical components dominate and the nonlinear terms iga1(b1 + b†1) and iga†1a1 in Eqs. (3c) and (3d) can be

neglected, respectively. Then we obtain the linearized Hamiltonian HL = −∆′a†1a1+ωmb
†
1b1 + (Ga†1 +G∗a1)(b1 + b†1)

(Eq. (1) of the main text), where G = αg is the linearized optomechanical coupling strength.

II. CALCULATION OF MEAN PHONON NUMBER

With the linearized Hamiltonian, the quantum master equation reads

ρ̇ = i[ρ,−∆′a†1a1 + ωmb
†
1b1 + (Ga†1 +G∗a1)(b1 + b†1)]

+
κ

2

(
2a1ρa

†
1 − a†1a1ρ− ρa†1a1

)
+

γ

2
(nth + 1)

(
2b1ρb

†
1 − b†1b1ρ− ρb†1b1

)
+

γ

2
nth

(
2b†1ρb1 − b1b

†
1ρ− ρb1b

†
1

)
, (4)

where nth is the thermal phonon number in the environment. Since the Hamiltonian is linear, it does not mix moments
with different orders. To calculate the mean phonon number, it is not necessary to calculate all the matrix elements of

the density operator ρ, instead we need to determine the mean values of all the second-order moments, N̄a = ⟨a†1a1⟩,
N̄b = ⟨b†1b1⟩, ⟨a

†
1b1⟩, ⟨a1b1⟩, ⟨a21⟩ and ⟨b21⟩. The differential equations are given by

d

dt
N̄a = −i

(
G⟨a†1b1⟩ −G∗⟨a†1b1⟩∗ +G ⟨a1b1⟩∗ −G∗ ⟨a1b1⟩

)
− κN̄a, (5a)

d

dt
N̄b = −i

(
−G⟨a†1b1⟩+G∗⟨a†1b1⟩∗ +G ⟨a1b1⟩∗ −G∗ ⟨a1b1⟩

)
− γN̄b + γnth, (5b)

d

dt
⟨a†1b1⟩ = [−i (∆ + ωm)−

κ+ γ

2
]⟨a†1b1⟩ − i

(
G∗N̄a −G∗N̄b +G

⟨
a21
⟩∗ −G∗ ⟨b21⟩) , (5c)

d

dt
⟨a1b1⟩ = [i (∆− ωm)−

κ+ γ

2
] ⟨a1b1⟩ − i

(
GN̄a +GN̄b +G+G∗ ⟨a21⟩+G

⟨
b21
⟩)

, (5d)

d

dt

⟨
a21
⟩
= (2i∆− κ)

⟨
a21
⟩
− 2iG

(
⟨a1b1⟩+ ⟨a†1b1⟩∗

)
, (5e)

d

dt

⟨
b21
⟩
= (−2iωm − γ)

⟨
b21
⟩
− 2i

(
G∗ ⟨a1b1⟩+G⟨a†1b1⟩

)
. (5f)

These equations can also be found in Ref. [2], where the steady-state covariance matrix is used to obtain the final
occupancy of the mechanical resonator. Note that in the above calculation, cut-off of the density matrix is not
necessary and the solutions are exact.

III. STEADY-STATE COOLING LIMIT

In the stable regime, which requires |G|2 < −(4∆′2 + κ2)ωm/(16∆
′) for red detuning ∆′ < 0 [3], the system finally

reaches the steady state, and the derivatives in Eq. (5) all become zero. Then the second-order moments in the steady

state satisfy a set of algebraic equations. Under the condition ∆′ = −ωm and cooperativity C ≡ 4 |G|2 /(γκ) ≫ 1, we
obtain the final phonon occupancy

N̄std ≃ 4 |G|2 + κ2

4 |G|2 (κ+ γ)
γnth +

4ω2
m

(
κ2 + 8 |G|2

)
+ κ2

(
κ2 − 8 |G|2

)
16ω2

m(4ω
2
m + κ2 − 16 |G|2)

. (6)

Here the first term, being proportional to the environmental thermal phonon number nth, is the classical cooling limit;
the second term, which does not depend on nth, corresponds to the quantum cooling limit. In the resolved sideband
case, Eq. (6) reduces to Eq. (2) of the main text. Note that Ref. [2] and Ref. [4] present similar results in the strong

coupling regime, with the quantum cooling limit |G|2 /(2ω2
m). In our calculations we find that the term ω2

m − 4 |G|2
in the denominator cannot be simplified to be ω2

m for relatively strong coupling strength |G|. Therefore, a more exact

quantum cooling limit is |G|2 /[2(ω2
m − 4 |G|2)], which also indicates that the stable condition 2 |G| < ωm should be

satisfied.
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IV. TIME EVOLUTION OF MEAN PHONON NUMBER

The steady-state solutions do not provide full information of the cooling process. Here we directly solve the
differential equations Eq. (5) to obtain the time evolution of mean phonon number. For arbitrary parameters, Eq.
(5) can be solved numerically. Especially, under the conditions (1) resolved sideband, (2) ∆′ = −ωm, (3) C ≫ 1,
simple analytical expressions are available for the weak coupling and strong coupling regimes. In the weak coupling

regime, using the approximation

√
16 |G|2 − κ2 ≃ iκ, we obtain

N̄wk
b ≃ (γ + Γe−Γt)

γ + Γ
nth +

κ2

16ω2
m

(
1− e−Γt

)
, (7)

where Γ = 4|G|2/κ is the cooling rate. In this case the cooling process corresponds to the exponential decay (with
cooling rate Γ) of the mean phonon number from nth to the steady-state cooling limit N̄wk

std ≃ γnth/(Γ+γ)+κ2/(16ω2
m).

In the strong coupling regime, to obtain analytical results, it is more convenient to calculate the contribution of

the rotating-wave terms Ga†1b1 +G∗a1b
†
1 and counter-rotating-wave terms Ga†1b

†
1 +G∗a1b1 separately. First, in Eq.

(5) the counter-rotating interactions are neglected, then the mean phonon number is obtained as

N̄ str
b,1 ≃ nth

γ + 1
2e

−κ+γ
2 t

[κ− γ + (κ+ γ) cos(ω+ − ω−)t]

κ+ γ
, (8)

where

ω± =
√

ω2
m ± 2 |G|ωm (9)

are the eigenfrequencies of the normal modes. This term N̄ str
b,1 is proportional to the environmental thermal phonon

number nth and behaves as a decaying Rabi oscillation, corresponding to the beam-splitter interaction a†1b1 + a1b
†
1.

Next, taking the counter-rotating terms into account and setting nth = 0, we obtain the contribution of quantum
backaction as

N̄ str
b,2 ≃

|G|2
[
1− e−

κ+γ
2 t cos(ω+ + ω−)t cos(ω+ − ω−)t

]
2(ω2

m − 4 |G|2)
. (10)

Note that N̄ str
b,2 does not depend on nth, corresponding to the vacuum fluctuation-induced heating. For t → ∞,

N̄ str
b,2 → |G|2 /[2(ω2

m − 4 |G|2)], which is just the steady-state quantum cooling limit. With Eqs. (8) and (10), the time

evolution of the mean phonon number in the strong coupling regime is given by N̄ str
b = N̄ str

b,1 + N̄ str
b,2 (Eq. (3) of the

main text).

V. INSTANTANEOUS-STATE COOLING LIMIT AND FREQUENCY MATCHING

The minimum value of N̄ str
b,1 is obtained when t ≃ π/(ω+−ω−) (half Rabi oscillation cycle), yielding cos(ω+−ω−)t ≃

−1 and

N̄ str
b,1 |min ≃ γnth

κ

(
1−e

−κ+γ
2

π
ω+−ω−

)
≃ πγnth

4 |G|
. (11)

The minimum value of N̄ str
b,2 depends on the carrier-envelope frequency matching, where the carrier frequency is

ω+ + ω− and the envelope frequency is ω+ − ω−. The frequency matching condition is

ω+ + ω−

ω+ − ω−
= k, (12)

where k = 3, 5... In this case when t = π/(ω+ − ω−), we have cos(ω+ + ω−)t = cos kπ = −1, and

N̄ str
b,2

∣∣opt
min ≃ |G|2

2(ω2
m − 4 |G|2)

(
1−e

−κ+γ
2

π
ω+−ω−

)
≃ πκ|G|

8(ω2
m − 4|G|2)

. (13)
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FIG. S1: (color online) (a) Time evolution of N̄b for nth = 0, G/ωm = 0.25 (black dashed curve) and 0.3 (green dotted curve).
The blue and red solid curves are the corresponding analytical results given by Eq. (10). Other parameters are κ/ωm = 0.003
and γ/ωm = 10−5.

If the frequency matching condition Eq. (12) is not satisfied, The minimum value of N̄ str
b,2 is obtained when

t ≃ 2π/(ω+ + ω−), which yields cos(ω+ + ω−)t ≃ 1, and

cos(ω+ − ω−)t ≃ cos 2π
ω+ − ω−

ω+ + ω−
≃ 1− 2(π

ω+ − ω−

ω+ + ω−
)
2 ≃ 1− 2π2|G|2

ω2
m − |G|2

. (14)

Thus we obtain

N̄ str
b,2 |min ≃ |G|2

2(ω2
m − 4 |G|2)

× 2π2|G|2

ω2
m − |G|2

=
π2 |G|4

(ω2
m − |G|2)(ω2

m − 4 |G|2)
. (15)

In the main text, the instantaneous-state cooling limits Eqs. (4) and (5) are from the above expressions.
To verify the optimized instantaneous-state cooling limit, in Fig. S1 we plot the time evolution of phonon occupation

starting from nth = 0 for G/ωm = 0.25 and 0.3. It shows explicitly that when G/ωm = 0.3, the carrier-envelope
frequencies match, leading to minimum phonon occupancy less than 10−3; while without matching (G/ωm = 0.25)
the minimum phonon number is still 10−2 at the first Rabi oscillation cycle. We note that the numerical results agree
well with the analytical expressions.

VI. DYNAMIC MODULATION OF CAVITY DISSIPATION

In the above calculations, all the parameters are time-independent. Now we introduce time-dependent cavity
dissipation κ(t). In this case the master equation (4) and the differential equations (5) still hold. We numerically
solve Eqs. (5) to obtain the cooling dynamics, with the main results presented in the main text.
During the modulation of cavity dissipation κ(t), we have assumed that the intracavity field α and thus the coupling

strength G keeps time-invariant. This can be satisfied by simultaneously modulating the driving strength Ω(t). From
Eqs. (3a) and (3b) we observe that this requires

Ω(t)

Ω(0)
=

i
(
∆′ + 2|G|2

ωm

)
− κ(t)

2

i
(
∆′ + 2|G|2

ωm

)
− κ(0)

2

. (16)

Using Ω(t) =
√

κex(t)P (t)/(~ω)eiϕ(t) the condition reads√
κex(t)P (t)

κex(0)P (0)
ei[ϕ(t)−ϕ(0)] =

i
(
∆′ + 2|G|2

ωm

)
− κ(t)

2

i
(
∆′ + 2|G|2

ωm

)
− κ(0)

2

. (17)

Note that in Eqs. (5) only the total cavity dissipation κ(t) appear explicitly. In principle both the modulation of
the internal cavity dissipation κ0(t) and the external cavity dissipation κex(t) leads to the same results as long as
Eq. (17) is satisfied. The difference is that the modulation of κex(t) also changes the light intensity coupled into the
cavity.
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VII. DISSIPATION QUANTUM BACKACTION AND INTERACTION QUANTUM BACKACTION

In the strong coupling regime, quantum backaction behaves quite different from that in the weak coupling regime.
This is because in these two regimes the dominant quantum backaction has distinct origins. In the weak coupling
regime, the dominant quantum backaction stems from the added noise which accompanies with the system dissipa-
tion, which is a fundamental consequence of the fluctuation-dissipation theorem. This dissipation quantum backac-
tion (DQBA) results in the quantum cooling limit κ2/(16ω2

m). However, in the strong coupling regime, since the
optomechanical interaction dominates over the cavity dissipation, the major contribution is the interaction quantum
backaction (IQBA), which leads to the final phonon occupancy |G|2 /[2(ω2

m − 4 |G|2)].
The IQBA is a result of strong counter-rotating interaction. For convenience, let us transform to the normal mode

basis, with the relation 
a1
b1
a†1
b†1

 =

 η++ η−+ η+− η−−
η++ −η−+ η+− −η−−
η+− η−− η++ η−+

η+− −η−− η++ −η−+




c+
c−
c†+
c†−

 , (18)

where c± are the eigenmodes with the corresponding eigenfrequencies ω± =
√
ω2
m ± 2 |G|ωm, and the coefficients

η++ =
1

2
√
2

(√
ωm

ω+
+

√
ω+

ωm

)
, (19a)

η+− =
1

2
√
2

(√
ωm

ω+
−
√

ω+

ωm

)
, (19b)

η−+ =
1

2
√
2

(√
ωm

ω−
+

√
ω−

ωm

)
, (19c)

η−− =
1

2
√
2

(√
ωm

ω−
−
√

ω−

ωm

)
. (19d)

It is clear that due to the counter-rotating interaction, the annihilation operators of the eigenmodes are mixtures of the
annihilation operators and creation operators of the photon and phonon modes. The degree of mixing is characterized
by η+− and η−−. A large interaction strength |G| leads to large mode splitting and thereby results in a strong degree

of mixing. The final phonon occupancy is roughly proportional to η2+− + η2−−, which scale as |G|2 /ω2
m.

VIII. EFFECT OF DISSIPATION PULSEWIDTH

The dissipation pulse suppresses the IQBA, while the DQBA is enhanced due to added noise accompanying with
the increased dissipation. Thus it is important to optimize the pulse duration. In Fig. S2 we plot the time evolution
of mean phonon number under single-pulse modulation with different pulsewidths Tp = 0.1TR, TR, 5TR and infinity,
where TR = π/(2|G|) is the half Rabi oscillation cycle. The parameters are the same as that in Figs. 2(c) and (d)
of the main text except for the pulsewidths. It shows that within the pulse duration, the phonon number increases
gradually, which is the effect of dissipation quantum backaction. To analyze this explicitly, let us consider the case
of an infinitely-long dissipation pulse applied from t = 0, which corresponds to highly unresolved sideband case with
cavity dissipation κinf ≫ ωm. Using the quantum noise approach, the rate for absorbing and emitting a phonon by
the cavity field are respectively given by

A− =
G2κinf(

ωm +∆′)2 + (
κinf

2

)2 , (20a)

A+ =
G2κinf(

ωm −∆′)2 + (
κinf

2

)2 . (20b)

With detuning ∆′ = −ωm, the net optical damping rate is given by

Γinf = A− −A+ =
4G2

κinf
− G2κinf

(2ωm)
2
+
(
κinf

2

)2
≃ 4G2

κinf

(
4ωm

κinf

)2

=
Cγ

R
, (21)
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where we have introduced the resolved sideband parameter R ≡ κ2
inf/(16ω

2
m). The final phonon occupancy is calculated

as

ninf = nc
inf + nq

inf , (22a)

nc
inf =

γnth

γ + Γinf

≃ Rnth

R+ C
, (22b)

nq
inf =

A+

γ + Γinf

≃ RC

R+ C
=

4G2κ2
inf

64G2ω2
m + γκ3

inf

. (22c)

Note that the results in the resolved sideband (RSB) case are different, which read [5, 6]

ARSB
− ≃ 4G2

κ
= Cγ, (23a)

ARSB
+ ≃ G2κ

4ωm
2
= RCγ, (23b)

ΓRSB ≃ 4G2

κ
= Cγ, (23c)

nRSB = nc
RSB + nq

RSB, (23d)

nc
RSB ≃ γnth

ΓRSB
≃ nth

C
, (23e)

nq
RSB ≃ A+

ΓRSB
≃ R. (23f)

Here ARSB
− ≫ ARSB

+ , thus ARSB
+ can be neglected, resulting in the large net optical damping rate ΓRSB. However, for
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FIG. S2: (color online) (a) Modulation scheme of the cavity dissipation and (b) time evolution of mean phonon number N̄b

under single-pulse modulation for pulsewidth: 0.1TR (red solid curve), TR (blue dashed curve), 5TR (black dotted curve),
infinity (purple dashed-dotted curve). In (b), the dotted horizontal line corresponds to the steady-state cooling limit; the
vertical coordinate range from 10 to 103 is not shown. (c) Logarithmic-logarithmic plot of N̄b under single-pulse modulation
with infinitely-long pulsewidth applied at t = TR (purple dashed-dotted curve). The black solid curve denotes the analytical
results given by Eq. (24) with n(TR) = 0.07. The green dashed curve is a comparison with infinitely-long dissipation pulse
applied from t = 0. Other parameters: nth = 103, γ/ωm = 10−5, κ/ωm = 0.05, G/ωm = 0.2.
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FIG. S3: (color online) (a) Modulation scheme of the cavity dissipation and (b) time evolution of mean phonon number N̄b

under periodic modulation for pulsewidth: 0.1TR (red solid curve), TR (blue dashed curve), 5TR (black dotted curve). In (b),
the dotted (dashed-dotted) horizontal line corresponds to the steady-state (instantaneous-state) cooling limit. The inset is a
zoom in linear vertical coordinate view of the shaded region in (b) for TR pulsewidth, where the gray shaded region illustrates
the region of high dissipation (and high dissipation backaction) while the blue shaded region is that of low dissipation. The
non-monotonic decay in the blue shaded region is due to residual interaction backaction. Other parameters: nth = 103,
γ/ωm = 10−5, κ/ωm = 0.01, G/ωm = 0.1.

the highly unresolved sideband case, A− and A+ are nearly equal, leading to a small net optical damping rate Γinf .
Furthermore, when calculating the final phonon occupancy, the intrinsic mechanical damping rate γ is negligible in
the resolved sideband limit since ΓRSB ≫ γ. But in the highly unresolved sideband limit γ cannot be neglected since it
could even be larger than the net optical damping rate Γinf . Considering a specific example, nth = 103, γ/ωm = 10−5,
κinf/ωm = 250, G/ωm = 0.2, we obtain C = 64, R = 3906, yielding Γinf/γ = 0.016, nc

inf = 984, nq
inf = 63 and

ninf = 1047.
We are interested in the time evolution of the mean phonon number with given phonon occupancy at t = t0 in this

highly unresolved sideband regime. With the above results, we obtain

n(t) = n(t0) + [ninf − n(t0)]
[
1− e−(γ+Γinf )(t−t0)

]
, (24)

dn(t)

dt
= (γ + Γinf) [ninf − n(t0)] e

−(γ+Γinf )(t−t0). (25)

For short time scales near t = t0, we have e
−(γ+Γinf )(t−t0) ≃ 1, and dn(t)/dt ≃ (γ+Γinf) [ninf − n(t0)], which is limited

by the small net optical damping rate Γinf .
In Fig. S2 (c) we plot the time evolution of the mean phonon number under a single infinitely-long dissipation

pulse applied at t = TR (purple dashed-dotted curve). This corresponds to the case that the system is in the highly
unresolved sideband regime from t = TR. For comparison, the highly unresolved sideband case starting from t = 0
(green dashed curve) is also presented. It shows that, during the pulse duration, the mean phonon number increase
exponentially and finally reaches the cooling limit given by Eq. (22). However, the time scale is very large due to
the small total damping rate. The analytical expression given by Eq. (24) (black solid curve) is in good accordance
with the numerical results. Therefore, in this highly unresolved sideband regime, since the cooling and heating have
almost balanced effects, the optical field pose only insignificant effect to the mechanical resonator. When the system
has been already cooled to a low-phonon-number state, it will cost a long time (compared with the pulsewidth) for
the system to recover to the thermal equilibrium state.
In Fig. S3 we plot the time evolution of mean phonon number under periodic modulation with different pulsewidths

Tp = 0.1TR, TR, 5TR. The parameter are the same as that in Fig. 3 of the main text except for the pulsewidth. It
is clear that longer pulsewidth leads to the increase of the phonon number, and shorting the pulse will suppress this
heating induced by the dissipation quantum backaction arising from fluctuation-dissipation. In the inset, we illustrate
a zoom in view for TR pulsewidth, where the gray (blue) shaded region illustrates the mean phonon number at the
region of high (low) dissipation. With pulsewidth Tp = 0.1TR or shorter, this effect has negligible influence.
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IX. DISCUSSION ON THE BAD-CAVITY LIMIT

The dynamic dissipative cooling scheme works in the strong coupling regime (2 |G| > κ). Here we discuss the
bad-cavity (unresolved sideband, κ > ωm) case. By solving Eq. (5) with all the derivatives being zero, we obtain the
generalized version of the steady-state quantum limit which holds both in the good-cavity and bad-cavity conditions

N̄q
std =

ωm

(
4∆′2 + κ2

) [
4 (∆′ + ωm)

2
+ κ2

]
− 8G2∆′ (4∆′2 + κ2 + 16∆′ωm + 8ω2

m

)
−16∆′ωm

[
16∆′ |G|2 + ωm(4∆′2 + κ2)

] , (26)

where we have used the approximation of small mechanical decay rates γ with respect to (ωm, κ, ∆
′, |G|).

For red detuning ∆′ < 0, the dynamical stability condition calculated from the Routh-Hurwitz criterion [3] is given
by

16∆′ |G|2 + ωm(4∆
′2 + κ2) > 0, (27)

which is also embodied in the denominator of Eq. (26). In the unresolved sideband regime, the optimal detuning to
achieve the minimum fundamental cooling limit is ∆′ = −κ/2 [5, 6]. In this case Eq. (27) reduces to

|G| <
√
κωm

2
, (28)

which does not satisfy the strong coupling condition. If we set ∆′ = −ωm, the stable region requires

|G| <
√

ω2
m

4
+

κ2

16
, (29)

which is almost always in the weak coupling regime. One way to avoid this is to use a large detuning ∆′ ≫ κ, then
the stable condition reduces to

|G| <
√
|∆′|ωm

2
. (30)

If |∆′| > κ2/ωm, strong coupling is a possibility. But in this case the detuning is so large that the cooling efficiency is
very low. Therefore, in the bad-cavity limit the dynamic dissipative cooling scheme does not show special advantage.
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