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Photon transport enhanced by transverse
Anderson localization in disordered superlattices
P. Hsieh1,2*, C. Chung2,3, J. F. McMillan1, M. Tsai2,4, M. Lu5, N. C. Panoiu6,7* and C. W. Wong1,8*
Controlling the flow of light at subwavelength scales provides access to functionalities such as negative or zero index of
refraction, transformation optics, cloaking, metamaterials and slow light, but di�raction e�ects severely restrict our ability to
control light on such scales. Here we report the photon transport and collimation enhanced by transverse Anderson localization
in chip-scale dispersion-engineered anisotropic media. We demonstrate a photonic crystal superlattice structure in which
di�raction is nearly completely arrested by cascaded resonant tunnelling through transverse guided resonances. By modifying
the geometry of more than 4,000 scatterers in the superlattices we add structural disorder controllably and uncover the
mechanism of disorder-induced transverse localization. Arrested spatial divergence is captured in the power-law scaling, along
with exponential asymmetric mode profiles and enhanced collimation bandwidths for increasing disorder. With increasing
disorder, we observe the crossover from cascaded guided resonances into the transverse localization regime, beyond both the
ballistic and di�usive transport of photons.

In regular isotropic optical media the characteristics of dispersion
relations, which among others define the properties of diffrac-
tion, are determined by the intrinsic structure of the medium

so that there is little room to engineer the optical wave diffraction.
By contrast, structuring the optical medium at the subwavelength
scale can lead to marked changes of the characteristics of dispersion
and wave diffraction. One such salient example is that of photonic
crystals1–9, whose wave dispersion and diffraction are engineered
so as to achieve specific functionalities. Drawing an analogy to the
transport of electrons in crystal solids, photonic crystals are rec-
ognized as providing insights into localization10 in disordered and
periodic scattering lattices. In particular, light localization in disor-
dered media, including that of transverse localization in optically
induced lattices11, has been intensively investigated in the past12–21.
For monochromatic electromagnetic propagation in an inhomoge-
neous and nondissipative dielectric medium, wave transport with
a time-harmonic electric field amplitude E can be described by a
Schrödinger-like equation:
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where the dielectric scattering potential fluctuations εfluct are
distinct from the background (periodic) potential εo, such as
in tight-binding models for disordered electronic transport.
For electrons in the weak-disorder limit (root-mean-square
potential fluctuations Vr.m.s. less than h̄2/2m∗a2c , where m∗ is the
effective mass and ac the correlation length of the fluctuations),
a Mott transition can occur22; in the strong-disorder limit
(Vr.m.s. greater than h̄2/2m∗a2c ), an Anderson transition10 can
occur for near-universal localization in real materials. Such
localization transitions for photons are also possible with strong
disorder, examined previously in the longitudinal on-axis

propagating direction23. Furthering the electronics–photonics
analogy, the scaling theory of localization (zero conductance Σ for
long length scales in one and two dimensions, and the mobility edge
in three dimensions) and a modified Ioffe–Regel criteria (kl∗≈ 1,
where k is the Bloch wavevector and l∗ the scattering mean free
path) are also relevant in electromagnetic transport.

However, unlike electron transport, where localized bound
states are in deep potential wells, photon localization is in an
intermediate frequency band (between low-frequency Rayleigh
extended states and high-frequency geometrical optics propagation)
and at an energy higher than the highest potential wells12,13.
As illustrated in equation (1), the electromagnetic field is also
vectorial and has an additional polarization density term ∇·E
that has no electronic analogue. Furthermore, working with
photons, photonic lattices offer an unequivocal scaling test
of localization in a static disorder potential, unhindered by
many-body electron–electron and electron–phonon scattering, as
one of the most accessible approaches to examine localization.
Examples include the first observations of photon transverse
localization in bulk photorefractive crystals10, which, with the
∼5×10−4 index contrast in the paraxial limit, can be described by
i(∂A/∂z)+ 1/2k

(
∂2A/∂x2

+∂2A/∂y2
)
+ (kT/no)1n (x , y) A= 0,

where A(r) is the slowly varying envelope of the time-harmonic
field and kT the transverse wavevector. With strong index contrast
(∼2) on-chip, however, intensive direct numerical approaches
using Maxwell’s equations have to be performed, with recent
computational models of the pseudogap spectral function and
photon density of states ρ(ω) in vicinity of the band edge, for
example, using Bloch-mode expansion approaches24. Coherent
backscattering in localization has been examined numerically and
experimentally25, supporting the possibility of the scaling theory
of localization on-chip. Guided resonances in superlattices have
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Figure 1 | Ordered and disordered superlattices. a, Example of nanofabricated silicon photonic superlattices with 20 superperiods and a single-mode input
waveguide, imaged using a focused ion beam. Inset: on-chip input waveguide with a one-by-four splitter to four parallel superlattices for normalization.
b, Ordered superlattices with circular holes. The dashed white lines depict the homogeneous region of the superlattices. c, Structural disorder is introduced
by replacing the circular holes with heptagonal holes (approximately 2% structural disorder), and rotating them through an angle prescribed by a uniform
random distribution. d, As c but with square holes (approximately 6% structural disorder). e, As c but with triangular holes (approximately 13% structural
disorder). f, Band structure of the circular-hole superlattices, for the transverse wavevector component kx. Inset: the flat bands (highlighted in red) near the
normalized frequencies of approximately 0.314 and 0.327 correspond to two guided resonances excited in the transverse photonic crystal waveguides
(top and bottom insets, respectively) with the computed |E|2-profile plotted.

also been modelled numerically and observed experimentally2.
In these high-index disordered superlattices, we demonstrate
that the resulting transverse guided resonances, with disorder-
induced inhomogeneous spectral broadening, can potentially
provide improved collimation bandwidth while experiencing,
within this frequency range, transverse localization.

Figure 1 shows the nanofabricated chip-scale anisotropic
superlattices examined in our study, consisting of alternating
layers of photonic crystal sections of thickness d1, made of
circular holes arranged in a two-dimensional hexagonal lattice
with lattice constant a = 500 nm, and homogeneous sections
of medium with thickness d2 for a superperiod, Λ = d1 + d2.
To introduce structural disorder, three other structures are also
nanofabricated: heptagonal-hole superlattices (HHS; approximately
2% disorder), square-hole superlattices (SHS; approximately 6%
disorder) and triangular-hole superlattices (THS; approximately
13% disorder). In each of these superlattices, disorder is introduced
by randomly rotating each scatterer with a stochastically uniform
distribution of the rotation angle. All devices are fabricated in
silicon-on-insulator (Methods), with 20 superperiods, and the
incoming transverse-magnetic-like (TM-like) polarized light is
coupled into the superlattices by a single-mode waveguide of
width w=450 nm.

The thickness of the homogeneous section satisfies the relation
d2/d1 = 0.18, with the superlattice band structures, computed
along the 0–X2 direction of the superlattice, shown in Fig. 1f
and Supplementary Information I. Significantly, as the superlattice
band structure suggests, our photonic structure possesses nearly
flat bands (highlighted in red) at the normalized frequencies
of 0.314 and 0.327 (in dimensionless units of ωa/2πc; centred
around 0.322) at kx = 0, corresponding to the high-symmetry 0

point. These flat bands represent leaky guided resonances (located
outside the light cone)3, which propagate transversely in the one-
dimensional (1D) homogeneous dielectric region that forms a 1D
photonic crystal waveguide (in dashed white lines in Fig. 1b–e)
separating the photonic crystal sections of the superlattices. The
underlying mechanism that leads to enhanced collimation in
these superlattices is as follows: mutual coupling of the two leaky
guided resonances excited at the input and output interfaces of a
homogeneous section gives rise to the mode splitting seen in the
red-highlighted bands of Fig. 1f. The |E|2-field profiles of these
resonances are shown in the insets of Fig. 1f. Bloch modes of
the photonic crystal couple to these guided resonances and are
resonantly amplified when tunnelling from one photonic crystal
section to the next. This mechanism of resonant wave tunnelling
via excitation of guided resonances enhances the diffraction-
free beam collimation because the evanescent part of the optical
field is propagated through the superlattice as well. This beam
collimationmechanismbased on resonant tunnelling—fromguided
resonances to guided resonances—is markedly different from
that investigated in earlier studies6–8, in which case the beam
divergence is reduced by designing flat spatial dispersion surfaces
or by alternating metamaterials layers of normal and anomalous
dispersion (see Supplementary Information I to III for detailed
design of the superlattices).

To quantify the degree of beam collimation, in Fig. 2 we
show the computed effective beam width, ωeffc = P−1, defined as
the inverse participation ratio, P(z)≡[

∫
I(x , z)2dx]/[

∫
I(x , z)dx]2

(ref. 10), where I(x ,z) is the field intensity. In these calculations we
employed 3D finite-difference time-domain (FDTD) simulations
(see Methods and Supplementary Information IV) performed
across the 1,500 nm to 1,600 nm spectral domain with 5 nm

2 NATURE PHYSICS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturephysics

© 2015 Macmillan Publishers Limited. All rights reserved

http://www.nature.com/doifinder/10.1038/nphys3211
www.nature.com/naturephysics


NATURE PHYSICS DOI: 10.1038/NPHYS3211 ARTICLES

Propagation distance (μm)

 (n
m

)

Triangular-hole superlattices

a

b

c

d

Increasing disorder

Circular-hole superlattices

Heptagonal-hole superlattices

Square-hole superlattices

1,600

1,580

1,560

1,540

1,520

1,500

1,600

1,580

1,560

1,540

1,520

1,500

1,600

1,580

1,560

1,540

1,520

1,500

10 20 40 50

10

8

6

4

2

10

8

6

4

2

10

8

6

4

2

1,600

1,580

1,560

1,540

1,520

1,500

10

8

6

4

2

30

10 20 40 5030

10 20 40 5030

10 20 40 5030

 
effc (μm

) 
ω

 
effc (μm

) 
ω

 
effc (μm

) 
ω

 
effc (μm

) 
ω

λ
 (n

m
)

λ
 (n

m
)

λ
 (n

m
)

λ

Figure 2 | Numerical dispersive-propagation maps for the ordered and disordered superlattices. a–d, The plotted e�ective beam width (blue shows the
tightest spatial extent and red the widest) is determined from the near-field spatial distribution of the field intensity, computed from 3D finite-di�erence
time-domain numerical simulations. For the circular-hole superlattices (a), collimation is observed to be centred at 1,550 nm. The heptagonal-hole (b),
square-hole (c) and triangular-hole (d) superlattices show larger collimation bandwidths compared to the circular-hole superlattices. Input beam width
is 450 nm. The coloured vertical dashed lines indicate the cross-sections of the dispersive propagation shown in Fig. 3.

resolution. The blue regions in Fig. 2 indicate the regions of tightest
collimation; for our designed circular-hole superlattices (CHS), the
collimation band is centred at 1,550 nm. With increasing disorder,
the heptagonal-hole superlattices (HHS), Square-hole superlattices
(SHS) and Triangular-hole superlattices (THS) structures show
significantly larger bandwidths for collimation than does the CHS,
as shown in Fig. 3. This is attributed to the inhomogeneous spectral
broadening of the guided resonances induced by disorder. The
frequency of the guided resonances at the 0 point is shifted by
a random amount owing to the coupling of the optical mode
with the adjacent, randomly perturbed photonic crystal sections
of the superlattices24, an effect that is also accompanied by
increased radiation losses. Because the frequency dispersion of
these tunnelling channels increases with disorder, the enhanced
collimation bandwidth increases with disorder level as well. We
note that in the instance of the rotated SHS the spectral region of
strong collimation is slightly blueshifted with respect to the CHS
owing to the fact that, even if the hole area is kept the same, the
frequency dispersion of the guided resonances depends weakly on
the hole shape.

Encouraged by these theoretical predictions, we examined
the far-field infrared scattering for 900 wavelengths (1,530 nm
to 1,620 nm with 100 pm spectral resolution), for each of the
superlattices. Figure 4a highlights the key features, with further
supporting examples shown in Supplementary Information V. For
the CHS, the most effective collimation is observed at 1,550 nm
(λec), with the beam width at the interfaces, ωFWHM,i, fluctuating
by less than ±7%. This wavelength is closest to that of the guided
resonances, allowing more effective coupling, with larger tunnelling

transmission and amplification of the evanescent part of the field.
This is supported by the spectral analysis of the spatial full-width
at half-maximum (FWHM), ωFWHM, with the smallest beam width
observed at λec and matching well with the numerical simulation
data, where the strongest collimation occurs in the region of λec−4
to λec+4 nm.

Figure 4a also shows the electromagnetic propagation for the
disordered HHS, SHS and THS cases at the corresponding λec
wavelengths, compiled from 2,700 scattering images. Collimation
is observed even in these disordered superlattices. The most effec-
tive λec wavelengths are determined to be approximately 1,550 nm
(HHS), 1,555 nm (SHS) and 1,580 nm (THS), respectively. At other
wavelengths, the beam diverges significantly from its input excita-
tion width in the disordered superlattices. Concurrently, the larger-
disorder superlattices, such as the triangular and square realizations,
show shorter transmission lengths owing to the increased disorder
scattering losses from the perturbed Bloch modes. To observe finer
features in the z-direction, we next perform near-field scanning
opticalmicroscopy (NSOM) at the λec wavelengths to probe the local
field intensity oscillations in each superlattice (see Supplementary
Information VI). Mapping the near-field intensity with the super-
imposed photonic crystal topography, the periodic enhancement
of the wave scattering is determined to be centred at the loca-
tion of the transverse waveguides. These near-field measurements
(calibrated with a periodic topography grid) also show the z-thin,
x-long scattering slices corresponding to the thin homogeneous
transverse waveguides. With increasing disorder, the near-field in-
tensities at the interfaces become increasingly apparent compared
to the background stray light (see Supplementary Fig. 13) owing to

NATURE PHYSICS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturephysics 3

© 2015 Macmillan Publishers Limited. All rights reserved

http://www.nature.com/doifinder/10.1038/nphys3211
www.nature.com/naturephysics


ARTICLES NATURE PHYSICS DOI: 10.1038/NPHYS3211

CHS HHS SHS THS
9

8

7

6

5

4

3
1,500 1,6001,5751,5501,5251,500 1,6001,5751,5501,5251,500 1,6001,5751,5501,5251,500 1,6001,5751,5501,525

8

7

6

5

4

3

2

8

7

6

5

4

3

2

8

7

6

5

4

3

2

Increasing disorder

a b c d
eff

c 
(μ

m
) 

ω

 (nm)λ

Figure 3 | Dispersive propagation of the ordered and disordered superlattices. a–d, The distribution of e�ective beam width versus wavelength at
selected positions (indicated by the correspondingly coloured dashed vertical lines in Fig. 2), for the circular-hole (a), heptagonal-hole (b), square-hole (c)
and triangular-hole (d) superlattices, exhibiting a flatter spectral response with increasing disorder. Each coloured dashed curve is a fit to the
corresponding data points.

the increased scattering into the radiation continuum and the more
efficient excitation of the guided modes.

To compare against the guided resonances approach, we next de-
signed photonic crystals with sizes of a few hundredmicrometres6–8,
but without the superlattices and with flat equifrequency dispersion
curves. We nanofabricated and examined, under the same condi-
tions, collimation in these lattices, as detailed in Supplementary
Information VII. Figure 4b shows the observed beam propagation
at λec in the presence of disorder, in the collimation regime. The
field profiles in Fig. 4b clearly demonstrate that in this case beam
collimation is of a markedly different nature, as it almost completely
vanishes in the presence of disorder. The averaged collimating beam
width increases from approximately 2.2 µmto approximately 2.5 µm
(heptagon hole), 6.8 µm(square hole) and 13.9 µm(triangular hole),
without the guided resonance contributions. The fluctuation of the
beam width increases from ±5% to ±6% (heptagon hole), ±9%
(square hole) and±11% (triangular hole).

Figure 5 shows the optical wave transport in the superlattices
at different wavelengths, for different disorder. The physical nature
of the electromagnetic propagation is revealed by the slope of the
function ωFWHM(z) when represented on a log–log scale. As shown
in the log–log plots of Fig. 6a to d, the asymptotic dependence of the
experimental effective ωFWHM is of the form ωFWHM(z)∝ z ν , where
the slope ν is a power exponent determined by linear fitting. For
the CHS in Fig. 6a, we observe ν values up to 0.24 at the longer
wavelengths, but with a near-zero slope ν≈0.05 between λec−4 to
λec+4 nm. This corresponds to an approximately 8 nm collimation
bandwidth and is due solely to the beam interaction with the guided
resonances. In the presence of roughly 2% and 6% structural dis-
order (HHS and SHS, respectively), however, the measured log–log
plots of ωFWHM(z) show a markedly different spectral dependence.
The slope ν decreases significantly in the HHS between λec−4 and
λec+17 nm, and in the SHS between λec−4 and λec+17 nm. This
is shown in Figs 6b and c, respectively. In both superlattices a near-
zero ν value of ≈0.05 is now achieved within a 21 nm collimation
bandwidth, sizably larger than in the CHS.

The observed increased collimation arises from the disorder-
induced inhomogeneous spectral broadening of guided resonances.
To further support this, we next examined the THS structure,
with larger (approximately 13%) structural disorder. The analysed
experimental collimation bandwidth is even larger, namely
approximately 31 nm (λec−7 to λec+24 nm), as shown in Fig. 6d.
These observed near-zero ν bandwidths are also larger than (and
outside) the bandwidth of the computed regular CHS without
disorder, with an approximately 3.9 times increase in collimation
bandwidth achieved experimentally in the presence of disorder as
compared to the periodic disorder-free CHS. We also note that,

to characterize the effects of disorder, an ensemble average is
needed over different realizations of disorder; in our superlattices
the ensemble average is self-consistently performed as the beam
propagates over 20 disordered photonic crystal sections of the
superlattices—each of the supercells having the same level of
randomness but a different disorder realization. Furthermore, in
the numerical modelling results, we note that in the high-index
physical setting studied here we described the optical beam
propagation with the 3D vectorial Maxwell’s equations instead of
a Schrödinger-type equation to account for the wave dynamics.
The measured bandwidth increase of nearly zero ν with increasing
disorder is also supported by our 3D simulations, both in terms
of the general wavelength dependence of ν and its estimated
bandwidth from disorder. We note the localization bandwidth
computation is a higher-order analysis, especially with the disorder
lattice models of ∼4,000 or more scattering sites, where there are
slight deviations between the exact numerical and experimental
lattice instances, and with the experimental samples containing
additional disorder sources (such as from the sidewall roughness)
that can account for the measured larger bandwidths.

This phenomenon of disorder-induced enhanced beam
collimation is reminiscent of transverse localization. In isotropic
media, ballistic transport is characterized with ν= 1 and diffusive
transport is characterized with ν = 1/2; our measurements and
simulations clearly demonstrate that the photon transport is
arrested by disorder with ν values predominantly less than 0.05 in
our disordered superlattices, even exceeding that of circular regular
lattices. For the largest disorder (THS), we observed the strongest
localization with consistently near-zero ν values, averaged at 0.017,
and with an almost flat spectral dependence of ν. In this regime for
all disordered superlattices, the beam is localized and its divergence
is arrested by the structural disorder in the superlattices, subjected
only to statistical fluctuations in the scattering sites. The observed
transverse localization arises from multiple coherent scattering of
light induced by the disordered potential, forming localized guided
resonances at the homogeneous–photonic crystal interfaces. We
also note that fluctuations in ωFWHM increase with disorder (images
in Supplementary Information V) and are consequently inversely
proportional to the dimensionless conductanceΣo (Σo≈ρ(ω)Dol∗,
with the diffusion coefficient Do approximately equal to the power
exponent slope ν). This reduced dimensionless conductance for
increasing disorder arises owing to coherent backscattering in the
guided resonances over macroscopic length scales.

We further confirm the transverse localization through an analy-
sis of the transverse intensity beam profile and its z-axis spatial pro-
gression. This is performed by examining the transverse intensity
profile fitted to an exponentially decaying form I∼exp (−2|x|/ξ),
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Figure 4 | High-resolution far-field infrared scattering images illustrating photon transport in the disordered superlattices. a, Circular-hole,
heptagonal-hole, square-hole and triangular-hole superlattices at the λec wavelengths. b, Disorder media without superlattices and with a collimation
mechanism solely from flat spatial dispersion surfaces. Measurements are shown at the λec wavelengths in the presence of disorder. Beam widths in these
media with scales of a few hundred micrometres increase with increasing disorder, contrary to the superlattices.

where ξ is the localization length (the exponential decay length of
the confinedmodes and defined with l∗ exp(πkTl∗/2), a characteris-
tic length scale of Anderson localization). For instance, in the case of
HHS investigated at λec+17 nm, our analysis shows that ξ is 25 µm
for the z=25µm location and it roughly preserves an exponential
transverse profile (instead of a Gaussian profile, as is the case for
diffusive transport). We also note that the beam profile becomes
increasingly more asymmetric as disorder increases (as detailed in
the Supplementary Information V and Supplementary Fig. 12). The
exponential profile is also found to be the best fit for the SHS and
THS cases. The exponential profile is a clear indication of chip-scale
localization, with wave interference from the interplay of disorder
on the periodic lattice.

For the circular superlattices without appreciable disorder, a
new type of anisotropic medium based on cascaded excitation of
guided resonances is observed, with highly dispersive features and
supported by both experimental measurements and numerical
modelling. With increasing disorder, beam collimation in
heptagonal, square and triangular superlattices are observed for the
first time.With increasing disorder strength, we observed increased
collimation bandwidth, tighter collimation than in regular circular
superlattices, and enhanced transverse localization. Transport
in disordered superlattices reaches a regime of almost arrested
diffraction, departing significantly from diffusive and ballistic
transport, a phenomenon verified by the power-law scaling of the
beam width and exponentially decaying asymmetric intensity beam
profiles in the localization regimes.

The observed transverse Anderson localization allows us to
access values of the collimation bandwidth that are difficult to
access through other approaches. By analogy to electronic transport,
these observations allow us a means to probe the transverse
Anderson localization of photons in solid-state semiconductors,
including the role of guided resonances and the localization
evolution. Future studies include optical nonlinearity perturbations
to the localization (for different disorder levels) with potential
spontaneous pattern formation, background scattering potentials
with quasicrystal geometries, or the probing of these spatially
localized modes with entangled biphoton states. The optical

Increasing disorder

Figure 5 | Disorder-induced enhanced photon transport at the onset of
transverse localization. Schematic of infrared scattering for superlattices
with di�erent disorder (from left to right): circular, heptagonal, square and
triangular scatterers. The colour plots correspond to the di�erent
wavelengths shown in the other panels. The beam diverges in the
circular-hole superlattices but shows collimation in the heptagonal-hole
and square-hole superlattices.

measurements developed here can find applications to other
areas of physics as well. For example, photon transport in our
superlattices is in many aspects analogous to electron wave
dynamics in graphene heterostructures26, so that similar effects
could be observed in electron transport in a superlattice of closely
spaced disordered graphene nanoribbons27. The role of the guided
resonances in this system arises from the nanoribbon edge states.
These same phenomena could also be explored in other studied
electronic systems, such as semiconductor superlattices28 and oxide
heterojunctions29, with interface states playing the role of guided
resonances. Matter-wave transport in atomic30,31 and polariton32

Bose–Einstein condensates trapped in suitably designed optical
superlattices could also provide fertile testing grounds of the
conclusions of our work.
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Figure 6 | Photon transport enhanced by transverse localization. a–d, Log–log plots of the experimentally derived e�ective beam width ωFWHM(z) versus
propagation distance for circular-hole (a), heptagonal-hole (b), square-hole (c) and triangular-hole (d) superlattices, determined from the full-width at
half-maximum of the far-field infrared scattering, in the spectral region λec−4 to λec+24 nm. The red solid lines represent the approximate wavelength for
most e�ective collimation λec (with least beam divergence; see also Supplementary Information V). Inset: distributions of the slope ν in the spectral region
λec− 10 to λec+25 nm. The green filled dots and black open circles, respectively, represent the experimental and numerical simulation values of ν.

Methods
Device nanofabrication. The photonic crystal structures shown in Fig. 1 were
fabricated on a silicon-on-insulator wafer with a single-crystal silicon slab
(nsi=3.48) of 320 nm thickness on top of a 2 µm-thick layer of buried oxide
(nSiO2 =1.46), with electron-beam lithography. ZEP520A (100%) resist was
spin-coated at 4,000 revolutions per minute for 45 s to a thickness of ≈350 nm,
then baked at 180 ◦C for 3min. The JEOL JBX6300FS electron-beam lithography
systems at Brookhaven National Laboratory-USA and ELIONIX ELS7500EX at
National Cheng Kung University-Taiwan, respectively, were used to expose the
ZEP520A resist to define the pattern, followed by development in amyl acetate for
90 s and rinsing with isopropyl alcohol (IPA) for 45 s to completely remove any
residue of amyl acetate developer.

An Oxford Instruments Plasmalab 100 was used for pattern transfer onto the
silicon layer of the silicon-on-insulator wafer, using an inductively coupled
plasma reactive ion etcher (ICP-RIE) to perform the cryogenic silicon etching. O2

at −100 ◦C was applied in the chamber first for cleaning and cooling, followed
by cryogenic etching at −100 ◦C using a mixture of SF6 (40 sccm) and O2

(15 sccm) at 15W radiofrequency (r.f.) power, 800W ICP power and 12mtorr
pressure for a total of 16 s. The resulting wafer was subsequently placed in a
n-methyl pyrrolidone (NMP 1165) resist remover for about 4 h to completely
remove the remaining ZEP resist.

Band structure and time-domain numerical simulations. The band diagrams of
the photonic crystals and photonic superlattice are computed with the RSoft
software BandSOLVE, a commercially available software that implements a plane
wave expansion algorithm. In all numerical simulations a convergence tolerance
of 10−8 was used to compute the frequency bands. The photonic bands of the
photonic crystal have been divided into TM-like and TE-like polarizations,
according to their parity symmetry. The effective refractive indices corresponding
to the TM-like bands are determined from the relation k=ω|n|/c, with k in the
first Brillouin zone (see Supplementary Information).

The numerical simulations of the intensity field distribution were performed
by using the MIT code MEEP, a freely available code based on the
finite-difference time-domain (FDTD) method. In all numerical simulations we
used a uniform computational grid with 33 grid points per micrometre. This
ensures that the smallest characteristic length of the system (in our case, the hole
diameter) is sampled by at least ten grid points. In our FDTD simulations we
used a continuous wave excitation source of the same transverse size as the input
waveguide, placed at the output facet of the waveguide.
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I. Schematic representation of a superlattice with 3 superperiods 

A schematic representation of a photonic superlattice with 3 superperiods is shown in 

Figure S1. Superlattices consist of alternating layers of hexagonal photonic crystals (PhCs) and 

slabs of homogeneous material [SR1]. The hexagonal PhC and the photonic superlattice have 

different symmetry properties, and consequently they have different first Brillouin zones, as 

illustrated in Figure S1. 
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Figure S1 | Schematic representation of the photonic superlattice. First Brillouin zones for 

both the hexagonal photonic crystal lattice and photonic superlattices. a is the lattice period of 

the photonic crystal, r is the radius of the air holes, d1 is the length of the photonic crystal layer, 

d2 is the length of the homogeneous silicon slab, and Λ = d1 + d2 is the period of the photonic 

superlattice. In our design, the photonic crystal parameters are a = 500 nm, r/a = 0.29, d2 /d1 

=0.18, and the silicon device thickness of the silicon-on-insulator wafer t = 320 nm. In all our 

fabricated devices, the PhC sections of the superlattice contain 7 lattice periods in the 

longitudinal direction (z-axis, which coincides with the Γ-M symmetry axis of the PhC). 
 

II. Design of structural disorder and hole distribution in the superlattice 

Structural disorder of the photonic superlattice is introduced by the perturbation of PhC 

holes with heptagonal, square, and triangular shapes. In particular, the scatterer (hole) shape is 

designed such that the circular hole coincides with the inscribed circle of the heptagonal and 

square scatterers, as shown in Figure S2.  
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Figure S2 | Schematic representation of the disordered scatterers (top inset) and the 

stochastically-uniform distributions of the random rotations. From top to bottom, the panels 

correspond to the heptagonal-hole, square-hole, and triangular-hole superlattices.  

For the triangular scatterer, we choose the edge size to be 360 nm for each side so that the 

area of the circular and the triangular holes are approximately equal. All the air hole scatterers 

are rotated by 0, 15, -15, 30, or -30, with the angle of rotation described by a stochastically-

uniform random distribution.  The distributions for the three families of scatterers are shown in 

Figure S2. The disorder distribution level is defined by the standard deviation of the total number 

of the rotation angles, which can be found as ~ 21.3, ~ 21.2, and -21.2 for the heptagonal-hole 

superlattice (HHS), square-hole superlattice (SHS), and triangular-hole superlattice (THS), 

respectively. We note that using a finite, discrete set of rotation angles is enough to introduce 

structural disorder in our photonic system. In Figure S3 we present the focused ion beam images 

of the resulting fabricated nanostructured superlattices (see Methods on nanofabrication 

parameters). In all cases the centers of the holes form a hexagonal lattice, within the positional 

accuracy of the electron-beam lithography writer. 
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Figure S3 | Focus ion beam images of photonic crystal superlattices with different scatterer 

shape. a, circular-hole superlattice. b, heptagonal-hole superlattice. c, square-hole superlattice. d, 

triangular-hole  superlattice. 
 

An additional type of disorder is introduced if the size of the holes is set in the domain 

(r–r/2, r+r/2), where r is the radius of the circular hole, and r is the distance from each point 

on the boundary of the heptagonal, square, and triangular holes to the center of the circular hole. 

The level of structural disorder can then be further characterized by the averaged deviation of r 

from the circular hole radius r, averaged over 600 holes. Under these conditions, the structural 

disorder is determined to be ~ 2%, ~ 6%, and ~ 13% for the HHS, SHS, and THS, respectively.  
 

III. Band diagrams, equifrequency surfaces, effective indices of refraction for the PhC and 

the homogeneous slab, and guiding resonances of the transverse PhC waveguides 

The photonic band structures of the underlying PhC with hexagonal symmetry (see 

Figure S4a) as well as that of the photonic superlattice are computed by using RSoft’s 

BandSOLVE, a commercially available software that implements a numerical algorithm based 

on the plane wave expansion of the electromagnetic field and spatial distribution of the dielectric 

constant of the photonic structure. For 1D approximations, cascaded 22 transmission matrices 
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through the PhC and the homogeneous regions can also be used. In all our three-dimensional (3D) 

numerical calculations of the photonic bands a convergence tolerance of 10-8 is enforced. The 

photonic bands of the PhC are classified based on their parity symmetry with respect to a plane 

crossing through the middle of the silicon slab, whose normal is along the y-axis, into TM-like 

(odd) and TE-like (even) modes. In particular, at the location of this plane the electric (magnetic) 

field of the TM-like (TE-like) mode is predominantly perpendicular onto the plane.  

a.                                                        b.                                            c. 

   

Figure S4 | Band structure, equifrequency curves, and effective mode refractive indices of 

the hexagonal photonic crystal. a, Guided mode band structure computed using a plane-wave 

expansion method, with the red (TE-like) and blue (TM-like) modes. The photonic crystal 

parameters are a = 500 nm, r = 145 nm, and t = 320 nm. b, Equifrequency curves of the photonic 

crystal. The weak anisotropy of the flat sections of the equifrequency curves leads to the 

observed collimation effect. c, Effective refractive indices of the second TM-like photonic 

crystal band (black) and the silicon slab (red),  show all-positive refraction of the superlattice. 
 

The equifrequency surfaces are determined from the band structure, and represent guided 

photonic modes of the PhC that correspond to a constant frequency. The equifrequency curves 

shown in Figure S4b illustrate that within a certain frequency range optical beams can only 

propagate in a narrow interval of angles, centered around the Γ-M direction. This weak 

anisotropy contributes to the observed collimation effect. The effective refractive indices 

corresponding to the second TM-like band (Figure S4c) are determined from the relation k= 

ω|n|/c, with k in the first Brillouin zone. 
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Figure S5 | |E|2-field and |H|2-field distributions of the guided modes of the photonic crystal 

superlattice, calculated at the  symmetry point. The modes correspond to a wavelength of 

1529 nm (a) and 1590 nm (b). For a clearer visualization, the field profiles are presented as a set 

of isosurfaces corresponding to increasing values of |E|2 and |H|2. For clarity, the dielectric 

matrix of the photonic crystal is superimposed onto the field distributions   
 

Figure S5 shows the computed spatial distribution of the electric field (|E|2) and magnetic 

field (|H|2) intensities of the guiding resonances (leaky modes) corresponding to the two flat 

bands (with normalized frequency near 0.314 and 0.327) illustrated in the zoomed-in band 

structure of Figure 1f in the main text. At the  symmetry point (kx=0) these two modes are 

embedded in the radiation continuum of the PhC slab waveguide and represent guided 

resonances excited in the transverse 1D PhC waveguides.  
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IV. Finite difference time domain simulation and calculation of the effective beam width 

The numerical simulations of the intensity field distribution have been performed with 

MEEP, a freely available code based on the finite-difference time-domain (FDTD) method [SR2]. 

In all numerical simulations we used a uniform computational grid of 33 grid points per 

micrometer. This choice ensures that the smallest characteristic length of the system (in our case, 

the diameter of the holes) contains at least 10 grid points, allowing sufficient numerical accuracy 

in all our cases concerning dielectric structures. In our numerical simulations we used a pulsed 

excitation source with a 1550 nm central wavelength with a spectral full-width half-maximum of 

90 nm.  

a.                                                          b. 

 

 

 

 

 

 
 

c.                                                            d. 

 

 

 

 

 

 

 

 

Figure S6 | Log-log plots of the simulated effective beam width versus the propagation 

distance. Summary for circular-hole superlattice (a), heptagonal-hole superlattice (b), square-

hole superlattice (c), and triangular-hole superlattice (d).   

The computed effective beam widths, ߱௘௙௙௖ሺݖሻ, for the different superlattice, propagation 

distance z, and wavelength, are summarized in Figure S6. The physical nature of the beam 
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divergence process is revealed by the slope of ߱௘௙௙௖ሺݖሻ when represented in log-log scale. The 

log-log plot of the computationally determined beam width ߱௘௙௙௖ሺݖሻ  for the CHS shows the 

slope ~ 0.05 from 1545 nm to 1555 nm. In the presence of ~ 2% (HHS), ~ 6% (SHS), and ~ 

13% (THS) disorder, the log-log plot of ߱௘௙௙௖ሺݖሻ  shows a significantly different spectral 

dependence of the slope(see main text). 

In particular, for the HHS from 1525 nm to 1550 nm, ~ 0.05 to 0.1. For the SHS from 

1505 nm to 1530 nm, ~ 0.05 to 0.1. For the THS from 1540 nm to 1575 nm, ~ 0.05 to 0.1. 

This illustrates that the collimation bandwidth increases when structural disorder is added to the 

system, in agreement with the experimental results described in the main text. 
 

V. Analysis of the measured collimation and spatial full-width half-maximum in the 

periodic and disordered superlattices  

 Figures S7 to S10 represent several measured far-field infrared images related to the 

Figures 4d to 4g in the main text. Measurements are taken from 1530 nm to 1620 nm with 100 

pm resolution, with hundreds of gigabytyes of data collected through a fast data acquisition card. 

The effects of laser speckle is also analyzed by averaging over 20 images, each taken at 1 pm 

spectral resolution apart, with no significant difference from the raw data below. 

 
 

Figure S7 | Measured far-field infrared images of the circular-hole superlattice. a through h,  

at 1546 nm, 1550 nm, 1554 nm, 1558 nm, 1561 nm, 1564 nm, 1567 nm, and 1571 nm, 

respectively. Beam propagation is from left to right. 
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Figure S8 | Measured far-field infrared images of the heptagonal-hole superlattice. a 

through h,  at 1546 nm, 1550 nm, 1554 nm, 1558 nm, 1561 nm,  1564 nm, 1567 nm, and 1571 

nm, respectively. Beam propagation is from left to right. 

 

 

Figure S9 | Measured far-field infrared images of the square-hole superlattice. a through h, 

at 1551 nm, 1555 nm, 1559 nm, 1563 nm, 1566 nm, 1569 nm, 1572 nm, and 1576 nm, 

respectively. Beam propagation is from left to right. 
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Figure S10 | Measured far-field infrared images of the triangular-hole superlattice. a 

through h, at 1576 nm, 1580 nm, 1584 nm, 1588 nm, 1591 nm, 1594 nm, 1597 nm, and 1601 nm, 

respectively. Beam propagation is from left to right. 

 

 
Figure S11| Intensity distribution along the propagation distance (z-axis) at 1550 nm. The 

top plot shows the z-dependence of the intensity distribution for the circular-hole superlattice, 

whereas examples of the intensity distribution along the transverse distance (x-axis), at several 

locations along the z-axis, are presented in the bottom panels. 
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The full-width at half-maximum (FWHM) of the collimating beams are determined at all 

maxima intensity locations along the superlattice, as shown in Figure S11 (circular superlattice 

shown). For the disordered superlattices (HHS, SHS, and THS), the transverse spatial profile is 

best matched with an exponential decay instead of a Gaussian profile, further supporting the 

evidence of transverse localization. Next, the beam FWHM versus the propagation distance is 

represented on log-log scale and linear fitting is used to determined the corresponding slope, as 

per Figures 4d to 4g in the main text. More specifically, from the asymptotic dependence of the 

beam width it is found that ߱ிௐுெ is of the form ߱ிௐுெሺݖሻ ∝  ఔ, where ν is a power exponentݖ

whose value was calculated to be in the range ν<0.5. This is compared to the calculated effective 

width versus propagation distance determined from FDTD simulations in Figure S6.  

In addition, the collimating beam profile shows transverse symmetry as per Figure S12, 

from both the numerical simulations and measurements. From the 3D simulations, with 

increasing disorder the transverse asymmetry is larger. The beam profile asymmetry is observed 

in the measurements as well, with several examples presented here. Note that the measurements 

and simulations correspond to different structural disorder realizations and therefore the 

particular field profiles should not be directly compared.  

 

Figure S12 | Asymmetric transverse beam profiles for the CHS, HHS, SHS and THS 

superlattices, determined both from the numerical simulations and measurements. In the 

simulations, the wavelengths are 1550 nm (CHS), 1530 nm (HHS), 1515 nm (SHS), and 1550 
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nm (THS), and correspond to the maximum observed collimation. In the measurements, the 

example wavelengths are indicated at the top left of the panels, each taken at the output or near 

the output. Scale bar: 2 m.  
 

VI. Near-field scattering imaging finer feature of collimation: 

The near-field scanning optical microscope used to examine the optical near-field is a 

Veeco Aurora-3, a commercial and aperture-type near-field scanning optical microscope.  

 

Figure S13 | Far- and near-field infrared scattering images illustrating the wavelength 

dependent beam collimation. a, Circular-hole superlattice at 1550 nm. b, heptagonal-hole 

superlattice at 1550 nm. c,  square-hole superlattice at 1555 nm. d,  triangular-hole superlattice at 

1580 nm. The primary image represents the far-field, with the zoomed insets being extracted 

from the near-field scanning optical microscopy images. 
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The near-field probe was produced by using of thermal pulling method to create ~ 150 

nm apertures and the tip was coated with a 100 nm aluminum layer for light confinement. The 

near-field probe was then attached to a tuning fork sensor produced by Veeco 

Instruments/Bruker AFM for constant-distance scanning. The piezoelectric scanner of near-field 

scanning optical microscope was calibrated by a periodic grid sample in topography image mode 

to ensure the accuracy of the measurements. To couple light into the optical chip, a UV-curing 

adhesive was used to bond a tapered lens fiber to the silicon input waveguide, with stable 

attachment. Beam propagation through the superlattices was observed with the near-field 

microscope and the Santec TSL-510 tunable laser used to obtain the spectral character. Detection 

was performed with a New Focus 2153 InGaAs femtowatt photoreceiver with ~ 23 fW/Hz1/2 

noise equivalent power. 
 

VII. Disordered anisotropic medium with flat spatial dispersion curves 

In order to investigate the transverse light localization in the superlattice, we also 

nanofabricated and examined a set of anisotropic artificial mediums, with the collimation 

mechanism of flat spatial dispersion surfaces studied in earlier works (Refs. 6-8 in main text). 

These anisotropic artificial media were based on a square lattice design, with the device size of a 

few hundred micrometers. The PhC hole-to-lattice ratio r/a =0.305, with lattice period a= 360 

nm. Figure S14a shows equifrequency curves for the second TE band of the PhC, with the 

relevant contours near the wavelengths of interest. For the normalized frequency ω=0.2236, 

whose equifrequency curve is represented in Fig. S14 by the red contour, the PhC shows 

remarkably small spatial dispersion (weak anisotropy), which suggests beam collimation. This 

wavelength, at which the collimation is most effective, is denoted by ߣ௘௖. 
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Figure S14 | Photonic crystals as anisotropic media. a, computed equifrequency surface of the 

periodic photonic crystals. Red curves correspond to the normalized frequency ω=0.2236, which 

leads to most effective collimation. b, example of nanofabricated photonic crystal with highest 

level of disorder, imaged through focused ion beam.   
 

To introduce disorder in this photonic system, three other disordered structures were also 

designed and fabricated, with different levels of perturbation of the PhC holes. For each level of 

disorder, the radius of the hole was described by a uniform random distribution with different 

width. The three layouts of disordered PhC were subsequently generated by using these random 

distribution functions and prepared for fabrication. The lattice period of all the disordered PhC 

was the same, a=360 nm, so as a reliable comparison of the beam propagation in the PhCs can be 

made. Figure S15 shows the radius distribution corresponding to the three levels of disorder, 

from the lowest (Fig. S15a) to the highest (Fig. S15c) disorder level. 

Using the method described in main text, the cleaved nanofabricated chip was mounted 

on the sample holder. Then a TE-polarized optical beam was coupled into the PhC via a focus 

lens, this process being repeated 10 times. In each of these 10 measurements, the coupling point 

was randomly shifted in the horizontal direction of the device, to ensure that the results are not 

dependent on a specific termination profile of the PhC.  
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Figure S15 | Distribution of the hole radius for different levels of disorder in a PhC based 

anisotropic medium. a, low level of disorder. b, medium level of disorder. c, high level of 

disorder.  
 

VIII. Transmission spectrum and group-velocity delay further evidencing the relation 

between the excitation of transverse guided modes and the observed collimation 

Furthermore we performed group velocity delay and transmission spectra measurements 

of the superlattices. For the precision amplitude and phase measurements, coherent swept 

wavelength interferometry is implemented, with 500 fm wavelength precision and time delays of 

up to a few nanoseconds.  
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Figure S16 | Transmission spectra and group velocity delay of the circular-hole superlattice 

(a), with slow-light regime for wavelengths larger than ~ 1560 nm. A mini-transverse-magnetic 

gap around 1500 nm arises from the higher-order modes. b, heptagonal-hole, c, square-hole, and 

d, triangular-hole superlattice. 
 

The interferometry is performed in a dual-stage fiber interferometer with absolute 

hydrogen cyanide H13C14N gas cell reference of the 23 rotational-vibrational absorption lines, 

with optimized power in the local oscillator. We also note that the group-delay measurements are 

taken relative to an input delay, a constant value of which is uniformly used for all superlattices 

for comparison. Shorter superlattices (of 5 superperiods) are also used in the transmission 

measurements to provide sufficient transmission signal for accurate measurements, as shown in 
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Figure S13. The transmission spectrum and group velocity delay of each device are measured 

experimentally within the spectral range of 1480 nm to 1580 nm.  

Slow-light band edges are observed to occur concurrently near the wavelengths of most 

effective collimation ec, and away from the higher-order transverse-magnetic mini-gap around 

1500 nm. In the regular CHS superlattices, this slow-wave propagation arises due to z-cascaded 

evanescently coupled transverse guided modes, further evidencing the relation between the 

transverse guided mode excitation and the observed CHS collimation. 
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