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We describe and examine entanglement between different degrees of freedom in multiphoton states based on
the permutation properties. From the state description, the entanglement comes from the permutation asym-
metry. According to the different permutation properties, the multiphoton states can be divided into several
parts. It will help to deal with the multiphoton interference, which can be used as the measurement of the
entanglement.
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I. INTRODUCTION

Photons interference has been widely applied in different
protocols of quantum communication �1,2�, quantum compu-
tation �3�, and quantum metrology �4–7�. Many of those pro-
tocols utilize one degree of freedom �DOF�, such as polar-
ization, time �energy�, momentum �path�, etc., and neglect
the relationship with others due to either filtering or the ab-
sence of correlations. Recently, however, more and more
cases are discussed with multiple DOFs in the system, where
a multidimensional correlated system can be remarkably
formed �8�. In some cases, there is no entanglement between
different DOFs, such as the hyperentanglement state �9–11�.
In others, there may be entanglement �8�. In those states,
entanglement will bring decoherence for one DOF when the
other DOFs are discarded. It has been well described and
observed for the two-photon correlated system �12�.

Moreover, there are many cases focusing on the multipho-
ton system. The relationships between different DOFs and
different photons are significantly more complicated than the
two-photon cases. This is especially true for photons gener-
ated from parametric down conversion �PDC�, where it is
difficult to describe the state of more than one photon in the
same mode of spatial DOF. There has been several experi-
ments discussing the decoherence in the polarization DOF in
the four-photon state from PDC �13,14�. The interpretation
based on photons distinguishability has been well proposed
�15,16�. Recently, a description based on photon permutation
symmetry was proposed �17�, where it described that en-
tanglement between two DOFs decreased state purity and
interference visibility. However, in that approach, it is not
convenient to tell if there is entanglement between different
DOFs by fully decomposing the state. Moreover, the descrip-
tion is appreciably more involved when there are multipho-
ton states in the same mode of spatial DOF.

In this paper, we will develop and introduce a convenient
approach to determine the entanglement between different
DOFs in a multiphoton state. The method is based on the
permutation symmetry of different DOFs in the state, extend-

ing from permutation symmetry of different photons. Gener-
ally, the photons in one DOF are distinguishable because
they can be recognized by the information of the other DOF.
There are correlations between the two DOFs, which we call
entanglement. On the other hand, the indistinguishable pho-
tons in one DOF should have a permutation symmetric form.
Therefore, the entanglement is induced by the permutation
asymmetry and can be read directly from the state which is
described by photon creation operators. If there is no en-
tanglement between different DOFs, the state can be de-
scribed in a product form. Thus, a single DOF in different
states will show the same interference behavior under the
same operation if their descriptions are the same. For ex-
ample, both the Greenberger-Horne-Zeilinger state �GHZ�
�18� and the maximally entangled number state �NOON�
�19,20� can be applied in the demonstration of the multipho-
ton de Broglie wavelength and the high resolution quantum
phase measurement to approach the Heisenberg limit
�19,21�. They will be described in Sec. II. When there is
entanglement between different DOFs, the single DOF will
not show perfect interference. In Sec. III, a four-photon state
interference in the same spatial mode, which can be used as
the measurement of the entanglement, will be described in
detail. The four-photon state will be divided in several parts
according to their permutation symmetries. It is much more
convenient than other methods �17,21�. The last section is
the conclusion.

II. MULTIPHOTON MULTI-DOF ENTANGLEMENT

To clearly describe the interference, the multiphoton state
is written in a permutation symmetric form �17�

�
i=1

N

ai
†�vac� =

1
�N!

	
P

P��a1��a2� ¯ �aN�� , �1�

where P is the permutation operator that changes the posi-
tions of arbitrary two states. There are N! terms for the N
photons. For example, a two-photon state can be described as
a1

†a2
†�vac�=	PP��a1��a2�� /�2!= ��a1��a2�+ �a2��a1�� /�2. For

the identity case �a1�= �a2�= �a�, a†2�vac�=�2�a��a�. If there is
more than one uncoupled DOF in the system, the single-*fs2293@columbia.edu
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photon state is described as a product of single DOF,

a†��,�, . . . ,���vac� = ��,�, . . . ,�� = ������ ¯ ��� , �2�

where � ,� , . . . ,� represent the different DOFs.
Based on Eqs. �1� and �2�, we can discuss the entangle-

ment between different DOFs in a multiphoton state. The
examples of two-photon and four-photon states with two
DOFs have been presented in Ref. �17�. Generally, the
N-photon state containing two DOFs can be written as �22�

��N� = 	
�1,�1,. . .,�N,�N

f��1,�1, . . . ,�N,�N��
k=1

N

a†��k,�k��vac� ,

�3�

where � and � are the two DOFs.
In general, if there is no entanglement between the two

DOFs, each DOF will have a permutation symmetric form.
This is a result of permutation symmetry of bosonic par-
ticles. Thus, with this underlying principle, we can tell the
entanglement based on the permutation symmetry of the
state description.

Under the permutation of any photon’s total wave func-
tion, the state described in Eq. �3� is invariant �23�, such that

f�. . . ,�i,�i, . . . ,� j,� j, . . . � = f�. . . ,� j,� j, . . . ,�i,�i, . . . � .

�4�

For a fixed set of �, if there is any permutation of the other
DOF ��� satisfying

f�. . . ,�i,�i, . . . ,� j,� j, . . . � = f�. . . ,�i,� j, . . . ,� j,�i, . . . � ,

�5�

this part of the state can then be written as a product of
permutation symmetric states,

	
�1,. . .,�N

f��1,�1, . . . ,�N,�N��
k=1

N

a†��k,�k��vac� → 	
P

���1�

���2�, . . . , ��N��
 	
�1,. . .,�N

f��1,�1, . . . ,�N,�N�	
P

P���1�

���2�, . . . , ��N��� . �6�

If � DOF keeps the same description �described in the large
parentheses in the above expression� for all of the permuta-
tion states of � DOF, the whole state can be written in a
product form and there is no entanglement between the two
DOFs. Otherwise, there is entanglement. Equation �4� de-
scribes the permutation symmetry of whole wave function
for bosonic particles, while Eq. �5� describes the permutation
symmetry of single DOF. It is a necessary condition for that
there is no entanglement between different DOFs. The ex-
amples of two-photon states are discussed in detail in Ref.
�17�. We note that the Bell singlet state is a special case in
which both DOFs are in permutation antisymmetric form.

When there is no entanglement between different DOFs, a
collective �on all qubits� operation on one DOF will have no
effect on the other DOF and the photons in the DOF will
show perfect interference. Moreover, if the description of

one DOF is the same, the behavior under the same operation
will be the same too.

For the multiphoton polarized state, if all photons are in
the same mode of spatial DOF, there is no entanglement
between the polarization DOF and the spatial DOF. The
whole photon state can be written in a product form. For
example, the NOON state is described as

�NOON� = �aH,S
†N + aV,S

†N ��vac�/�2N!

= ��H��N + �V��N� � �S��N/�2, �7�

where S is the spatial mode and H and V are horizontal and
vertical polarizations, respectively. In addition, when N pho-
tons are different spatial modes, there also exists a product
state that has no entanglement between two DOFs, such as
the GHZ state,

�GHZ� = 
�
i=1

N

aH,Si

† + �
i=1

N

aV,Si

† ��vac�/�2

= ��H��N + �V��N� � 	
P

P��S1��S2� ¯ �SN��/�2N!,

�8�

where Si are for the ith spatial modes. As shown in Eqs. �7�
and �8�, both the polarization DOF and the spatial DOF have
the permutation symmetric form. Moreover, in the NOON
state and N-photon GHZ state, the polarization DOF has the
same form. If an operation acts collectively on this DOF, the
two states will show the same results. For example, both of
them will show the same application in the quantum phase
measurement.

As we know, the NOON �19� state is a popular state for
the quantum phase measurement. In the process, there is a
relative phase shift � between the two polarizations on all N
photons which will cause a whole phase shift eiN�. The result
of NOON state projection �20,21,24� on the two states will
show cosinusoidal oscillation for the N-photon de Broglie
wavelength. In the NOON state projection measurement for
the GHZ state, as shown in Fig. 1, each single-photon detec-
tor covers all N spatial modes. The N-fold coincidence
counts will show the successful projection measurement,
which can be described as

|GHZ
N
1

N−1
1

2
1

δΝ−1 δΝ−2 δ1
δ0

bΝ−1
^ bΝ−2

^
b1
^

b0
^

φ
S1

S2
SN-1

SN

Polarizer
@45o

FIG. 1. Illustration of NOON state projection on a GHZ state. �
is the relative phase shift between two polarizations. Number above
each beam splitter denotes the reflectivity. �k=2k� /N is the phase
delay between H and V polarizations. The polarizers are 45° ori-
ented �20�. The detectors cover all N spatial modes.
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M = ��H��N − e−iN��V��N���H��N − eiN��V��N� � IP, �9�

where IP=	PP��S1��S2� , . . . , �SN��S1��S2� , . . . , �SN�� /N! is the
matrix for the spatial DOF. Here we neglect the total coeffi-
cient from the photon loss of each beam splitter. The mea-
surement result is

R = �GHZ�M�GHZ� = �1 − cos N��/2. �10�

Thus, the GHZ state can show the oscillation of de Broglie
wavelength behavior. It can also be applied to the high res-
olution quantum phase measurement to approach the Heisen-
berg limit.

III. FOUR-PHOTON INTERFERENCE VISIBILITY WITH
ENTANGLED DOFS

When there is entanglement between two DOFs, there
will be distinguishability in one DOF, and will not be perfect
interference in this DOF. The character of permutation sym-
metry can help to describe the distinguishability in the pho-
ton interference, even to calculate the interference visibility.
Here we will utilize the different permutation properties to
divide the state into several parts. The visibility calculation is
much simplified with this method. As an example, we will
discuss the four-photon interference in a single mode of spa-
tial DOF.

As described in Refs. �20,21�, the two-photon state from
the two-cascaded type-I BBOs is expressed as

��2� =
1
�2

	
�

	����a†2�H,�� + a†2�V,����vac�

=
1
�2

��HH� + �VV��
	
�

	�������� ,

where � is for another DOF, such as frequency DOF. For
simplicity, we assume 	��� is real and 	�	2���=1.

Correspondingly, the four-photon state is

��4� =
1

2
	�

	����a†2�H,�� + a†2�V,����2
�vac� . �11�

However, there is a permutation asymmetric part in the
above four-photon state, which induces the entanglement be-
tween the two DOFs. The state can be rewritten into two
parts,

��4� = 1
2 ���4�A + ��4�B� , �12�

where

��4�A = 	
�

	����a†2�H,��a†2�H,�� + a†2�V,��a†2�V,��

+ a†2�H,��a†2�V,�� + a†2�H,��a†2�V,����vac�

+ 	
���

	���	����a†2�H,��a†2�H,��

+ a†2�V,��a†2�V,����vac�

= ��HHHH� + �VVVV��
	
�

�24	2���������

+ 	
�
�

	���	���	
P

P��������/�6�
+ 	

P

P��HHVV�/�6�	
�

	2��������� �13�

is the permutation symmetric part, and

��4�B = 	
���

	���	����a†2�H,��a†2�V,��

+ a†2�H,��a†2�V,����vac�

= 2 	
�
�

	���	����a†2�H,��a†2�V,��

+ a†2�H,��a†2�V,����vac� �14�

is the permutation asymmetric part because of the absence of
the photon state a†�H ,��a†�V ,��a†�H ,��a†�V ,���vac�. In
Eq. �13�, the permutation symmetry state 	PP��iij j��
=4��iij j�+ �ijij�+ �ij ji�+ �j jii�+ �jiji�+ �jiij�� is from the 24
permutation terms of iij j.

The mode in polarization DOF of each photon in ��4�A is
indistinguishable, while it is distinguishable in ��4�B. Thus,
we can calculate the results of the two parts separately. For
��4�A, the polarized NOON state projection measurement
�20�, as shown in Fig. 2, has the form

M = ��HHHH� − �VVVV����HHHH� − �VVVV�� � I�,�,

�15�

where I�,� is the identity matrix for the other DOF because
there is no projection on this DOF in the measurement. This
measurement is constructed based on Hanbury Brown–Twiss
interferometer �25� by adding polarization projection before
each detector. It is orthogonal with 	PP��HHVV� /�6� and
will give null output, which is the result of Hong-Ou-Mandel
interference for multiphoton �20�. After a phase shift �, the
measurements will show the perfect interference result, with
oscillation for N-photon de Broglie wavelength for ��4�A,
which are

|Ψ4 2
1

λ/4

b2
^ b1

^

b3
^

b4
^

PBS

λ/2

λ/2

FIG. 2. NOON state projection measurement for the four-photon
state. � /2 and � /4 are half-wave-plate at 22.5° and quarter-wave-
plate at 0°.
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RA = A��4�M��4�A

= 2�1 − cos 4��	
�

�24	2���������

+ 	
�
�

	���	���	
P

P��������/�62

= �1 − cos 4���16 + 32K� , �16�

where K=	�	4����1 indicates the entanglement of this
DOF in the two-photon state �17,26�.

The permutation asymmetric part ��4�B cannot be written
in the product state. There are six cases for the four-photon
state to be detected by four detectors as shown in Fig. 2.

However, the case that two H photons are detected by b̂1b̂2

and two V photons by b̂3b̂4 is canceled by the case of two H

photons detected by b̂3b̂4 and two V photons by b̂1b̂2, since
they have contrary phases. Therefore, the result of NOON
state projection measurement is not difficult to calculate

RC = ���4�B�2 � 2/3 = 32�1 − K� � 2/3. �17�

Thus, the total result is

R = RA + RB = 16�7 + 2K�
1 −
3�1 + 2K�

7 + 2K
cos 4��/3. �18�

The interference visibility is V=3�1+2K� / �7+2K�. It is the
same with the result of Eq. �75� in Ref. �20� if we set K
=E /A. Therefore, the higher K, the higher interference vis-
ibility and the less entanglement between the two DOFs.
When K=1, the visibility is 100%. In this case, there is no

asymmetric part ��4�B in the four-photon state and no en-
tanglement between two DOFs. Therefore, this interferomet-
ric method can be used as the measurement of the
entanglement.

IV. CONCLUSION

Based on permutation symmetry, we discussed the en-
tanglement between different DOFs in a multiphoton state.
Permutation asymmetry in the state description induces the
entanglement between different DOFs. If a DOF does not
entangle with other DOFs, the same state in this DOF will
show the same interference behavior when an operation acts
on all the photons collectively. As an example, we described
that the GHZ state can also be used to approach Heisenberg
limit in the quantum phase measurement. For the state which
has entanglement between different DOFs, there is no maxi-
mal interference in one DOF. The visibility can be calculated
by dividing the state into different parts according to their
permutation properties. This method allows for the descrip-
tion of interference visibility significantly more conveniently
in multiphoton multi-DOF states. Moreover, the interference
can be used as the measurement of the entanglement.
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