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We study a generalized double Jaynes–Cummings (JC) model where two entangled pairs of two-level
atoms interact indirectly. We show that there exist initial states of the qubit system so that two entangled
pairs are available at all times. In particular, the minimum entanglement in the pairs as a function of the
initial state is studied. Finally, we extend our findings to a model consisting of multi-mode atom–cavity
interactions. We use a non-Markovian quantum state diffusion (QSD) equation to obtain the steady-state
density matrix for the qubits. We show that the multi-mode model also displays dynamical preservation
of entanglement.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The study of entanglement dynamics is crucial for the realization of quantum algorithms and quantum information processing proto-
cols [1]. A significant number of works have been devoted to study the dynamics of quantum entanglement under environmental effects
[2–8]. Many previous studies focused on the simplest situation, namely, two-qubit entanglement dynamics. In Ref. [3], it was shown
that contrary to what might be expected, the two-qubit entanglement can vanish completely in a finite time which is often referred
to as “entanglement sudden death” (ESD). One would naively expect the two-qubit entanglement to decay asymptotically as a result
of noise-induced decoherence effects [3]. ESD shows the fragility of entanglement under the unavoidable interaction with the environ-
ment. A simple model for ESD is that of two two-level atoms interacting via Jaynes–Cummings (JC) Hamiltonians with two uncorrelated
single-mode cavities [9]. This double JC model is schematically depicted in Fig. 1(a). Since the JC Hamiltonians conserve the number of ex-
citations (atomic plus photonic), the model can be treated as a four-qubit network. It turns out that even when both cavities are prepared
in the vacuum state the entanglement between the atoms dies and revives periodically. This behavior may be interpreted as periodic
entanglement transfer between atomic and photonic systems [8,9]. This model has also been extended to the multi-mode case where
the atom–cavity couplings are described by a spectral distribution. For this model it was shown that entanglement cannot be protected
regardless of the initial states (see [10,11] and references therein). The effect of noisy environments on bipartite entanglement dynamics
is also discussed in [5]. Here, it was shown that for certain initial states, the entanglement of two atoms can be preserved (in spite of the
influence of a common noisy environment) provided the atoms are confined in a sufficiently small region. On the other hand, when the
interatomic separation is large, the atoms experience independent environments and disentangle in a finite time [4].

The purpose of this Letter is to study the preservation of entanglement in the network depicted in Fig. 1(b). This model may be
considered as an extension of the aforementioned double JC model and it aims at describing the effect of two independent environments
(cavities) on the entanglement between remote parties. We assume that, initially, entanglement is only present in subsystems A1 A2 and
B1 B2. In this network, subsystems Ai and Bi (i = 1,2) undergo excitation exchange interactions modeled via JC Hamiltonians. We restrict
our attention to the situation where the cavities are prepared in the vacuum state. Under these assumptions, the model may be considered
a four-qubit (atoms) and two-qutrit (cavities) system. In this context, we show that the pairs A1 A2 and B1 B2 can be prepared in certain
partially entangled states such that they remain entangled at all times. This is the main result of this work.

The Letter is organized as follows. In Section 2 we briefly discuss the double JC model and determine the corresponding evolution
operator. In Section 3 we examine the entanglement dynamics in more complex scenario as portrayed in Fig. 1(b). We derived a com-
pact expression for the evolution operator corresponding to the case of single-mode qubit–cavity interaction. This facilitates the study of
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Fig. 1. Double JC model (four-qubit model) and generalized double JC model (four-qubit–two-qutrit model). (a) Double JC model. Two two-level atoms, prepared in entangled
state ρA interact, locally, with uncorrelated single mode-cavities F1 and F2. (b) Generalized double JC model. The qubits A1 and B1(2) interact indirectly via common cavity
modes. We assume that, initially, entanglement is only present in the pairs A1 A2 and B1 B2.

entanglement dynamics for different initial states of the system. We show that there exist initial states for this network, such that the
entanglement between the distant parties (A1 A2 and B1 B2) never vanishes. Additionally, we studied numerically the minimum entangle-
ment in these pairs as a function of their initial state. In this sense we found the optimal initial states of the pairs which, surprisingly, do
not turn out to be maximally entangled. We also study the emergence of entanglement in the initially separable pairs A1 B2 and A2 B1.

Finally, in Section 4 we include multimode atom–cavity interactions into our model. Here, the entanglement of the qubits is studied
by means of a non-Markovian quantum state diffusion equations (QSD) [12–14]. In addition, the residual entanglement in the qubits is
determined in the steady state limit of the QSD equation [15]. The analytical results obtained in section corroborate the numerical results
reported in Section 3.

2. Entanglement dynamics in the double JC model

Let the Hamiltonian acting on system (Ai Fi) be H(i) = H(i)
0 + H(i)

int , where

H (i)
0 = h̄

2
ωAi σ

(Ai)
z + h̄ωiai

†ai, (1)

H (i)
int = h̄λAi

(
σ

(Ai)+ ai + σ
(Ai)− ai

†) (2)

and i = (1,2). The spectrum of this Hamiltonian is well known [18]. The knowledge of the energy eigenstates and eigenvectors could
be used to determine the time evolution of the system. However, from a technical point of view, it is more convenient to find the time
evolution operator by exponentiation of the Hamiltonian H (i) , as described in [16]. It turns that this method may be also applied to larger
system as the one described in Fig. 1(b). For the double JC model we have:

Ui := e− it
h̄ H(i) = e−iωtN̂i e−iλtĈi (3)

where N̂i = a†
i ai + 1

2 σ
(Ai)
z and Ĉi = σ

(Ai)+ ai + σ
(Ai)− a†

i . Here, we have assumed the zero detuning case (ωAi = ωi ) and used the relation

[N̂i, Ĉi] = 0. Now, one can easily show that

Ui = e−iωtN̂i

⎛
⎜⎜⎜⎝

cos(λt
√

aia
†
i ) −i

sin(λt
√

aia
†
i )√

aia
†
i

ai

−i
sin(λt

√
a†

i ai )√
a†

i ai

a†
i cos(λt

√
a†

i ai )

⎞
⎟⎟⎟⎠ . (4)

Clearly, the time evolution operator for the joint system A1 A2 F1 F2 is given U = U1 ⊗ U2. Following [8,9], we assume that both cavities
are initially in the vacuum state while the atoms start out in one of the following partially entangled states:

|ΦA〉 = cos(α)|e A1 , e A2〉 + sin(α)|g A1 , g A2〉, (5)

|ΨA〉 = cos(α)|e A1 , g A2〉 + sin(α)|g A1 , e A2〉. (6)

Due to the fact that the JC Hamiltonian conserves the total number of excitations, the atomic reduced density matrix will be given by the
X-state

ρ =
⎛
⎜⎝

a 0 0 f
0 b e 0
0 e∗ c 0
f ∗ 0 0 d

⎞
⎟⎠ . (7)

Throughout the present Letter, we will quantify the entanglement E(ρ) by means of Wootter’s concurrence C(ρ) [17]. For states of the
form Eq. (7), the concurrence can be written in the compact form

C(ρ) = 2 max
(
0, | f | − √

bc, |e| − √
ad

)
. (8)

Note that for the X-states of the form Eq. (5) and Eq. (6) we have C(ρ) = | sin(2α)|.
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Fig. 2. Evolution of entanglement in the double JC model [9]. (a) Concurrence as a function of time for system A1 A2 when its initial state is given by |ΦA〉. The curves
correspond to α = 60◦ (solid line), α = 45◦ (dashed line) and α = 30◦ (dotted line). (b) Concurrence as a function of time for system A1 A2 when its initial state is given
by |ΨA〉. The curves correspond to α = 45◦ (solid line), α = 30◦ (dashed line) and α = 15◦ (dotted line).

Using Eq. (4), one can determine the time-evolution of the reduced density matrix corresponding to the qubits A1 A2 [9]. The en-
tanglement dynamics is shown in Fig. 2(a) and Fig. 2(b). Although both graphs describe the death and rebirth of entanglement, there
are significant differences between Fig. 2(a) and Fig. 2(b). In the case where the atoms start out in the state |ΦA〉 given by Eq. (5), the
entanglement remains zero for finite periods of time (except when α = 45◦). These periods depend on the initial degree of entanglement
in the system A1 A2 (see Fig. 2(a)). On the other hand, when the atoms are prepared in the state |ΨA〉 given by Eq. (6), the entanglement
decays to zero periodically and recovers immediately, independently of α. Note that since we have assumed a symmetric scenario, the
transformation α → π/2 − α does not affect the concurrence.

3. A model of mutual preservation of entanglement

In this section, we study the scenario depicted in Fig. 1(b). Here systems A1, A2, B1, B2 are assumed to be two-level atoms while F1

and F2 represent single-mode cavities. Let the Hamiltonian acting on system (Ai Bi Fi) be H(i) = H(i)
0 + H(i)

int where

H (i)
0 = h̄

2
ωAi σ

(Ai)
z + h̄

2
ωBi σ

(Bi)
z + h̄ωiai

†ai, (9)

H (i)
int = h̄λAi

(
σ

(Ai)+ ai + σ
(Ai)− ai

†) + h̄λBi

(
σ

(Bi)+ ai + σ
(Bi)− ai

†) (10)

and i = (1,2). The interaction of a single-mode quantized radiation field with N two-level atoms was first studied by Dicke [19]. The
spectrum corresponding to the Hamiltonian Eqs. (9)–(10) was found long ago [20] and its associated dynamics has been extensively
studied in [21–23]. In addition, two-level atoms coupled to single-mode radiation field have been studied in connection with entanglement
generation in cavity QED. [24,25].

Following a similar method to that described in the previous section, we write the Hamiltonian H (i) as

H (i) = h̄ωi N̂i + h̄λAi Ĉ
(Ai) + h̄λBi Ĉ

(Bi), (11)

with N̂i = ai
†ai + 1

2 (σ
(Ai)
z + σ

(Bi)
z ),

Ĉ (Ai) = εAi σ
(Ai)
z + σ

(Ai)+ ai + σ
(Ai)− ai

†, (12)

Ĉ (Bi) = εBi σ
(Bi)
z + σ

(Bi)+ ai + σ
(Bi)− ai

†, (13)

εAi = ωAi −ωi

2λAi
and εBi = ωBi −ωi

2λBi
. From now on, we shall assume that the atoms and cavities are identical, that is, λA1 = λA2 = λB1 = λB2 = λ

and ω1 = ω2 = ω. In addition, we shall again restrict our attention to the zero detuning case i.e., εAi = εBi = 0. These assumptions, plus
the fact that [N̂i, Ĉ (Ai)] = [N̂i, Ĉ

(Bi)] = 0, allow us to write the local evolution operator as

Ui = e−iH(i)t = e−iωtN̂i e−iλtĈi , i = 1,2 (14)

where

Ĉi := Ĉ
(Ai) + Ĉ

(Bi) =

⎛
⎜⎜⎝

0 ai ai 0
a†

i 0 0 ai

a†
i 0 0 ai

0 a†
i a†

i 0

⎞
⎟⎟⎠ (15)

in the HAi ⊗HBi basis given by |1(i)〉 = |ei, ei〉, |2(i)〉 = |ei, gi〉, |3(i)〉 = |gi, ei〉 and |4(i)〉 = |gi, gi〉. The operator Ui may be determined by
exponentiating the matrix Ci . It can be shown that the even and odd powers of the operator Ci read:

Ĉ
2k
i = 2k

⎛
⎜⎜⎝

aiS
k−1
i a†

i 0 0 aiS
k−1ai

0 S
k/2 S

k/2 0
0 S

k/2 S
k/2 0

† k−1 † † k−1

⎞
⎟⎟⎠ , k > 0, (16)
ai S ai 0 0 ai S ai
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Ĉ
2k+1
i = 2k

⎛
⎜⎜⎝

0 aiS
k aiS

k 0
S

k
i a†

i 0 0 S
k
i ai

S
k
i a†

i 0 0 S
k
i ai

0 a†
i S

k
i a†

i S
k
i 0

⎞
⎟⎟⎠ , k � 0 (17)

where Si = aia
†
i + a†

i ai . Writing Ui = e−iωtNi
∑∞

k=0
(−iλt)k

k! Ĉ
k
i , we obtain the following compact expression for the evolution operator Ui :

Ui = e−iωtN̂i

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − 2aiSi
−1 sin2(λit

√
Si
2 )ai

† −iai
sin(λi t

√
2Si)√

2Si
−iai

sin(λi t
√

2Si )√
2Si

−2aiSi
−1 sin2(λit

√
Si
2 )ai

−i sin(λi t
√

2Si )√
2Si

ai
† cos2(λit

√
Si
2 ) − sin2(λit

√
Si
2 ) −i sin(λi t

√
2Si )√

2Si
ai

−i sin(λi t
√

2Si )√
2Si

ai
† − sin2(λit

√
Si
2 ) cos2(λit

√
Si
2 ) −i sin(λi t

√
2Si )√

2Si
ai

−2ai
†
Si

−1 sin2(λit
√

Si
2 )ai

† −iai
† sin(λi t

√
2Si )√

2Si
−iai

† sin(λi t
√

2Si )√
2Si

1 − 2ai
†
Si

−1 sin2(λit
√

Si
2 )ai

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (18)

Clearly, the time evolution for the joint system A1 A2 B1 B2 F1 F2 is given by U1 ⊗U2. We consider the situation where systems A1 A2 and
B1 B2 (systems A and B) are initially prepared in entangled pure states ρA = |φA〉〈φA | and ρB = |φB〉〈φB |. In addition, we assume that
there are no additional correlations present in the total system. Thus, the initial density operator may be written as ρ0 = |φA〉〈φA | ⊗
|φB〉〈φB | ⊗ ρF1 ⊗ ρF2 . At later times we have:

ρ = U1 ⊗U2ρ0U1
† ⊗U2

†. (19)

Following the double JC model [8,9] discussed in the previous section, we assume that the states |φA〉 and |φB〉 are of the form

|ΦA(B)〉 = cos(α)|e A1(B1), e A2(B2)〉 + sin(α)|g A1(B1), g A2(B2)〉 (20)

or

|ΨA(B)〉 = cos(α)|e A1(B1), g A2(B2)〉 + sin(α)|g A1(B1), e A2(B2)〉. (21)

In either case, we may write |φA〉 = ∑
k sk|φA1,k, φA2,k〉. Making use of Eqs. (18), (19) and tracing out the degrees of freedom of systems

B1 B2 and F1 F2, we obtain the following expression for the reduced density matrix corresponding to qubits A1 and A2 (system A):

ρ A
kl,mn =

∑
i, j

si s j TrB
(
ρBV

(B1)

imkj ⊗V
(B2)

π(i)nlπ( j)

)
. (22)

Here π(1) = 1,π(2) = 2, for partially entangled states of the form Eq. (20) while π(1) = 2,π(2) = 1, for partially entangled states of the

form Eq. (21). The above V
B1(2)

i jkl operators are computed from the evolution operator Eq. (18). They are given by

V
(B1(2))

i jkl = TrF1(2)

(
ρF1(2)

〈i|U†
1(2)| j〉A1(2)

· 〈k|U1(2)|l〉A1(2)

)
(23)

where |1〉 = |e〉 and |2〉 = |g〉. In Appendix A, we list the set of non-vanishing operators V
(B1(2))

i jkl for the case where the cavities have a
well-defined number of excitations (i.e. ρFi = |N〉〈N|). Note that expression Eq. (22) also holds true in the case where the systems A1 A2
and B1 B2 are prepared in different types of states, e.g., |ΦA〉 ⊗ |ΨB〉. From symmetry considerations, we easily see that if the qubits start
out in either |ΦA〉 ⊗ |ΦB〉 or |ΨA〉 ⊗ |ΨB〉, then ρ A = ρB at all times.

Similarly, we can write down an expression for the reduced density matrix for the qubit pairs A1 B2 and A2 B1. For simplicity, we shall
consider only the situation when the initial state of the qubits is of the form |ΦA〉 ⊗ |ΦB〉 or |ΨA〉 ⊗ |ΨB〉. Then we obtain:

ρ
A1 B2
kl,mn =

∑
i, j,p,q

si〈i|Vπ( j)nlπ(p)|q〉sqs j〈 j|Vπ(i)mkπ(q)|p〉sp . (24)

The usefulness of expressions Eqs. (22), (23) and (24) lies in the fact that they can be evaluated in an automated fashion. They can also
be applied to the more general case in which the cavities are prepared in mixed states [26].

3.1. Partially entangled Bell states |ΦA〉 and |ΦB〉

We start by considering the case where systems A1 A2 and B1 B2 are both initially in the same partially entangled state of the form
Eq. (20). As mentioned before, in the symmetric scenario in which the cavities are initially in the same quantum state, it suffices to
compute the reduced density matrix of one of the systems, say A1 A2. Making use of Eq. (22) we determine the non-vanishing matrix
elements

ρ A
11 = a2 cos4(α) + b2 + h2 + 2p2

4
sin2(2α) + k2 sin4(α), (25)

ρ A
22 = ad cos4(α) + bf + hm − 2p2

4
sin2(2α) + kn sin4(α), (26)

ρ A = ρ A , (27)
33 22
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Fig. 3. Evolution of entanglement for systems A1 A2 (B1 B2). The qubits are initially prepared in |ΦA〉 ⊗ |ΦB 〉. (a) Concurrence as a function of time for the cases α = 45◦
(solid line), α = 60◦ (dashed line) and α = 85◦ (dotted line). (b) Concurrence as a function of time for the cases α = 37◦ (solid line) and α = 15◦ (dashed line).

Fig. 4. Minimum entanglement in A1 A2 (B1 B2) as a function of α.

ρ A
44 = d2 cos4(α) + f 2 + 2p2 + m2

4
sin2(2α) + n2 sin4(α), (28)

ρ A
14 = ρ A

41
∗ = 1

2
e−2iωt((c2 + q2) cos2(α) + (

l2 + r2) sin2(α)
)

sin(2α). (29)

The functions a,b, c, . . . can be found in Appendix A. Of particular interest is the situation where both cavities are initially in the
ground state, that is ρFi = |0i〉〈0i | for i = (1,2).

It turns out that for certain values of α, the pairs A1 A2 and B1 B2 remain entangled at all times (see Fig. 3(a)). It is interesting to study
the minimum entanglement Emin = mint C(ρ A(t)) in these pairs as a function of α. Based on numerical analysis, we conclude that for
37.2◦ < α < 90◦ , there is always some residual entanglement in systems A1 A2 and B1 B2, as shown in Fig. 4. This result is corroborated by
Fig. 3(b) where the time evolution of entanglement is shown for some values of α < 37◦ . If we adopt Emin as a measure of the robustness
of entanglement, we see from Fig. 3(b) that the most resilient state corresponds to α ≈ 65.5◦ for which C(ρ A) > 0.24. Interestingly,
it does not correspond to the maximally entangled state (α = 45◦). This non-trivial reflects a trade-off between the initial energy of the
system and its entanglement. As α approaches 90◦ , the initial state of system approaches the energy eigenstate |g, g〉⊗ |g, g〉⊗ |01〉⊗ |02〉.
Consequently, its small amount of entanglement will not vary considerably with time. On the other hand, when α < 45◦ , the pairs (A1 A2
and B1 B2) are more likely to be excited which renders dynamics of system more complex and tends to degrade the entanglement in the
pairs. Moreover, the initial entanglement goes to zero as α approaches zero degrees. These two facts combined give rise to the critical
value αcr ≈ 37 such that the entanglement in the pairs vanishes for finite periods of time when α < αcr .

It is also important to mention that in order to retain some entanglement in the pairs A1 A2 and B1 B2, they must both be initially
entangled. One can show that if the qubits start out in the state |ΦA〉 ⊗ |g〉B1 ⊗ |g〉B2 , then entanglement in A1 A2 will vanish for finite
periods of time. Some entanglement will be transferred to B1 B2 and for certain values of α it is possible to have one entangled pair at all
times [26].

It is also interesting to look at the entanglement between qubits A1 and B2 (A2 and B1). Here we shall also consider a symmetric
configuration. Thus, it suffices to determine the density matrix for one of pairs, say A1 B2. Making use of Eq. (24) we obtain

ρ
A1 B2
11 = a2 cos4(α) + bh + p2

2
sin2(2α) + k2 sin4(α), (30)

ρ
A1 B2
22 = ad cos4(α) + f h + bm − 2p2

4
sin2(2α) + kn sin4(α), (31)

ρ
A1 B2
33 = ρ

A1 B2
22 , (32)

ρ
A1 B2
44 = d2 cos4(α) + f m + p2

2
sin2(2α) + n2 sin4(α), (33)

ρ
A1 B2
14 = ρ

A1 B2
41

∗ = e−2iωt(cq cos2(α) + lr sin2(α)
)

sin(2α), (34)

where the functions a,b, c, . . . can be found in Appendix A.
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Fig. 5. Evolution of entanglement for systems A1 A2 (B1 B2) (solid line) and A1 B2 (A2 B1) (dashed line). The qubits are initially prepared in |ΦA〉 ⊗ |ΦB 〉. (a) Concurrence as
a function of time for A1 B2 (dashed line) and A1 A2 (solid lines). Here α = 75◦ . (b) Concurrence as a function of time for A1 B2 (dashed line) and A1 A2 (solid lines). Here
α = 45◦ .

(a) (b)

Fig. 6. Evolution of entanglement for systems A1 A2 (B1 B2). The qubits are initially prepared in |ΨA〉 ⊗ |ΨB 〉. (a) Concurrence as a function of time for the cases α = 25◦
(solid line), α = 45◦ (dashed line) and α = 60◦ (dotted line). (b) Concurrence as a function of time (zoomed in) for the cases α = 25◦ (solid line) and α = 45◦ (dashed line).

Note that the pairs A1 B2 and A2 B1 start out in separable (mixed) states. As a result of indirect interactions between Ai Bi , some
fraction of the original entanglement in A1 A2 and B1 B2 will be transferred to these pairs. We assume that the cavities are prepared in
the vacuum state. The case where A1 A2 and B1 B2 are initially in the state |ΦA〉 ⊗ |ΦB〉 with α = 75◦ is shown in Fig. 5(a). From this
graph we see that for certain periods of time, we have the choice of selecting either two entangled or two separable pairs. Note that for
this value of α, the concurrences exhibit an approximately sinusoidal behavior. The dynamics corresponding to α = 45◦ turns out to be
far more complex as shown in Fig. 5(b). Note that these graphs suggest that the entanglement in A1 B2 can never exceed that in B1 B2

(or A1 A2). In fact, this is a direct consequence of Eqs. (26), (29), (31) and (34). Using the inequalities cq � 1
2 (c2 + q2) and lr � l2+r2

2 one

proves that |ρ A1 B2
14 | � |ρ A

14|. In addition, we have

ρ A
22 − ρ

A1 B2
22 = (h − b)(m − f )

4
sin2(2α)

= −1

4
cos2

(
2λt

√
N + 1

2

)
sin2(2α) � 0 (35)

which completes the proof.

3.2. Partially entangled Bell states |ΨA〉 and |ΨB〉

It turns out that if systems A1 A2 and B1 B2 are initially in states of the form in Eq. (21), their entanglement cannot be preserved,
for any value of α. Moreover, as in the previous subsection, the concurrence of A1 B2 (A2 B1) never exceeds that of A1 A2 (B1 B2). Using
expression Eqs. (22) and (23), we compute the density matrix describing A1 A2 and B1 B2. The non-vanishing matrix elements read

ρ A
11 = ak cos4(α) + bh + p2

2
sin2(2α) + ak sin4(α), (36)

ρ A
22 = an cos4(α) + f h + bm − 2p2

4
sin2(2α) + dk sin4(α), (37)

ρ A
33 = dk cos4(α) + f h + bm − 2p2

4
sin2(2α) + an sin4(α), (38)

ρ A
44 = dn cos4(α) + f m + p2

2
sin2(2α) + dn sin4(α), (39)

ρ A
23 = ρ A

32
∗ = cl + qr

2
sin(2α). (40)
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The curves corresponding to entanglement as a function of time for different values of α are shown in Fig. 6(a). We found that
the concurrence vanishes for finite periods of time for every α. Note that the curves appear to coalesce and go to zero simultaneously
regardless of the value α. However if we zoom in on a portion of the graph, we can see that this is not the case (see Fig. 6(b)). We
conclude this section with the following remark. Expressions Eqs. (22) and (23) may also be applied to the situation when the cavity
modes are excited, i.e. N > 1. We found that entanglement cannot be preserved (in the sense of Fig. 6(a) unless both cavities are prepared
in the vacuum state (N = 0). The same holds true for the |ΨA〉 ⊗ |ΨB〉 case.

4. Multimode interaction

In this section we extend our analysis to the case where the two-level atoms interact with multi-mode cavities (structured environ-
ment). We describe this situation with the following natural generalization of the Hamiltonian Eq. (9) and Eq. (10):

H (i)
0 = H (i)

AB + H (i)
F , (41)

H (i)
AB = h̄ωi

2

(
σ

(Ai)
z + σ

(Bi)
z

)
, (42)

H (i)
F =

∑
k

h̄ωikaik
†aik, (43)

H (i)
int =

∑
k

h̄λ∗
ik

(
σ

(Ai)

i + σ
(Bi)−

)
a†

ik + h.c. (44)

Here, aik and a†
ik , correspond to the creation and annihilation operators of the kth electromagnetic mode in the ith cavity and frequency

ωik . Using the Bargmann state of the baths to trace out the baths’ degree of freedom, we have

i∂tψt
(
z∗) =

2∑
i=1

(
H (i)

AB + Li

∑
k

λ∗
ikz∗

ikeiωikt + L†
i

∑
k

λike−iωikt ∂

∂z∗
ik

)
ψt

(
z∗) (45)

where ψt(z∗) is the system stochastic vector for the four-qubit system A1 A2 B1 B2 and Li ≡ σ
(Ai)− + σ

(Bi)− . The reduced density matrix is
constructed from

ρ = M
[∣∣ψt

(
z∗)〉〈ψt

(
z∗)∣∣] =

∫
d2z2

π
e−|z|2 ∣∣ψt

(
z∗)〉〈ψt

(
z∗)∣∣. (46)

Since there is no direct interaction between the subsystems (A1, B1, F1) and (A2, B2, F2), the noises generated by the two local baths

and O-operators are uncorrelated. The zero temperature assumption together with the chain rule ∂
∂z∗

ik
= ∫ t

0 ds
∂z∗

is
∂z∗

ik

δ
δz∗

is
, allow us to construct

the following QSD equation

∂tψt
(
z∗) =

2∑
i=1

[
−iH (i)

AB + Li z
∗
it − L†

i

t∫
0

ds G j(t, s)O i
(
t, s, z∗

i

)]
ψt

(
z∗)

≡
2∑

j=1

[−iH (i)
AB + Li z

∗
it − L†

i Ō i
(
t, z∗

i

)]
ψt

(
z∗), (47)

where z∗
it = −i

∑
λ λ∗

ikz∗
ikeiωikt , Gi(t, s) = ∑

k |λik|2e−iωik(t−s) and O i(t, s, z∗
i )ψt(z∗) = δ

δz∗
is
ψt(z∗).

The QSD method yields Ō i(t, z∗) = Fi1(t)O 1 + Fi2(t)O 2 + iUi(t, z∗
i )O 3, where O 1 = L, O 2 = σ

(A)
z σ

(B)
− + σ

(A)
− σ

(B)
z , O 3 = σ

(A)
− σ

(B)
− , and

Ui(t, z∗
i ) ≡ ∫ t

0 ds Ui(t, s)z∗
is to be determined. Assuming Gi(t, s) = Γ γi

2 e−γi |t−s| , which corresponds to the Lorentz spectral density for the

multi-mode cavities S(ω j) = 1
2π

Γ γ 2
j

ω2
j +γ 2

j
, we obtain

∂t F i1(t) = Γ γi

2
+ (−γi + iωi)Fi1 + F 2

i1 + 3F 2
i2 − i

2
Ū i, (48)

∂t F i2(t) = (−γi + iωi)Fi2 − F 2
i1 + 4Fi1 Fi2 + F 2

i2 − i

2
Ū i, (49)

∂t Ū i(t) = −2iγi F i2 + (−2γi + 2iωi)Ū i + 4Fi1Ū i, (50)

where Ū i(t) ≡ ∫ t
0 ds Gi(t, s)Ui(t, s). The boundary conditions are given by Fi1(0) = Fi2(0) = Ū i(0) = 0 and Ui(t, t) = −4i F i2(t).

It is also known that an open system in a non-Markovian bath can approach a stable final state in the long time limit, as long as the
bath correlation function has a well-defined Markov limit. For our model we have that γi → ∞ implies G(t, s) → Γ δ(t, s). For notational
simplicity, we write the density matrix for the total system as

ρ =
⎛
⎜⎝

a b c d
e f g h
i j k l

⎞
⎟⎠ (51)
m n o p
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where a,b,d, . . . , p represent a 4 × 4 sub-matrices. We work in the basis {|e, e, e, e〉, |e, g, e, e〉, . . . , |g, g, g, g〉} ∈HA1 ⊗HB1 ⊗HA2 ⊗HB2 .
The final stable state for this model is found to be

ρ∞ =
⎛
⎜⎝

0 0 0 0
0 F G H
0 J K L
0 N O P

⎞
⎟⎠ , (52)

where

F = K = −G = − J , H = −L = N† = −O †, (53)

and each non-vanish sub-matrix has the form⎛
⎜⎝

0 0 0 0
0 v −v w
0 −v v −w
0 w∗ −w∗ q

⎞
⎟⎠ . (54)

Just as in the previous section, we shall consider the case where the four qubits are initially prepared in a state of the form |ΦA〉 ⊗ |ΦB〉
or |ΨA〉 ⊗ |ΨB〉 (see Eqs. (20) and (21)). For these two cases, tracing out the degrees of freedom corresponding to any pair of qubits we
obtain the reduced density matrix for the other pair. Thus, in the long time limit we find that

ρ A =
⎛
⎜⎝

F22 0 0 H24
0 F33 0 0
0 0 K22 0

N42 0 0 K33 + P44

⎞
⎟⎠ , (55)

and

ρ A1 B2 =
⎛
⎜⎝

F33 0 0 H34
0 F22 0 0
0 0 K33 0

N43 0 O K22 + P44

⎞
⎟⎠ . (56)

In particular, for the case where the qubits are initially in |ΦA〉 ⊗ |ΦB〉, we obtain

ρ A =
⎛
⎜⎝

y 0 0 x
0 y 0 0
0 0 y 0
x∗ 0 0 1 − 3y

⎞
⎟⎠ , (57)

and

ρ A1 B2 =
⎛
⎜⎝

y 0 0 −x
0 y 0 0
0 0 y 0

−x∗ 0 0 1 − 3y

⎞
⎟⎠ , (58)

where y = 1/4 cos2(α) sin2(α) and |x| = 1/2 cos(α) sin3(α). From the above expressions of Eqs. (57) and (58), we conclude that in the
long time limit we have C(ρ A1 B2 ) = C(ρ A1 A2 ). The concurrence is given by C = 2 max{(|x| − y),0}. Note that the concurrence does not
vanish for partially entangled states having arctan(0.5) ≈ 26.6◦ < α � 90◦ . Interestingly, the maximum of the concurrence Cmax = 0.24 is
attained at α ≈ 65.3◦ which is consistent with the single mode model discussed in Section 3.

As for the case (|ΨA〉 ⊗ |ΨB〉), we find that the long time density matrix now reads

ρ A =
⎛
⎜⎝

y 0 0 0
0 y 0 0
0 0 y 0
0 0 0 1 − 3y

⎞
⎟⎠ . (59)

Therefore there is no entanglement present in the final state of A1 A2. Following the similar steps, ρ A1 B2 also ends up as a separable state
for this initial condition.

5. Conclusions

In this Letter we studied the entanglement dynamics in a generalized double JC model. We showed that although the system evolves
non-trivially, two pairs of qubits (A1 A2 and B1 B2) can preserve some fraction of their initial entanglement. We found a family of initial
states for the system |ΦA〉 ⊗ |ΦB〉 ⊗ |01〉 ⊗ |02〉. such that the entanglement in the pair never vanishes. We also determined the optimal
initial state for which the concurrence is greater than 0.24 at all times. Interestingly, this optimal state is not a maximally entangled state.
This result does not involve conditional dynamics (i.e. no quantum measurements are required). The scenario presented in this Letter
should be compared with the double JC model (see Section 2) where this preservation is not possible for any initial configuration of the
system. Thus, putting aside questions related to the experimental realization of our scenario, the comparison of both models suggest that
storing the qubits in pairs may be a way to protect their entanglement. One can envision even larger networks with qubits prepared in



A. Veitia et al. / Physics Letters A 376 (2012) 2755–2764 2763
multi-particle entangled states. It would be interesting to explore such systems and study the amount of entanglement available at any
time. The aforementioned effect of mutual preservation can be interpreted as the result of the constructive interference of the amplitudes
corresponding to processes of emission, absorption etc. It may be also interpreted as partial entanglement transfer, that is, the initial
entanglement cannot be completely redistributed over the rest of the pairs. In the double JC model the initial entanglement of the pairs
can be completely transferred to the cavities [9].

Naturally, one is tempted to study all pairwise quantum correlation and attempt to establish entanglement conservation rules for this
model (as in [27] and [28]). For mixed states we only know the separability criteria for the low dimensional Hilbert spaces CM × CN with
M = 2 and N = 2 or N = 3 [29] or for the case of bipartite Gaussian states [30]. As a result, all pairwise concurrences can be computed
except for F1 F2 (cavity–cavity) which is, effectively, a 3×3 system. In particular, it would be interesting to explore the connection between
the entanglement generated in atoms sharing common cavities (that is, A1 B1 and A2 B2) and the evolution of the entanglement in the
pairs A1 A2 and B1 B2.

Finally in Section 4 we included multimode qubit–cavity interactions and studied the dynamics of the system by means of a non-
Markovian state diffusion equation. We found the density matrices in the long time limit. The results corroborate those from the single-
mode interaction model.

The latter suggests that it would be interesting to explore other multi-qubit configurations and interaction models. Such studies may
lead to a better understanding of the entanglement dynamics and provide interesting insights into the problem of protecting entanglement
from the environment.
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Appendix A

The operators Vi jkl operators defined in Eq. (23) satisfy the properties V
†
i jkl = Vlkji and

∑
k Vikkl = δilI. When the cavities are prepared

in the pure state ρFi = |N〉〈N| these assume the form

V1111 = 〈N|〈e|Ui
†|e〉〈e|Ui|e〉|N〉 =

(
a 0
0 b

)
, (A.1)

V1121 = 〈N|〈e|Ui
†|e〉〈g|Ui|e〉|N〉 =

(
0 c
0 0

)
eiγ , (A.2)

V1221 = 〈N|〈e|Ui
†|g〉〈g|Ui|e〉|N〉 =

(
d 0
0 f

)
, (A.3)

V2112 = 〈N|〈g|Ui
†|e〉〈e|Ui |g〉|N〉 =

(
h 0
0 k

)
, (A.4)

V2122 = 〈N|〈g|Ui
†|e〉〈g|Ui|g〉|N〉 =

(
0 l
0 0

)
eiγ , (A.5)

V2222 = 〈N|〈g|Ui
†|g〉〈g|Ui|g〉|N〉 =

(
m 0
0 n

)
, (A.6)

V1112 = 〈N|〈e|Ui
†|e〉〈e|Ui|g〉|N〉 =

(
0 0
p 0

)
, (A.7)

V1122 = 〈N|〈e|Ui
†|e〉〈g|Ui|g〉|N〉 =

(
q 0
0 r

)
eiγ , (A.8)

V1222 = 〈N|〈e|Ui
†|g〉〈g|Ui|g〉|N〉 =

(
0 0

−p 0

)
(A.9)

where γ = ωt . Additionally we have V1211 = V
†
1121, V2212 = V

†
2122, V2211 = V

†
1122, V2111 = V

†
1112, V2221 = V

†
1222 and V1212 = V2121 = 0,

which completes the list. The functions a,b, c, . . . read

a =
(

1 − N + 1

N + 3/2
sin2(λt

√
N + 3/2 )

)2

+ N + 1

4(N + 3/2)
sin2(2λt

√
N + 3/2 ), (A.10)

b = cos4(λt
√

N + 1/2 ) + N

4(N + 1/2)
sin2(2λt

√
N + 1/2 ), (A.11)

c = N + 1

4
√

(N + 1)2 − 1/4
sin(2λt

√
N + 1/2 ) sin(2λt

√
N + 3/2 ) − sin2(λt

√
N + 1/2 )

(
1 − N + 1

N + 3/2
sin2(λt

√
N + 3/2 )

)
, (A.12)

d = N + 1
sin2(2λt

√
N + 3/2 ) + (N + 1)(N + 2)

2
sin4(λt

√
N + 3/2 ), (A.13)
4(N + 3/2) (N + 3/2)
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f = sin4(λt
√

N + 1/2 ) + N + 1

4(N + 1/2)
sin2(2λt

√
N + 1/2 ), (A.14)

h = sin4(λt
√

N + 1/2 ) + N

4(N + 1/2)
sin2(2λt

√
N + 1/2 ), (A.15)

k = N

4(N − 1/2)
sin2(2λt

√
N − 1/2 ) + N(N − 1)

(N − 1/2)2
sin4(λt

√
N − 1/2 ), (A.16)

l = N

4(
√

N2 − 1/4)
sin(2λt

√
N − 1/2 ) sin(2λt

√
N + 1/2 ) − sin2(λt

√
N + 1/2 )

(
1 − N

N − 1/2
sin2(λt

√
N − 1/2 )

)
, (A.17)

m = cos4(λt
√

N + 1/2 ) + N + 1

4(N + 1/2)
sin2(2λt

√
N + 1/2 ), (A.18)

n = N

4(N − 1/2)
sin2(2λt

√
N − 1/2 ) +

(
1 − N

N − 1/2
sin2(λt

√
N − 1/2 )

)2

, (A.19)

p = − 1

8(N + 1/2)
sin2(2λt

√
N + 1/2 ), (A.20)

q = cos2(λt
√

N + 1/2 )

(
1 − N + 1

N + 3/2
sin2(λt

√
N + 3/2 )

)
+ N + 1

4
√

(N + 1)2 − 1/4
sin(2λt

√
N + 1/2) sin(2λt

√
N + 3/2 ), (A.21)

r = cos2(λt
√

N + 1/2 )

(
1 − N

N − 1/2
sin2(λt

√
N − 1/2 )

)
+ N

4
√

N2 − 1/4
sin(2λt

√
N − 1/2 ) sin(2λt

√
N + 1/2 ). (A.22)
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