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Theoretical Analysis of Pulse Dynamics in Silicon
Photonic Crystal Wire Waveguides
Nicolae C. Panoiu, James F. McMillan, and Chee Wei Wong, Member, IEEE

Abstract—In this paper, we present a comprehensive theoretical
description of the propagation of optical pulses in 1-D waveguides
consisting of a line defect in a photonic crystal (PhC) slab waveg-
uide made of silicon. We incorporate in our analysis linear optical
effects, such as group-velocity dispersion and optical losses, as well
as nonlinear effects induced by the Kerr nonlinearity of the PhC.
We also include in our model the free-carrier (FC) dispersion and
FC-induced optical losses, and thus study the influence of FCs gen-
erated through two-photon absorption on the pulse dynamics. Our
analysis reveals that important quantities, such as the pulse group
velocity, dispersion coefficients, or the waveguide nonlinear coef-
ficient are strongly affected by the periodic nature of the guiding
structure. Finally, we demonstrate that both linear and nonlin-
ear effects are stronger in the case of slow-light modes, with the
nonlinear effects being enhanced more as compared to the linear
ones.

Index Terms—Coupled-mode analysis, nonlinear wave propaga-
tion, photonic bandgap materials.

I. INTRODUCTION

R ECENTLY, we have witnessed a dramatic growth in the re-
search on passive and active optoelectronic devices based

on Si [1], [2]. There are several factors that have sparked this re-
newed interest in silicon photonics. For example, Si-based pho-
tonic devices can be manufactured using the well-established
low-cost mass-production CMOS process technology, and as
such a seamless integration with current technologies can be
readily achieved. Furthermore, there are several unique proper-
ties of Si that make it an ideal integration medium for functional
photonic devices. First, by employing a Si core (nSi = 3.45)
with air (n = 1) or silica (nSiO2 = 1.45) cladding, one can
achieve a very tight field confinement and, consequently, en-
hanced power flux. Second, related to the just mentioned tight
guiding property, high-index contrast guiding structures pro-
vide a convenient means to strongly enhance nonlinear optical
processes and thus achieve a higher degree of device integra-
tion. This property is particularly important in the case of Si as
the values of its nonlinear optical constants are large as com-
pared to those of many other optical media. Equally important,
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for subwavelength guiding structures, both the linear dispersion
coefficients [3]–[5], such as the effective index, the group ve-
locity (GV), or the group-velocity dispersion (GVD), as well
as the nonlinear effective coefficient [6] depend chiefly on the
geometry of the structure.

Although Si photonics could have a significant impact on
a series of current technologies, it is envisioned that its most
far-reaching applications will be the in area of ultrafast optical
interconnects. Thus, similar to optical-fibers-based communica-
tion systems, which use optical pulses as fundamental carriers
of information, it is envisioned that the backbone of future on-
chip optical networks will consist of Si subwavelength guiding
structures that would generate, modulate, amplify, and transmit
high bit-rate data streams, leading to a monolithic integration of
electronics and photonics in the same Si chip. In this scheme,
the signal processing is performed at the chip level, and there-
fore, Si-based active devices involving nonlinear optical effects
would play a central role. To this end, important nonlinear effects
in Si wire waveguides, such as light amplification [7]–[10], op-
tical modulation [11], [12], self-phase modulation (SPM) [13],
[14], cross-phase modulation (XPM) [15], [16], four-wave mix-
ing [17], [18], or modulation instability [19], have been already
demonstrated (for a review of nonlinear optical phenomena in
Si wires, see [6], [20], and [21]).

One very promising approach to significantly decrease the
footprint of Si-based photonic circuits is to employ nanos-
tructured devices, e.g., waveguides based on photonic crystals
(PhCs). Subwavelength patterning increases the set of param-
eters that determine the properties of a photonic structure, and
thus, it provides an efficient approach to optimize its functional-
ity. In addition, it is possible to tune the geometrical parameters
of the PhC so that it supports slow-light optical modes with GV,
vg , as small as 10−4c. As a result, nonlinear effects are dra-
matically enhanced [22]–[24] and, due to the small nonlinear
length, the footprint of active devices is significantly reduced.
For example, it has been shown recently that in the slow-light
regime, nonlinear effects, such as Raman interaction [25], [26],
third-harmonic generation [27], [28], or superprism effects [29],
can be dramatically enhanced.

Achieving an in-depth understanding of the effects that deter-
mine the dynamics of optical pulses (data carriers) upon propa-
gation in deep subwavelength, Si-based guiding devices is a ma-
jor milestone on the path to a successful on-chip implementation
of the functionality of ultrafast optical interconnects based on
Si. In this paper, we address this important problem and develop
a comprehensive theoretical model that accurately describes the
propagation of optical pulses in Si PhC waveguides (Si-PhCW).
Our analysis accounts both for the dynamics of the optical field
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Fig. 1. Projected band structure of a Si PhC slab waveguide with h = 0.6a and
r = 0.22a. Solid and dashed curves correspond to the fundamental (even) and
second (odd) mode, respectively. Light gray and dark gray regions correspond
to slab guiding modes and leaky modes, respectively.

as well as its interaction with the generated free-carriers (FCs),
and thus provides a complete description of a series of linear
and nonlinear effects pertaining to the optical pulse propagation
in such subwavelength guiding structures.

The paper is organized as follows. In the next section, we de-
scribe the geometry and optical properties of Si-PhCWs. Then,
in Section III, we derive the coupled-mode equations describing
the pulse propagation in Si-PhCW as well as the pulse interac-
tion with the FCs. In Section IV, we apply our general theory
on two particular cases, namely, pulse propagation in a single-
mode waveguide and interaction of two pulses that propagate in
different waveguide modes. In the last section, we summarize
our main results.

II. DEVICE DESCRIPTION: STRUCTURE AND OPTICAL-MODE

CHARACTERISTICS

The waveguide considered in this study consists of a 1-D
line defect in a PhC slab waveguide (see Fig. 1). The PhC
consists of a Si slab with thickness h, perforated by a hexagonal
lattice of holes, the lattice constant and hole radius being a
and r, respectively. The line defect is obtained by filling one
of the rows of holes that are oriented along the KΓ crystal
symmetry axis. The PhC slab is located in the x–z plane, with
the coordinate axes being chosen such that the line defect is
along the z-axis. Then, the spatial distribution of the index of
refraction is described by the function n(r), where n(r) = 1 for
r corresponding to the holes or outside the slab, and n(r) =
nSi ≡ n for r corresponding to the Si regions (note that we
use the same symbol for the spatial distribution of the index of
refraction and the index of refraction of Si, but the meaning of
the symbol should be clear from the context).

The photonic band structure corresponding to the PhC waveg-
uide has been determined by using a numerical method based
on the plane-wave expansion algorithm [30]. We have consid-
ered a PhC waveguide with h = 0.6a and r = 0.22a, and a
supercell is used in our numerical simulations with a size of
6
√

3a × 4a × a along the x-, y-, and z-axis, respectively. The

Fig. 2. Isosurface plots of the field intensity |E(r)|2 corresponding to a mode
with ω̃ = 0.267 (top panel) and a slow-light mode with ω̃ = 0.245 (bottom
panel).

computational step size along the x, y, and z directions was
a
√

3/40, a/20, and a/20, respectively. The results of our nu-
merical simulations, presented in Fig. 1, show that the PhC
waveguide has two guiding modes located in the frequency
bandgap of the PhC slab waveguide, both of these modes being
TE-like modes. The fundamental mode is even upon reflection
transformations with respect to the y–z plane, whereas the other
mode is odd with respect to such symmetry transformations.
Since the spatial distribution of the index of refraction n(r)
of the PhC waveguide is periodic along the z-axis, the Bloch
theorem implies that the mode propagation constant β, which
is oriented along the z-axis, is restricted to the first Brillouin
zone, β ∈ [−π/a, π/a]. Also note that the dispersion curves
shown in Fig. 1 are represented in dimensionless units, namely,
ω̃ = ωa/2πc for frequency and k̃ = βa/2π for the wave vector.
Importantly, the dispersion curves in Fig. 1 do not include the
material dispersion, i.e., n(r) does not depend on ω. The ma-
terial dispersion can be readily incorporated in our analysis by
using a frequency-dependent index of refraction of Si

n2(λ) = ε +
A

λ2 +
Bλ2

1

λ2 − λ2
1
. (1)

For silicon, the material constants in (1) are λ1 = 1.1071 µm,
ε = 11.6858, A = 0.939816 µm2 , and B = 8.10461 × 10−3 .
However, note that for subwavelength guiding structures, the
waveguide dispersion is much larger than the material disper-
sion, and therefore, the latter one can be neglected.

The fact that the mode dispersion is chiefly determined by
the waveguide dispersion can be easily understood if one con-
siders the field distribution of the waveguide modes. Thus, as
Fig. 2 shows, in the case of PhC waveguides, the field profile is
strongly dependent on the mode frequency ω, and therefore, one
expects that the propagation constant changes markedly with ω.
In addition, it can be seen that as the mode approaches the slow-
light regime, its spatial extent increases significantly. The de-
pendence β = β(ω) allows us to determine a set of waveguide
dispersion coefficients that characterize the optical pulse dis-
persion in the waveguide. Thus, β1 ≡ ∂β/∂ω = 1/vg defines
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Fig. 3. Dependence of neff , ng , and β2 on the normalized frequency deter-
mined for a Si-PhCW with h = 0.6a, r = 0.22a, and a = 412 nm.

the GV of a pulse with frequency ω, whereas β2 ≡ ∂2β/∂ω2

describes the pulse GVD. The frequency dependence of these
dispersion coefficients, calculated for the fundamental mode,
are shown in Fig. 3. Among other things, this figure shows that
near the Brillouin edge, the group index ng = c/vg has large
absolute value (vg approaches zero asymptotically); an immedi-
ate consequence of this dependence being that β2 becomes very
large in this slow-light frequency region. On the other hand, the
effective index, defined as neff = βc/ω, shows small frequency
dispersion. Also, note that the GV of this fundamental mode is
negative. It is worth mentioning that this same property of prop-
agating modes in PhCs leads to a negative index of refraction
and negative refraction in these structures.

III. DERIVATION OF COUPLED-MODE EQUATIONS

In this section, we derive the coupled-mode equations de-
scribing the propagation of an optical pulse in a Si-PhCW as
well the pulse interaction with the photogenerated FCs.

A. Modes of PhC Waveguides

The electromagnetic field of guiding modes with frequency ω
is described by the Maxwell equations, which in the frequency
domain are written as

∇× E(r, ω) = iωµH(r, ω) (2a)

∇× H(r, ω) = −iωεc(r, ω)E(r, ω) − iωPpert(r, ω) (2b)

where µ is the magnetic permeability (here, we set µ = µ0),
εc(r, ω) is the dielectric constant of the PhC, E and H are
the electric and magnetic fields, respectively, and Ppert is a
perturbation polarization, which, in our case, is generated by
the FCs and nonlinear (Kerr) effects.

Let us assume that, at the frequency ω, the unperturbed PhC
waveguide (Ppert = 0) has M guiding modes. Based on the
Bloch theorem, the fields of these modes can be written as

Emσ (r, ω) = emσ (r, ω)eiσβm z , m = 1, 2, . . . ,M (3a)

Hmσ (r, ω) = hmσ (r, ω)eiσβm z , m = 1, 2, . . . ,M (3b)

where βm is the mode propagation constant and σ = + (σ = −)
denotes forward (backward) propagating modes; here, we as-
sume that the fields depend on time as e−iω t . The fields emσ

and hmσ are periodic along the z-axis, with period a. Moreover,

the forward and backward propagating modes obey the follow-
ing symmetry relations:

em−(r, ω) = e∗m+(r, ω) (4a)

hm−(r, ω) = −h∗
m+(r, ω) (4b)

and thus, in practice, one has to determine only the forward
propagating modes. In addition, the guiding modes satisfy the
following orthogonality relation:

1
4

∫
S

(emσ × h∗
m ′σ ′ + e∗m ′σ ′ × hmσ ) ·ẑdS = σPm δσσ ′δmm ′

(5)
where Pm is the power carried by the mode m. Note that the
waveguide modes (3) are exact solutions of the unperturbed
Maxwell equation (2), and thus, they should not be confused
with the so-called local modes, which have been used to de-
scribe, e.g., wave propagation in tapered waveguides [31] or
pulse copropagation in 1-D Bragg gratings [32].

B. Perturbations of the PhC Waveguide

When optical pulses propagate in a Si-PhCW, its optical prop-
erties are changed via a local variation of the dielectric constant
δε(r). This perturbative effect, which is described by the po-
larization Ppert in (2b), has two sources: the linear change of
the dielectric constant via generation of FCs and a nonlinearly
induced variation of the index of refraction through the Kerr
effect. The linear contribution to Ppert , δPlin(r), can be written
as

δPlin(r, t) = δεFC(r)E(r, t) (6)

where [3]

δεFC(r) =
(
2ε0nδnFC + i

ε0cn

ω
αFC

)
Σ(r). (7)

Here, Σ(r) is the characteristic function of the domain where
FCs can be generated (Σ = 1 in the domain occupied by Si and
Σ = 0, otherwise). Based on the Drude model, the FC-induced
change of the index of refraction δnFC and FC losses αFC are
given by [33]

δnFC = − e2

2ε0nω2

(
Ne

m∗
ce

+
Nh

m∗
ch

)
(8a)

αFC =
e3

ε0cnω2

(
Ne

µem∗
ce

2 +
Nh

µhm∗
ch

2

)
. (8b)

Here, e is the charge of the electron, µe (µh ) is the electron (hole)
mobility, m∗

ce = 0.26m0 (m∗
ch = 0.39m0 ) is the conductivity

effective mass of the electrons (holes), with m0 the mass of the
electron, and Ne (Nh ) is the induced variation of the electrons
(holes) density (in what follows, we consider Ne = Nh ≡ N ).

The nonlinear contribution to Ppert , δPKerr(r), is described
by a third-order nonlinear susceptibility, χ̂(3)(r), which can be
written as

δPKerr(r, t) = ε0 χ̂
(3)(r)

...E(r, t)E(r, t)E(r, t). (9)

The real part of the susceptibility χ̂(3) describes parametric
processes of photon scattering, e.g., SPM and XPM, which lead
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to a change in the index of refraction, while the imaginary part
of χ̂(3) corresponds to two-photon absorption (TPA). Moreover,
since Si belongs to the crystallographic point group m3m, the
susceptibility tensor χ̂(3) has 21 nonzero elements, of which
only four are independent, namely, χ1111 , χ1122 , χ1212 , and
χ1221 [34]. In addition, for picoseconds pulses considered here,
the frequency dispersion of the nonlinear susceptibility can be
neglected, so that the Kleinman symmetry relations imply that
the last three elements are equal. Also, a recent experiment has
shown that χ̂

(3)
1111 = 2.36χ̂

(3)
1122 [35] within a broad frequency

range, and thus, in the end, the Kerr nonlinearity is characterized
by only one element of the tensor χ̂(3) .

C. Coupled-Mode Equation for the Optical Field

In order to derive the coupled-mode equation describing
pulse propagation in Si-PhCWs, we employ an approach based
on the conjugated form of the Lorentz reciprocity theorem
[3], [36]–[38]. To this end, let us consider two sets of solu-
tions of the Maxwell equation (2), [E1(r, ω1),H1(r, ω1)] and
[E2(r, ω2),H2(r, ω2)], which correspond to the dielectric con-
stant ε1(r, ω1) and ε2(r, ω2), respectively. If we insert the vector
F = E2 × H∗

1 + E∗
1 × H2 in the integral identity∫

S

∇·FdS =
∂

∂z

∫
S

F·ẑdS +
∮

∂S

F·ndl (10)

where S is the transverse section at position z, and use the
Maxwell equation, we arrive at the following relation:

∂

∂z

∫
S

F·ẑdS = −
∮

∂S

F·ndl + iµ0(ω2 − ω1)
∫

S

H∗
1 ·H2dS

+ i

∫
S

(ω2ε2 − ω1ε1)E∗
1 ·E2dS. (11)

Now, as the first set of fields, let us consider a mode of the
unperturbed waveguide (Ppert = 0), which corresponds to the
frequency ω1 = ω̄ (ω̄ is a reference frequency, which can be
chosen to be the central frequency of the pulse):

E1(r, ω̄) =
enρ(r, ω̄)√

Pn

eiρβ̄n z (12a)

H1(r, ω̄) =
hnρ(r, ω̄)√

Pn

eiρβ̄n z . (12b)

Here, and in what follows, a bar over a symbol means that the
corresponding quantity is evaluated at ω̄. Furthermore, as the
second set of fields, we take the actual fields that propagate in the
perturbed waveguide at the frequency ω2 = ω. These fields are
written as a series expansion of the guiding modes at frequency
ω̄, thus neglecting the frequency dispersion of the modes and
the radiative modes. This represents a valid approximation as
long as the optical pulse has a narrow spectrum, i.e., ω is close
to ω̄. Thus, the second set of fields are expanded as

E2(r, ω) =
∑
mσ

amσ (z, ω)
emσ (r, ω̄)√

Pm

eiσβ̄m z (13a)

H2(r, ω) =
∑
mσ

amσ (z, ω)
hmσ (r, ω̄)√

Pm

eiσβ̄m z . (13b)

With the normalization used in (13), the mode amplitudes
amσ (z, ω) are measured in units of

√
W. Moreover, the di-

electric constants in the two cases are ε1 = ε̄c(r) and ε2 =
εc(r, ω) + δε(r, ω), where εc(r, ω) is the dielectric constant of
the unperturbed PhC. If the material dispersion is neglected,
εc(r, ω) = ε̄c(r). Inserting the fields (12) and (13) in (11), and
neglecting the line integral in (11), which cancels for guiding
modes, one obtains the following set of coupled equation:

ρ
∂anρ

∂z
=Bnρanρ +

∑
m �= n
σ �= ρ

Dnρ,mσamσ

+
iωe−iρβ̄n z

4
√

Pn

∫
S

ē∗nρ ·Ppert(r, ω)dS (14)

where

Bnρ =
i

4Pn

∫
S

[µ0(ω− ω̄)|hnρ |2 + (ωεc − ε̄c ω̄)|enρ |2 ]dS

(15a)

Dnρ,mσ =
iei(σβ̄m −ρβ̄n )z

4
√

PnPm

∫
S

[
µ0(ω − ω̄)hmσ ·h∗

nρ

+ (ωεc − ε̄c ω̄)emσ ·e∗nρ

]
dS. (15b)

Note that in deriving the LHS of (14), we have used the orthog-
onality relation (5).

The time-dependent fields are obtained by summing over all
frequency components contained in the pulse spectrum, i.e.,

E(r, t) =
1
2

∫ ∞

0

∑
mσ

amσ (z, ω)
emσ (r, ω̄)√

Pm

ei(σβ̄m z−ωt)dω + c.c.

≡ 1
2
[E(+)(r, t) + E(−)(r, t)] (16a)

H(r, t) =
1
2

∫ ∞

0

∑
mσ

amσ (z, ω)
hmσ (r, ω̄)√

Pm

ei(σβ̄m z−ωt)dω + c.c.

≡ 1
2
[H(+)(r, t) + H(−)(r, t)] (16b)

where E(+)(r, t), H(+)(r, t) and E(−)(r, t), H(−)(r, t) are the
positive and negative frequency parts of the spectrum, respec-
tively. If we introduce now the pulse envelope in the time domain
Anρ(z, t) as

Anρ(z, t) =
∫ ∞

0
anρ(z, ω)e−i(ω−ω̄ )tdω (17)

then the time-dependent fields (16) become

E(r, t) =
1
2

∑
mσ

Amσ (z, t)
emσ (r, ω̄)√

Pm

ei(σβ̄m z−ω̄ t) + c.c.

(18a)

H(r, t) =
1
2

∑
mσ

Amσ (z, t)
hmσ (r, ω̄)√

Pm

ei(σβ̄m z−ω̄ t) + c.c.

(18b)
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Similarly to the fields (16), the time-dependent nonlinear polar-
ization can be written as

δPKerr(r, t) =
1
2

∫ ∞

0
δPKerr(r, ω)e−iω tdω + c.c.

=
1
2
[δP(+)

Kerr(r, t) + δP(−)
Kerr(r, t)]. (19)

Using this equation and (16), one can cast (9) in the following
form:

δP(+)
Kerr(r, t) =

3
4
ε0 χ̂

(3)(r)
...E(+)(r, t)E(−)(r, t)E(+)(r, t).

(20)
Now we transform (14) in the time domain. To begin with, we
expand the coefficients Bnρ and Dnρ,mσ in Taylor series, around
the frequency ω̄, as

Bnρ =
∑
q≥1

∆ωq

q!
∂qBnρ

∂ωq

∣∣∣∣
ω= ω̄

= i
∑
q≥1

β
(q)
nρ

q!
∆ωq (21a)

Dnρ,mσ =
∑
q≥1

∆ωq

q!
∂qDnρ,mσ

∂ωq

∣∣∣∣
ω= ω̄

= i
∑
q≥1

β
(q)
nρ,mσ

q!
∆ωq

(21b)

where ∆ω = ω − ω̄. Then, we multiply (14) by e−i(ω−ω̄ )t and
integrate over all positive frequencies; the result represents the
time-domain coupled-mode equation describing the field en-
velopes Anρ(z, t)

ρ
∂Anρ

∂z
= i

∑
q≥1

β
(q)
nρ

q!

(
i
∂

∂t

)q

Anρ

+ i
∑
q≥1

∑
m �= n
σ �= ρ

β
(q)
nρ,mσ

q!

(
i
∂

∂t

)q

Amσ

+ iω

[
ϑn (z)Anρ +

∑
m �= n
σ �= ρ

ϑnρ,mσ (z)Amσ

]

+
3iωε0

16

∑
�m�σ

Υnρ, �m�σ (z)Am 1 σ1 Am 2 σ2 A
∗
m 3 σ3

. (22)

Here, �m = (m1 ,m2 ,m3), �σ = (σ1 , σ2 , σ3), and the linear and
nonlinear coupling coefficients are given by

ϑn (z) =
1

4Pn

∫
S

δεF C (r)|enρ |2dS (23a)

ϑnρ,mσ (z) =
ei(σβm −ρβn )z

4
√

PnPm

∫
S

δεF C (r)e∗nρ ·emσdS (23b)

Υnρ, �m�σ (z) =
ei(σ1 βm 1 +σ2 βm 2 −σ3 βm 3 −ρβn )z√

PnPm 1 Pm 2 Pm 3

×
∫

S

e∗nρ ·χ̂(3)(r)
...em 1 σ1 em 2 σ2 e

∗
m 3 σ3

dS. (23c)

Note that in deriving (22), we have neglected the frequency dis-
persion of the FC-induced change in the dielectric constant δεFC
and the frequency dependence of the coefficient in the nonlin-
ear term in (14); also, for convenience, in (22), we replaced ω̄
with ω. Moreover, since δεFC and χ̂(3)(r) vanish outside the
domain occupied by the Si slab, the integrals in (23) are, in fact,
performed only over the Si transverse area Snl .

The first two terms on the RHS of (22) describe the mode
dispersion and the frequency dispersion of the mode coupling
constant, respectively. The next two terms correspond to the FC-
induced mode dispersion and the FC-mediated mode coupling,
respectively. Generally, the latter effect is small due to the mode
mismatch; however, this effect can become significant in the case
of coupling between forward and backward propagating modes,
where wave vectors are close to the edge of the Brillouin zone,
i.e., for slow-light modes.

D. Carrier Dynamics

In order to determine the carrier dynamics, we first find the
rate at which e − h pairs are generated optically, via the TPA.
Thus, we multiply (22) by A∗

nρ , multiply the complex conjugate
of (22) by Anρ , and sum them; the result can be cast as

∂

∂z

∑
nρ

|Anρ |2

= −3ωε0

8
Im

[ ∑
nρ, �m�σ

Υnρ, �m�σ (z)×Am 1 σ1 Am 2 σ2 A
∗
m 3 σ3

A∗
nρ

]
.

(24)

The sum on the LHS of (24) represents the total optical power
transferred to the FCs, within the distance dz. To calculate the
corresponding infinitesimal volume dV in which the carriers
are generated as a result of this energy transfer, we use the time
average of the Poynting vector to define the effective area of the
field inside the Si slab

Anl(z) =
[
∫

Sn l
|〈E(r, t) × H(r, t)〉t |dS]2∫

Sn l
|〈E(r, t) × H(r, t)〉t |2dS

. (25)

Then, dV = Anldz. In (25), 〈f〉t means the time average of
f . Using (18) and assuming that Anρ varies much slower than
e−iω t , one can cast (25) in the following form:

Anl(z) =

[ ∑
nρ

|An ρ |2
Pn

∫
Sn l

|Re(enρ × h∗
nρ)|dS

]2

∑
nρ

|An ρ |4
P 2

n

∫
Sn l

|Re(enρ × h∗
nρ)|2dS

. (26)

In practice, it is rather cumbersome to work with the expression
(26), so that, since the waveguide modes are primarily concen-
trated within the domain of the missing row of holes, we can
simply approximate Anl ≈ ah. In addition, in the next section,
we will show that in cases of practical interest, (26) simplifies
considerably.

Since the electron-hole pairs are generated via TPA, for the
creation of each such pair, it is required an amount of energy that
is equal to 2h̄ω. As a result, the carriers dynamics is governed
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by the following rate equation:

∂N

∂t
= −N

τc
+

3ε0

16h̄Anl
Im

×
[ ∑

nρ, �m�σ

Υnρ, �m�σ (z)×Am 1 σ1 Am 2 σ2 A
∗
m 3 σ3

A∗
nρ

]
(27)

where τc is the relaxation time. Recent experimental work has
shown that τc is of the order of 1 ns [39], although numerical
simulations of carrier diffusion suggest that it can be as small
as 10 ps [40].

The system of coupled equation (22) and (27) fully describes
the dynamics of the optical field and FCs, and represents the
main result derived in this paper.

IV. APPLICATION TO SINGLE-MODE WAVEGUIDES AND

COUPLING OF TWO MODES

In this section, we will analyze in more detail two cases of
practical interest, namely, the pulse propagation in a single-
mode Si-PhCW and the interaction between two pulses propa-
gating in different PhC waveguide modes.

A. Single-Mode Waveguide

If the waveguide supports a single mode, the optical field
is described by a single envelope function A(z, t). Moreover,
using (15a) and (21a), we write the dispersion coefficients as

β(1)(z) =
1

4P

∫
S

[
µ0 |h(r)|2 +

∂

∂ω
(ωεc)|e(r)|2

]
dS (28a)

β(n)(z) =
∂n−1β(1)(z)

∂ωn−1 , n ≥ 2. (28b)

We can use the relationship between the mode power P and the
mode energy W to relate the parameters β(1)(z) and β(2)(z)
to the GV and GVD coefficients, respectively. Thus, for a PhC
mode, the following relations hold:

P =
We + Wm

a
vg =

2We

a
vg =

2Wm

a
vg (29)

where

We =
1
4

∫
Vc e l l

∂

∂ω
(ωεc)|e(r)|2dV (30a)

Wm =
1
4

∫
Vc e l l

µ0 |h(r)|2dV (30b)

and we used the fact that the mode contains the same amount of
electric and magnetic energy. Then, (28) become

β(1)(z) =
δ(z)
vg

(31a)

β(n)(z) =
∂n−1

∂ωn−1

[
δ(z)
vg

]
, n ≥ 2 (31b)

where

δ(z) =
a

∫
S

[
µ0 |h(r)|2 + ∂

∂ω (ωεc)|e(r)|2
]
dS∫

Vc e l l

[
µ0 |h(r)|2 + ∂

∂ω (ωεc)|e(r)|2
]
dV

. (32)

Fig. 4. Dependence of Si-PhCW parameters on diatance z determined for
the fast- and slow-light modes in Fig. 2. Dashed and solid curves in (a)–(c)
correspond to the fast- and slow-light modes, respectively. (d) Dashed and solid
curves correspond to the slow-light mode, and dotted and dashed-dotted curves
to the fast-light mode.

Note that (32) shows that the average of δ(z) over one lattice
cell is equal to 1, i.e.,

〈δ〉z ≡ 1
a

∫ z+a

z

δ(z′)dz′ = 1. (33)

Moreover, as (28) shows, if we neglect the frequency dispersion
of δ, the higher order dispersion coefficients can be written as
β(n)(z) = βnδ(z). In Fig. 4(a), we plot the function δ(z), calcu-
lated for a slow-light mode, with vg = c/35 and ω̃ = 0.245, and
a mode with vg = c/4.125 and ω̃ = 0.267. Note that the varia-
tions of δ(z) are significantly larger in the case of the slow-light
mode, as compared to the regular mode, a result that is chiefly
explained by the increased spatial extent of the slow-light mode
(see Fig. 2).

Similar to the case of uniform Si waveguides [6], we introduce
a parameter κ(z) that characterizes the overlap between the
mode and the Si domain, where FCs are generated as

κ(z) =
an2

∫
Sn l

|e(r)|2dS∫
Vc e l l

∂
∂ω (ωn2

c )|e(r)|2dV
(34)

where Vcell is the volume of the primitive cell. Using this def-
inition and substituting (7), (29), and (30a) in (23a), we obtain
the following relation:

ϑ(z) =
(

δnF C

nvg
+ i

cαF C

2nωvg

)
κ(z). (35)

The z-dependence of the parameter κ is presented in Fig. 4(b);
again, a much stronger variation of κ is observed in the case of
the slow-light mode.

The nonlinear effects are characterized by the coefficients
Υnρ, �m�σ (z) defined by (23c), which, in the case of a single
mode, reduce to a single parameter. Thus, substituting (29) in
(23c), one obtains

υ(z) =
a2

4W 2
e v2

g

∫
Sn l

e(r)∗·χ̂(3)(r)
...e(r)e(r)e∗(r)dS

=
4

ε2
0a

2v2
g

Γ(z). (36)
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Here, Γ(z) plays the role of an effective nonlinear susceptibility
and is defined as

Γ(z) =
a4

∫
Sn l

e(r)∗·χ̂(3)(r)
...e(r)e(r)e∗(r)dS∫

Vc e l l

∂
∂ω (ωn2

c )|e(r)|2dV
. (37)

Note that for Si-PhCWs fabricated along the [11̄0] direction, the
crystal principal axes are different from the coordinate axes in
which the fields are calculated, so that, in order to calculate Γ(z)
in (37), one has to transform the tensor χ̂(3) into the coordinate
system of the PhC [3]

χ̂
(3)
c,ijkl = R̂iα R̂jβ R̂kγ R̂lδ χ̂

(3)
αβγδ (38)

where R̂ is the corresponding rotation matrix. This procedure
can also be important when the waveguide is formed along
directions other than the KΓ symmetry axis of the PhC.

Now we can write down the equation that governs the pulse
dynamics in the particular case of a single PhC waveguide. Thus,
using (31), (35), and (36), we can cast (22) in the following form:

i

[
∂A

∂z
+

δ(z)
vg

∂A

∂t

]
− β2δ(z)

2
∂2A

∂t2
= −ωδnF C

nvg
κ(z)A

− i
cαF C

2nvg
κ(z)A − γ(z)|A|2A (39)

where

γ(z) =
3ωΓ(z)
4ε0a2v2

g

(40)

is the effective nonlinear parameter of the waveguide. The real
(γ′) and imaginary (γ′′) parts of γ(z) characterize the SPM
and TPA, respectively. Note that in the limit case of waveg-
uides whose transverse section does not depend on z, (40), in
conjunction with (36), reduces to a previously derived formula
that characterizes the effective optical nonlinearity of uniform
Si wire waveguides [6]. In Fig. 4(c), we plot the z-dependence
of γ′, calculated for a slow-light mode and a mode for which
vg <∼ c. Importantly, this figure shows that the effective nonlin-
earity probed by the slow-light mode is almost two orders of
magnitude larger than that of the fast-light mode.

Equation (27) that governs the FCs dynamics has a simple
form in the case of single-mode waveguides. Thus, combining
(27) and (36), we obtain the following equation:

∂N(z, t)
∂t

= −N(z, t)
τc

+
3Γ′′(z)

4ε0 h̄a2v2
g Anl(z)

|A(z, t)|4 (41)

where

Anl(z) =
{
∫

Sn l
|Re [e(r) × h(r)∗]|dS}2

∫
Sn l

|Re [e(r) × h(r)∗] |2dS
. (42)

The z-dependence of the area Anl , expressed in units of a2 , is
shown in Fig. 4(d). In agreement with the mode profiles shown
in Fig. 2, the effective transverse area in which FCs are generated
is larger in the case of the slow-light mode. For comparison, we
also show in Fig. 4(d) the effective area of the mode Aeff defined
by (42), but with the integration area Snl replaced by the entire
area S. As expected, Aeff > Anl .

Fig. 5. Top two panels: the temporal and spectral pulse profile versus distance
z. Bottom panels show the input (red) and output (blue) pulses, both in the time
and wavelength domains. The pulse GV vg = c/4.125, which corresponds to
ω̃ = 0.267. The Si-PhCW has h = 0.6a and r = 0.22a, with a = 421 nm. The
pulsewidth T0 = 2 ps, the pulse peak power P0 = 3 W, and β2 = 10 ps2 /m.

Fig. 6. Same as in Fig. 5, but for a slow-light mode with vg = c/35 and
ω̃ = 0.245. The pulsewidth T0 = 2 ps, the pulse peak power P0 = 3 W, and
β2 = 104 ps2 /m.

Among other things, (39) and (41) suggest that the GV of
the pulse would have a strong influence on the pulse dynamics,
especially at large peak power. Thus, the linear terms in (39) are
proportional to v−1

g , which implies that the FC-induced losses
are proportional to v−1

g , whereas the nonlinear term depends
on the GV as v−2

g . However, as the peak power increases, this
picture becomes more complicated. As (41) shows, the amount
of FCs generated via TPA is proportional to v−2

g , and thus, the
FC-induced losses become proportional to v−3

g [see (8b)]. To
illustrate this strong dependence of the pulse dynamics on GV,
we show in Figs. 5 and 6, the evolution of a pulse that prop-
agates in a Si-PhCW in the fast-light and slow-light regimes,
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respectively. In these numerical simulations, the spatial integra-
tion step was a/20 and the relaxation time τc = 0.5 ns. In both
cases, the pulse parameters, i.e., the pulsewidth T0 and pulse
peak power P0 , are the same. These figures show that, in the
fast-light regime, the pulse remains almost unchanged during
the propagation, except for a small decrease in amplitude due
to the FC losses and TPA. However, in the slow-light regime,
the pulse shape changes dramatically both in the time as well
as the frequency domain. Thus, since in this case, β2 is three
orders of magnitude larger than in the previous case, the tem-
poral width of the pulse increases significantly. In addition, the
pulse decay is much stronger in this case, which means that the
optical losses due to the generation of FCs and TPA are larger.
Importantly, in the slow-light regime, the spectrum of the pulse
shows a series of oscillations, a signature of the phase modula-
tion induced by the FC dispersion and the Kerr effect. Indeed,
the nonlinear coefficient γ of the slow-light mode is two orders
of magnitude larger than in the case of the fast mode, so that in
this case, we expect that the pulse is much strongly influenced
by the nonlinear effects and the increased amount of generated
FCs.

It is worth mentioning that (39) is similar to the equation de-
scribing pulse propagation in optical fiber links whose disper-
sion and nonlinearity varies periodically with distance. Drawing
on this similarity, it is expected that one can use Si-PhCW to
observe experimentally optical solitons. Specifically, since the
characteristic nonlinear and dispersion lengths are much larger
than a, the corresponding solitons will be similar to the so-called
guiding-center solitons [41]–[44].

B. Two-mode Coupling

Two cases are of interest when considering the coupling of
two waveguide modes, namely, coupling of two modes that co-
propagate in the same direction and the coupling of two coun-
terpropagating modes. Here, we restrict our analysis to the first
case; the latter one can be treated in a similar way.

To this end, we note that the formulas for the mode parameters
introduced in the previous section, which describe the mode self-
interaction, remain unchanged. Moreover, since the two modes
propagate in the same direction, we can choose ρ1 = ρ2 = 1.
Then, the coefficients that describe the frequency dispersion of
the mode coupling and the FC-induced mode coupling can be,
respectively, writtenas

β
(1)
12 (z) =

ei(β1 −β2 )z

4
√

P1P2

∫
S

[
µ0h1 ·h∗

2 +
∂

∂ω
(ωεc)e1 ·e∗2

]
dS

(43a)

ϑ12(z) =
ei(β1 −β2 )z

4
√

P1P2

∫
S

δεF C (r)e∗1 ·e2dS. (43b)

From symmetry considerations, it follows that β
(1)
12 = β

(1)∗
21 ;

also, ϑ21 is obtained by swapping in (43b) the indices 1 and 2.
Moreover, the nonlinear effects are determined by the coeffi-
cients υ, which in the particular case of two coupled modes, for

the mode 1, are given by the following relations:

Υ1111(z) =
1

P 2
1

∫
Sn l

e∗1 ·χ̂(3) ...e1e1e∗1dS (44a)

Υ1112(z) =
ei(β1 −β2 )z

P1
√

P1P2

∫
Sn l

e∗1 ·χ̂(3) ...e1e1e∗2dS (44b)

Υ1121(z) =
e−i(β1 −β2 )z

P1
√

P1P2

∫
Sn l

e∗1 ·χ̂(3) ...e1e2e∗1dS (44c)

Υ1122(z) =
1

P1P2

∫
Sn l

e∗1 ·χ̂(3) ...e1e2e∗2dS (44d)

Υ1221(z) =
e−2i(β1 −β2 )z

P1P2

∫
Sn l

e∗1 ·χ̂(3) ...e2e2e∗1dS (44e)

Υ1222(z) =
e−i(β1 −β2 )z

P2
√

P1P2

∫
Sn l

e∗1 ·χ̂(3) ...e2e2e∗2dS. (44f)

Because of the symmetry of these equation, Υ1121 = Υ1211
and Υ1122 = Υ1212 . The coefficients for the second mode are
obtained from (44) by swapping the indices 1 and 2.

With these definitions, the coupled-mode equation that de-
scribe the dynamics of the optical fields can be written as

i

[
∂A1

∂z
+

δ1(z)
vg,1

∂A1

∂t

]
− β2,1δ1(z)

2
∂2A1

∂t2
+ iβ

(1)
12 (z)

∂A1

∂t

= −ω [ϑ1(z)A1 + ϑ12(z)A2 ] −
3ωε0

16
[
Υ1111(z)|A1 |2A1

+ 2Υ1122(z)|A2 |2A1 + 2Υ1121(z)|A1 |2A2 + Υ1112(z)A2
1A

∗
2

+ Υ1221(z)A2
2A

∗
1 + Υ1222(z)|A2 |2A2 ] (45a)

i

[
∂A2

∂z
+

δ2(z)
vg,2

∂A2

∂t

]
− β2,2δ2(z)

2
∂2A2

∂t2
+ iβ

(1)
21 (z)

∂A2

∂t

= −ω [ϑ2(z)A2 + ϑ21(z)A1 ] −
3ωε0

16
[
Υ2222(z)|A2 |2A2

+ 2Υ2211(z)|A1 |2A2 + 2Υ2212(z)|A2 |2A1 + Υ2221(z)A2
2A

∗
1

+ Υ2112(z)A2
1A

∗
2 + Υ2111(z)|A1 |2A1 ]. (45b)

A similar system of equation, which describes the pulse prop-
agation in deep nonlinear 1-D gratings, has been derived using
the k·v expansion [45]. Note that the first two nonlinear terms in
(45), which describe the SPM and XPM effects, also appear in
the standard coupled-mode equation describing pulse propaga-
tion in low-index contrast gratings, whereas the last four terms
are specific to deep nonlinear gratings, such as a Si-PhCW.
However, in practical applications, not all nonlinear terms in
(45) will affect the pulse propagation, as not all of them are
phase-matched. Finally, the carriers dynamics is governed by
(27), with the coefficients Υ defined by (44).

In the case of coupling between counterpropagating waves,
one has to take into account that ρ1 = −ρ2 = 1, which, in turn,
implies that in this case, the phase factors in (43) and (44) are
obtained by making the transformation β2 → −β2 . Moreover,
since the integrals in (43) and (44) are periodic functions of z,
their Fourier series expansion shows that strong linear and non-
linear mode coupling can be achieved if the mode propagation
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constant is close to the edge of the first Brillouin zone, as in that
case, the Bragg condition β = π/a is readily satisfied.

V. CONCLUSION

In conclusion, we have presented a rigorous derivation of the
coupled-mode equation that describe the pulse propagation in
Si-PhCWs. We have included in our analysis linear optical ef-
fects induced by the waveguide dispersion and mode coupling,
and studied their influence on the pulse propagation. In addition,
we have incorporated perturbatively in our model linear effects
due to the generated FCs, as well as the optical nonlinearity of
the Si-PhCW. We have applied the general theoretical model de-
veloped here to two particular cases, namely, pulse propagation
in a single-mode Si-PhCW and the mutual interaction of two
pulses propagating in different modes. One important conclu-
sion of this analysis is that the pulse dynamics in the slow-light
and fast-light regimes shows remarkably different characteris-
tics. It should also be noted that the theoretical model presented
here can be easily extended to pulses that propagate at different
frequencies, in which case one can investigate effects such as
stimulated Raman scattering, mode switching, or wavelength
conversion.
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