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This Supplementary Material is organized as follows. In Sec. I, we present the linearization of the optomechanical
Hamiltonian. Using the quantum master equation, we describe the covariance approach to calculate the mean phonon
number in Sec. II. With this approach, we derive the steady-state cooling limit in Sec. III and the time evolution of
mean phonon number in Sec. IV. In Sec. V, we calculate the instantaneous-state cooling limit in the strong coupling
regime and optimize the result according to the frequency matching condition. In Sec. VI, the dynamic modulation of
cavity dissipation is introduced. In Sec. VII, we discuss the dissipation quantum backaction and interaction quantum
backaction. In Sec. VIII we investigate the effect of dissipation pulsewidth. The discussion on the bad-cavity limit is
studied in Sec. IX.

I. LINEARIZED OPTOMECHANICAL HAMILTONIAN

The optomechanical Hamiltonian with one optical mode coupled to one mechanical mode is given by [1]

H = −∆a†a+ ωmb
†b+ ga†a(b+ b†) + (Ωa† +Ω

∗
a), (1)

where we work in the frame rotating at the input laser frequency ω. Here ∆ = ω − ωc is the input-cavity detuning,
a (b) is the annihilation operator of the optical (mechanical) mode with ωc (ωm) being the corresponding angular

resonance frequency; g represents the single-photon optomechanical coupling rate; Ω =
√
κexP/(~ω)eiϕ denotes the

driving strength, where P is the input laser power, ϕ is the initial phase of the input laser and κex is the input-cavity
coupling rate.
The quantum Langevin equations are given by

ȧ =
(
i∆− κ

2

)
a− iga(b+ b†)− iΩ−

√
κexain,ex −

√
κ0ain,0, (2a)

ḃ =
(
−iωm − γ

2

)
b− iga†a−√

γbin, (2b)

where κ0 is the intrinsic cavity dissipation rate; κ = κ0 + κex is the total cavity dissipation rate; γ is the dissipation
rate of the mechanical mode; ain,0, ain,ex and bin are the noise operators associated with the intrinsic cavity dissipation,
external cavity dissipation (input-cavity coupling) and mechanical dissipation, respectively.
Coherent laser input results in the displacements of both the optical and mechanical harmonic oscillators. For

convenience, a displacement transformation is applied, i. e., a ≡ a1 + α, b ≡ b1 + β, where α and β are c-numbers,
denoting the displacements of the optical and mechanical modes; a1 and b1 are the displaced operators, representing
the quantum fluctuations of the optical and mechanical modes around their classical values. By separating the classical
and quantum components, the quantum Langevin equations are rewritten as

α̇ =
(
i∆′ − κ

2

)
α− iΩ, (3a)

β̇ =
(
−iωm − γ

2

)
β − ig |α|2 , (3b)

ȧ1 =
(
i∆′ − κ

2

)
a1 − igα(b1 + b†1)− iga1(b1 + b†1)−

√
κexain,ex −

√
κ0ain,0, (3c)

ḃ1 =
(
−iωm − γ

2

)
b1 − ig

(
α∗a1 + αa†1

)
− iga†1a1 −

√
γbin, (3d)
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where the optomechanical-coupling modified detuning ∆′ = ∆ − g(β + β∗). Under strong driving condition, the

classical components dominate and the nonlinear terms iga1(b1 + b†1) and iga†1a1 in Eqs. (3c) and (3d) can be

neglected, respectively. Then we obtain the linearized Hamiltonian HL = −∆′a†1a1+ωmb
†
1b1 + (Ga†1 +G∗a1)(b1 + b†1)

(Eq. (1) of the main text), where G = αg is the linearized optomechanical coupling strength.

II. CALCULATION OF MEAN PHONON NUMBER

With the linearized Hamiltonian, the quantum master equation reads

ρ̇ = i[ρ,−∆′a†1a1 + ωmb
†
1b1 + (Ga†1 +G∗a1)(b1 + b†1)]

+
κ

2

(
2a1ρa

†
1 − a†1a1ρ− ρa†1a1

)
+

γ

2
(nth + 1)

(
2b1ρb

†
1 − b†1b1ρ− ρb†1b1

)
+

γ

2
nth

(
2b†1ρb1 − b1b

†
1ρ− ρb1b

†
1

)
, (4)

where nth is the thermal phonon number in the environment. Since the Hamiltonian is linear, it does not mix moments
with different orders. To calculate the mean phonon number, it is not necessary to calculate all the matrix elements of

the density operator ρ, instead we need to determine the mean values of all the second-order moments, N̄a = ⟨a†1a1⟩,
N̄b = ⟨b†1b1⟩, ⟨a

†
1b1⟩, ⟨a1b1⟩, ⟨a21⟩ and ⟨b21⟩. The differential equations are given by

d

dt
N̄a = −i

(
G⟨a†1b1⟩ −G∗⟨a†1b1⟩∗ +G ⟨a1b1⟩∗ −G∗ ⟨a1b1⟩

)
− κN̄a, (5a)

d

dt
N̄b = −i

(
−G⟨a†1b1⟩+G∗⟨a†1b1⟩∗ +G ⟨a1b1⟩∗ −G∗ ⟨a1b1⟩

)
− γN̄b + γnth, (5b)

d

dt
⟨a†1b1⟩ = [−i (∆ + ωm)−

κ+ γ

2
]⟨a†1b1⟩ − i

(
G∗N̄a −G∗N̄b +G

⟨
a21
⟩∗ −G∗ ⟨b21⟩) , (5c)

d

dt
⟨a1b1⟩ = [i (∆− ωm)−

κ+ γ

2
] ⟨a1b1⟩ − i

(
GN̄a +GN̄b +G+G∗ ⟨a21⟩+G

⟨
b21
⟩)

, (5d)

d

dt

⟨
a21
⟩
= (2i∆− κ)

⟨
a21
⟩
− 2iG

(
⟨a1b1⟩+ ⟨a†1b1⟩∗

)
, (5e)

d

dt

⟨
b21
⟩
= (−2iωm − γ)

⟨
b21
⟩
− 2i

(
G∗ ⟨a1b1⟩+G⟨a†1b1⟩

)
. (5f)

These equations can also be found in Ref. [2], where the steady-state covariance matrix is used to obtain the final
occupancy of the mechanical resonator. Note that in the above calculation, cut-off of the density matrix is not
necessary and the solutions are exact.

III. STEADY-STATE COOLING LIMIT

In the stable regime, which requires |G|2 < −(4∆′2 + κ2)ωm/(16∆
′) for red detuning ∆′ < 0 [3], the system finally

reaches the steady state, and the derivatives in Eq. (5) all become zero. Then the second-order moments in the steady

state satisfy a set of algebraic equations. Under the condition ∆′ = −ωm and cooperativity C ≡ 4 |G|2 /(γκ) ≫ 1, we
obtain the final phonon occupancy

N̄std ≃ 4 |G|2 + κ2

4 |G|2 (κ+ γ)
γnth +

4ω2
m

(
κ2 + 8 |G|2

)
+ κ2

(
κ2 − 8 |G|2

)
16ω2

m(4ω
2
m + κ2 − 16 |G|2)

. (6)

Here the first term, being proportional to the environmental thermal phonon number nth, is the classical cooling limit;
the second term, which does not depend on nth, corresponds to the quantum cooling limit. In the resolved sideband
case, Eq. (6) reduces to Eq. (2) of the main text. Note that Ref. [2] and Ref. [4] present similar results in the strong

coupling regime, with the quantum cooling limit |G|2 /(2ω2
m). In our calculations we find that the term ω2

m − 4 |G|2
in the denominator cannot be simplified to be ω2

m for relatively strong coupling strength |G|. Therefore, a more exact

quantum cooling limit is |G|2 /[2(ω2
m − 4 |G|2)], which also indicates that the stable condition 2 |G| < ωm should be

satisfied.
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IV. TIME EVOLUTION OF MEAN PHONON NUMBER

The steady-state solutions do not provide full information of the cooling process. Here we directly solve the
differential equations Eq. (5) to obtain the time evolution of mean phonon number. For arbitrary parameters, Eq.
(5) can be solved numerically. Especially, under the conditions (1) resolved sideband, (2) ∆′ = −ωm, (3) C ≫ 1,
simple analytical expressions are available for the weak coupling and strong coupling regimes. In the weak coupling

regime, using the approximation

√
16 |G|2 − κ2 ≃ iκ, we obtain

N̄wk
b ≃ (γ + Γe−Γt)

γ + Γ
nth +

κ2

16ω2
m

(
1− e−Γt

)
, (7)

where Γ = 4|G|2/κ is the cooling rate. In this case the cooling process corresponds to the exponential decay (with
cooling rate Γ) of the mean phonon number from nth to the steady-state cooling limit N̄wk

std ≃ γnth/(Γ+γ)+κ2/(16ω2
m).

In the strong coupling regime, to obtain analytical results, it is more convenient to calculate the contribution of

the rotating-wave terms Ga†1b1 +G∗a1b
†
1 and counter-rotating-wave terms Ga†1b

†
1 +G∗a1b1 separately. First, in Eq.

(5) the counter-rotating interactions are neglected, then the mean phonon number is obtained as

N̄ str
b,1 ≃ nth

γ + 1
2e

−κ+γ
2 t

[κ− γ + (κ+ γ) cos(ω+ − ω−)t]

κ+ γ
, (8)

where

ω± =
√

ω2
m ± 2 |G|ωm (9)

are the eigenfrequencies of the normal modes. This term N̄ str
b,1 is proportional to the environmental thermal phonon

number nth and behaves as a decaying Rabi oscillation, corresponding to the beam-splitter interaction a†1b1 + a1b
†
1.

Next, taking the counter-rotating terms into account and setting nth = 0, we obtain the contribution of quantum
backaction as

N̄ str
b,2 ≃

|G|2
[
1− e−

κ+γ
2 t cos(ω+ + ω−)t cos(ω+ − ω−)t

]
2(ω2

m − 4 |G|2)
. (10)

Note that N̄ str
b,2 does not depend on nth, corresponding to the vacuum fluctuation-induced heating. For t → ∞,

N̄ str
b,2 → |G|2 /[2(ω2

m − 4 |G|2)], which is just the steady-state quantum cooling limit. With Eqs. (8) and (10), the time

evolution of the mean phonon number in the strong coupling regime is given by N̄ str
b = N̄ str

b,1 + N̄ str
b,2 (Eq. (3) of the

main text).

V. INSTANTANEOUS-STATE COOLING LIMIT AND FREQUENCY MATCHING

The minimum value of N̄ str
b,1 is obtained when t ≃ π/(ω+−ω−) (half Rabi oscillation cycle), yielding cos(ω+−ω−)t ≃

−1 and

N̄ str
b,1 |min ≃ γnth

κ

(
1−e

−κ+γ
2

π
ω+−ω−

)
≃ πγnth

4 |G|
. (11)

The minimum value of N̄ str
b,2 depends on the carrier-envelope frequency matching, where the carrier frequency is

ω+ + ω− and the envelope frequency is ω+ − ω−. The frequency matching condition is

ω+ + ω−

ω+ − ω−
= k, (12)

where k = 3, 5... In this case when t = π/(ω+ − ω−), we have cos(ω+ + ω−)t = cos kπ = −1, and

N̄ str
b,2

∣∣opt
min ≃ |G|2

2(ω2
m − 4 |G|2)

(
1−e

−κ+γ
2

π
ω+−ω−

)
≃ πκ|G|

8(ω2
m − 4|G|2)

. (13)
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FIG. S1: (color online) (a) Time evolution of N̄b for nth = 0, G/ωm = 0.25 (black dashed curve) and 0.3 (green dotted curve).
The blue and red solid curves are the corresponding analytical results given by Eq. (10). Other parameters are κ/ωm = 0.003
and γ/ωm = 10−5.

If the frequency matching condition Eq. (12) is not satisfied, The minimum value of N̄ str
b,2 is obtained when

t ≃ 2π/(ω+ + ω−), which yields cos(ω+ + ω−)t ≃ 1, and

cos(ω+ − ω−)t ≃ cos 2π
ω+ − ω−

ω+ + ω−
≃ 1− 2(π

ω+ − ω−

ω+ + ω−
)
2 ≃ 1− 2π2|G|2

ω2
m − |G|2

. (14)

Thus we obtain

N̄ str
b,2 |min ≃ |G|2

2(ω2
m − 4 |G|2)

× 2π2|G|2

ω2
m − |G|2

=
π2 |G|4

(ω2
m − |G|2)(ω2

m − 4 |G|2)
. (15)

In the main text, the instantaneous-state cooling limits Eqs. (4) and (5) are from the above expressions.
To verify the optimized instantaneous-state cooling limit, in Fig. S1 we plot the time evolution of phonon occupation

starting from nth = 0 for G/ωm = 0.25 and 0.3. It shows explicitly that when G/ωm = 0.3, the carrier-envelope
frequencies match, leading to minimum phonon occupancy less than 10−3; while without matching (G/ωm = 0.25)
the minimum phonon number is still 10−2 at the first Rabi oscillation cycle. We note that the numerical results agree
well with the analytical expressions.

VI. DYNAMIC MODULATION OF CAVITY DISSIPATION

In the above calculations, all the parameters are time-independent. Now we introduce time-dependent cavity
dissipation κ(t). In this case the master equation (4) and the differential equations (5) still hold. We numerically
solve Eqs. (5) to obtain the cooling dynamics, with the main results presented in the main text.
During the modulation of cavity dissipation κ(t), we have assumed that the intracavity field α and thus the coupling

strength G keeps time-invariant. This can be satisfied by simultaneously modulating the driving strength Ω(t). From
Eqs. (3a) and (3b) we observe that this requires

Ω(t)

Ω(0)
=

i
(
∆′ + 2|G|2

ωm

)
− κ(t)

2

i
(
∆′ + 2|G|2

ωm

)
− κ(0)

2

. (16)

Using Ω(t) =
√

κex(t)P (t)/(~ω)eiϕ(t) the condition reads√
κex(t)P (t)

κex(0)P (0)
ei[ϕ(t)−ϕ(0)] =

i
(
∆′ + 2|G|2

ωm

)
− κ(t)

2

i
(
∆′ + 2|G|2

ωm

)
− κ(0)

2

. (17)

Note that in Eqs. (5) only the total cavity dissipation κ(t) appear explicitly. In principle both the modulation of
the internal cavity dissipation κ0(t) and the external cavity dissipation κex(t) leads to the same results as long as
Eq. (17) is satisfied. The difference is that the modulation of κex(t) also changes the light intensity coupled into the
cavity.
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VII. DISSIPATION QUANTUM BACKACTION AND INTERACTION QUANTUM BACKACTION

In the strong coupling regime, quantum backaction behaves quite different from that in the weak coupling regime.
This is because in these two regimes the dominant quantum backaction has distinct origins. In the weak coupling
regime, the dominant quantum backaction stems from the added noise which accompanies with the system dissipa-
tion, which is a fundamental consequence of the fluctuation-dissipation theorem. This dissipation quantum backac-
tion (DQBA) results in the quantum cooling limit κ2/(16ω2

m). However, in the strong coupling regime, since the
optomechanical interaction dominates over the cavity dissipation, the major contribution is the interaction quantum
backaction (IQBA), which leads to the final phonon occupancy |G|2 /[2(ω2

m − 4 |G|2)].
The IQBA is a result of strong counter-rotating interaction. For convenience, let us transform to the normal mode

basis, with the relation 
a1
b1
a†1
b†1

 =

 η++ η−+ η+− η−−
η++ −η−+ η+− −η−−
η+− η−− η++ η−+

η+− −η−− η++ −η−+




c+
c−
c†+
c†−

 , (18)

where c± are the eigenmodes with the corresponding eigenfrequencies ω± =
√
ω2
m ± 2 |G|ωm, and the coefficients

η++ =
1

2
√
2

(√
ωm

ω+
+

√
ω+

ωm

)
, (19a)

η+− =
1

2
√
2

(√
ωm

ω+
−
√

ω+

ωm

)
, (19b)

η−+ =
1

2
√
2

(√
ωm

ω−
+

√
ω−

ωm

)
, (19c)

η−− =
1

2
√
2

(√
ωm

ω−
−
√

ω−

ωm

)
. (19d)

It is clear that due to the counter-rotating interaction, the annihilation operators of the eigenmodes are mixtures of the
annihilation operators and creation operators of the photon and phonon modes. The degree of mixing is characterized
by η+− and η−−. A large interaction strength |G| leads to large mode splitting and thereby results in a strong degree

of mixing. The final phonon occupancy is roughly proportional to η2+− + η2−−, which scale as |G|2 /ω2
m.

VIII. EFFECT OF DISSIPATION PULSEWIDTH

The dissipation pulse suppresses the IQBA, while the DQBA is enhanced due to added noise accompanying with
the increased dissipation. Thus it is important to optimize the pulse duration. In Fig. S2 we plot the time evolution
of mean phonon number under single-pulse modulation with different pulsewidths Tp = 0.1TR, TR, 5TR and infinity,
where TR = π/(2|G|) is the half Rabi oscillation cycle. The parameters are the same as that in Figs. 2(c) and (d)
of the main text except for the pulsewidths. It shows that within the pulse duration, the phonon number increases
gradually, which is the effect of dissipation quantum backaction. To analyze this explicitly, let us consider the case
of an infinitely-long dissipation pulse applied from t = 0, which corresponds to highly unresolved sideband case with
cavity dissipation κinf ≫ ωm. Using the quantum noise approach, the rate for absorbing and emitting a phonon by
the cavity field are respectively given by

A− =
G2κinf(

ωm +∆′)2 + (
κinf

2

)2 , (20a)

A+ =
G2κinf(

ωm −∆′)2 + (
κinf

2

)2 . (20b)

With detuning ∆′ = −ωm, the net optical damping rate is given by

Γinf = A− −A+ =
4G2

κinf
− G2κinf

(2ωm)
2
+
(
κinf

2

)2
≃ 4G2

κinf

(
4ωm

κinf

)2

=
Cγ

R
, (21)
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where we have introduced the resolved sideband parameter R ≡ κ2
inf/(16ω

2
m). The final phonon occupancy is calculated

as

ninf = nc
inf + nq

inf , (22a)

nc
inf =

γnth

γ + Γinf

≃ Rnth

R+ C
, (22b)

nq
inf =

A+

γ + Γinf

≃ RC

R+ C
=

4G2κ2
inf

64G2ω2
m + γκ3

inf

. (22c)

Note that the results in the resolved sideband (RSB) case are different, which read [5, 6]

ARSB
− ≃ 4G2

κ
= Cγ, (23a)

ARSB
+ ≃ G2κ

4ωm
2
= RCγ, (23b)

ΓRSB ≃ 4G2

κ
= Cγ, (23c)

nRSB = nc
RSB + nq

RSB, (23d)

nc
RSB ≃ γnth

ΓRSB
≃ nth

C
, (23e)

nq
RSB ≃ A+

ΓRSB
≃ R. (23f)

Here ARSB
− ≫ ARSB

+ , thus ARSB
+ can be neglected, resulting in the large net optical damping rate ΓRSB. However, for
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FIG. S2: (color online) (a) Modulation scheme of the cavity dissipation and (b) time evolution of mean phonon number N̄b

under single-pulse modulation for pulsewidth: 0.1TR (red solid curve), TR (blue dashed curve), 5TR (black dotted curve),
infinity (purple dashed-dotted curve). In (b), the dotted horizontal line corresponds to the steady-state cooling limit; the
vertical coordinate range from 10 to 103 is not shown. (c) Logarithmic-logarithmic plot of N̄b under single-pulse modulation
with infinitely-long pulsewidth applied at t = TR (purple dashed-dotted curve). The black solid curve denotes the analytical
results given by Eq. (24) with n(TR) = 0.07. The green dashed curve is a comparison with infinitely-long dissipation pulse
applied from t = 0. Other parameters: nth = 103, γ/ωm = 10−5, κ/ωm = 0.05, G/ωm = 0.2.
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FIG. S3: (color online) (a) Modulation scheme of the cavity dissipation and (b) time evolution of mean phonon number N̄b

under periodic modulation for pulsewidth: 0.1TR (red solid curve), TR (blue dashed curve), 5TR (black dotted curve). In (b),
the dotted (dashed-dotted) horizontal line corresponds to the steady-state (instantaneous-state) cooling limit. The inset is a
zoom in linear vertical coordinate view of the shaded region in (b) for TR pulsewidth, where the gray shaded region illustrates
the region of high dissipation (and high dissipation backaction) while the blue shaded region is that of low dissipation. The
non-monotonic decay in the blue shaded region is due to residual interaction backaction. Other parameters: nth = 103,
γ/ωm = 10−5, κ/ωm = 0.01, G/ωm = 0.1.

the highly unresolved sideband case, A− and A+ are nearly equal, leading to a small net optical damping rate Γinf .
Furthermore, when calculating the final phonon occupancy, the intrinsic mechanical damping rate γ is negligible in
the resolved sideband limit since ΓRSB ≫ γ. But in the highly unresolved sideband limit γ cannot be neglected since it
could even be larger than the net optical damping rate Γinf . Considering a specific example, nth = 103, γ/ωm = 10−5,
κinf/ωm = 250, G/ωm = 0.2, we obtain C = 64, R = 3906, yielding Γinf/γ = 0.016, nc

inf = 984, nq
inf = 63 and

ninf = 1047.
We are interested in the time evolution of the mean phonon number with given phonon occupancy at t = t0 in this

highly unresolved sideband regime. With the above results, we obtain

n(t) = n(t0) + [ninf − n(t0)]
[
1− e−(γ+Γinf )(t−t0)

]
, (24)

dn(t)

dt
= (γ + Γinf) [ninf − n(t0)] e

−(γ+Γinf )(t−t0). (25)

For short time scales near t = t0, we have e
−(γ+Γinf )(t−t0) ≃ 1, and dn(t)/dt ≃ (γ+Γinf) [ninf − n(t0)], which is limited

by the small net optical damping rate Γinf .
In Fig. S2 (c) we plot the time evolution of the mean phonon number under a single infinitely-long dissipation

pulse applied at t = TR (purple dashed-dotted curve). This corresponds to the case that the system is in the highly
unresolved sideband regime from t = TR. For comparison, the highly unresolved sideband case starting from t = 0
(green dashed curve) is also presented. It shows that, during the pulse duration, the mean phonon number increase
exponentially and finally reaches the cooling limit given by Eq. (22). However, the time scale is very large due to
the small total damping rate. The analytical expression given by Eq. (24) (black solid curve) is in good accordance
with the numerical results. Therefore, in this highly unresolved sideband regime, since the cooling and heating have
almost balanced effects, the optical field pose only insignificant effect to the mechanical resonator. When the system
has been already cooled to a low-phonon-number state, it will cost a long time (compared with the pulsewidth) for
the system to recover to the thermal equilibrium state.
In Fig. S3 we plot the time evolution of mean phonon number under periodic modulation with different pulsewidths

Tp = 0.1TR, TR, 5TR. The parameter are the same as that in Fig. 3 of the main text except for the pulsewidth. It
is clear that longer pulsewidth leads to the increase of the phonon number, and shorting the pulse will suppress this
heating induced by the dissipation quantum backaction arising from fluctuation-dissipation. In the inset, we illustrate
a zoom in view for TR pulsewidth, where the gray (blue) shaded region illustrates the mean phonon number at the
region of high (low) dissipation. With pulsewidth Tp = 0.1TR or shorter, this effect has negligible influence.
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IX. DISCUSSION ON THE BAD-CAVITY LIMIT

The dynamic dissipative cooling scheme works in the strong coupling regime (2 |G| > κ). Here we discuss the
bad-cavity (unresolved sideband, κ > ωm) case. By solving Eq. (5) with all the derivatives being zero, we obtain the
generalized version of the steady-state quantum limit which holds both in the good-cavity and bad-cavity conditions

N̄q
std =

ωm

(
4∆′2 + κ2

) [
4 (∆′ + ωm)

2
+ κ2

]
− 8G2∆′ (4∆′2 + κ2 + 16∆′ωm + 8ω2

m

)
−16∆′ωm

[
16∆′ |G|2 + ωm(4∆′2 + κ2)

] , (26)

where we have used the approximation of small mechanical decay rates γ with respect to (ωm, κ, ∆
′, |G|).

For red detuning ∆′ < 0, the dynamical stability condition calculated from the Routh-Hurwitz criterion [3] is given
by

16∆′ |G|2 + ωm(4∆
′2 + κ2) > 0, (27)

which is also embodied in the denominator of Eq. (26). In the unresolved sideband regime, the optimal detuning to
achieve the minimum fundamental cooling limit is ∆′ = −κ/2 [5, 6]. In this case Eq. (27) reduces to

|G| <
√
κωm

2
, (28)

which does not satisfy the strong coupling condition. If we set ∆′ = −ωm, the stable region requires

|G| <
√

ω2
m

4
+

κ2

16
, (29)

which is almost always in the weak coupling regime. One way to avoid this is to use a large detuning ∆′ ≫ κ, then
the stable condition reduces to

|G| <
√
|∆′|ωm

2
. (30)

If |∆′| > κ2/ωm, strong coupling is a possibility. But in this case the detuning is so large that the cooling efficiency is
very low. Therefore, in the bad-cavity limit the dynamic dissipative cooling scheme does not show special advantage.
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