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Enhanced stimulated Raman scattering in
slow-light photonic crystal waveguides
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We investigate for the first time, to our knowledge, the enhancement of the stimulated Raman scattering in
slow-light silicon-on-insulator (SOI) photonic crystal line defect waveguides. By applying the Bloch–Floquet
formalism to the guided modes in a planar photonic crystal, we develop a formalism that relates the inten-
sity of the downshifted Stokes signal to the pump intensity and the modal group velocities. The formalism is
then applied to two prospective schemes for enhanced stimulated Raman generation in slow-light photonic
crystal waveguides. The results demonstrate a maximum factor of 104 �66,000� enhancement with respect
to SOI channel waveguides. © 2006 Optical Society of America
OCIS codes: 130.2790, 290.5910, 250.5300, 230.7370.
Subwavelength silicon nanostructures such as photo-
nic crystals and high-index-contrast photonic inte-
grated circuits offer the opportunity to manipulate
the propagation of light at subwavelength scales.
Moreover, the inherent ease of integrating the silicon
photonics platform with complementary metal-oxide
semiconductor foundry integrated circuits offers un-
precedented bandwidth per unit cost and distance in
optical data communications.

Silicon, however, is at an intrinsic disadvantage for
optical amplification and lasing due to its indirect
bandgap and nonexistent second-order nonlinear re-
sponse. Recent work has demonstrated that stimu-
lated Raman scattering (SRS) in single-crystal silicon
channel waveguides is a feasible means to achieve
amplification and lasing via optical pumping.1–5 This
is due to the intrinsically large Raman gain coeffi-
cient in silicon (being 103–104 times greater than for
silica), and silicon nanostructures offering the benefit
of high optical confinement due to the high-index con-
trast of silicon with air or silicon oxide. While still re-
quiring an optical pump and possessing limited gain
bandwidth, SRS can serve as an ultracompact on-
chip gain medium at desired telecommunications fre-
quencies. In order to enhance the intrinsic Raman
gain of silicon, SRS in optical nanostructures exhib-
iting slow group velocities is currently being ex-
plored. Enhanced Raman scattering has been ob-
served in bulk hollow-core slow-light guided-wave
structures,6 and has also recently been suggested for
photonic crystal (PhC) defect nanocavities.7 In addi-
tion, a semiclassical model of Raman scattering in
bulk photonic crystals has been introduced.8 In this
Letter we demonstrate theoretically for the first time
the explicit enhancement of SRS in a slow-light pho-
ton crystal waveguide (PhCWG) through a four-
wave-mixing formalism from the computed modes of
the line-defect waveguide. The silicon PhCWG stud-
ied here, made by removing a single row in a hexago-
nal lattice of holes, denoted as “W1 PhCWG,” and its
projected band structure can be seen in Fig. 1. This
structure supports two tightly confined modes with
small group velocities, as illustrated by the two
bands within the bandgap, with frequencies below
the light line. The field distribution of these two

modes, as computed through the plane wave expan-
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sion method,9 is illustrated in Fig. 2. The strong sub-
wavelength modal confinement of the high-index-
contrast PhCWG leads to increased field intensities
in the silicon gain media, permitting increased non-
linear interactions. In addition to increased field in-
tensities from high-index confinement, there is addi-
tional SRS enhancement from the small group
velocities of the PhCWG propagating modes. Physi-
cally this enhancement originates from the effective
long light–matter interaction times at small group
velocities. Photon localization is observed at the band
edge; the photon experiences multiple scattering pro-
cesses and moves very slowly through the material
structure. The guided bands of a 2D PhCWG can be
designed to be as flat as desired �vg�d� /dk� for slow-
light behavior, and group velocities as low as
10−2c–10−3c have been demonstrated.10,11

In SRS for silicon, an incident photon interacts
with the LO and TO phonons. The strongest Stokes
peak arises from the single first-order Raman phonon
at the center of the Brillouin zone. The generation of
the Stokes photons can be understood classically as a
third-order nonlinear effect; this formalism has been
used to model SRS in silicon-on-insulator (SOI)
waveguides, both in cw12 and pulsed13 operations. It
can be modeled in bulk materials as a degenerate

Fig. 1. Projected band structure of silicon W1 PhCWG in-
dicating pump and Stokes frequencies. Top, scheme 1, r /a
=0.29. Bottom, scheme 2, r /a=0.22. h /a=0.6 in both cases.

Inset, W1 PhCWG.
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four-wave-mixing problem involving the pump and
Stokes beams. The important material parameter is
the third-order nonlinear Raman susceptibility, �R.
For silicon, at resonance, �R is defined by the compo-
nents �ijij

R =−i�R=−i11.2�10−18 m2 V−2�i , j=1,2,3�.12

An additional symmetry, imposed by the crystal point
group (m3m for Si), is �iijj

R =0.5�ijij
R .14 These compo-

nents and their permutations as defined by the crys-
tal point group define the SRS in a silicon crystal. For
our purpose we shall consider scattering in silicon
along the �11̄0� direction since practical devices are
fabricated along this direction due to the favorable
cleaving of silicon along this direction.

For bulk silicon, the evolution of the Stokes beam
is defined by the following equation:

dIs

dz
= −

3�s Im��eff
R �

�0c2npns
IpIs, �1�

where �eff
R =�ijkl�ijkl

R �̂i
*�̂j�̂k�̂l. Here �̂ and �̂ are unit

vectors along the polarization directions of the pump
and Stokes beams, respectively. Equation (1) de-
scribes the gain of the Stokes intensity, Is. It shows
an intrinsic dependence on the polarization and the
phonon selection rules through �R, and the intensity
of the pump beam by Ip. The bulk solution also de-
scribes SRS in dielectric waveguides, where �eff

R is av-
eraged over the waveguide mode field distribution.

A PhCWG presents a very different field distribu-
tion from the bulk or dielectric waveguide case. As
shown in the computed modal profiles of Fig. 2, the
mode differs from that of a conventional channel
waveguide in that it exhibits a periodic variation in
the direction of propagation. We introduce the modal
distribution of the pump and Stokes modes in a
Bloch–Floquet formalism,

En,kn
�r,�n� = En,kn

�r,�n�exp�ik��n� · r�, �2�

where n is a mode index �n=p ,s�, kn=k��n� is the
mode wave vector, En,kn

�r ,�n� is the modal distribu-
tion within a unit cell of the PhC, defined in Fig. 2,
and obeys the Bloch boundary condition En,kn

�r
+� ,�n�=En,kn

�r ,�n�. � defines the length of the unit
cell in the direction of propagation; for a W1 wave-
guide this equals the PhC lattice constant a. To de-
velop the evolution, we employ the Lorentz reciproc-

13,15

Fig. 2. Calculated bound states of a hexagonal lattice W1
PhCWG with defect modes separated by the LO–TO optical
phonon (scheme 1). (a) Stokes. (b) Pump.
ity theorem,
�

�z�A
�En,kn

* � H̃ + Ẽ � Hn,kn

* � · êzdA

= i��
A

PR · En,kn
dA. �3�

This relates the unperturbed linear PhCWG modes of
the pump or Stokes wavelengths, �En,kn

,Hn,kn
	, to

those of the nonlinearly induced fields, �Ẽ ,H̃	. The
envelopes of the fields are defined as

Ẽ�r� = us�z�Es,ks
�r,�s� + up�z�Ep,kp

�r,�p�, �4a�

H̃�r� = us�z�Hs,ks
�r,�s� + up�z�Hp,kp

�r,�p�, �4b�

with the assumption that the change in the pump
and Stokes field amplitudes, up�z� and us�z�, respec-
tively, over the length of the unit cell of the wave-
guide is very small ���dup,s /dz��1�. Taking the fields
as defined in Eq. (4) and substituting into Eq. (3), we
derive the dependence of the Stokes amplitude on the
longitudinal distance, z,

dus�z�

dz
=

i�s

4Ps�
�

V0

PR�r,�s� · Es,ks
�r,�s�dV, �5�

where Ps is the mode power and PR�r ,�s�
=6�0�̂R
Ep,kp

* �r�Ep,kp
�r�Es,ks

�r� �up�2us. The integral
in Eq. (5) is taken over the volume �V0� of the unit
cell of the mode. Furthermore, the group velocity is
expressed by the following equation15:

vg
p,s =

Pp,s�

1
2�0�

V0

��r��Ep,s�r,�p,s��2dV

. �6�

With Eqs. (4) and (6), and by rewriting Eq. (5) in
terms of the intensity, an equation for the intensity of
the Stokes mode inside the PhCWG is obtained,

dIs

dz
= −

3�s

�0vg
pvg

s 	IpIs, �7�

where

	 =

�Aeff Im��
V0

E*��s� · �̂R 
 E*��p�E��p�E��s�dV
�1

2�V0

��r��E��p��2dV�1

2�V0

��r��E��s��2dV
�8�

is the effective susceptibility. Here, the effective area
Aeff is defined as the average modal area across the

volume V0,
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Aeff
2 =

��
V0

x2�E��s��2dV���
V0

y2�E��s��2dV�
��

V0

�E��s��2dV�2 . �9�

The final equation, Eq. (7), shows the explicit inverse
dependence the Stokes mode amplification has on the
group velocities of the pump and Stokes modes.
When compared to Eq. (1), which shows an inverse
dependence on c2, it can be seen that equivalent Ra-
man gains at lower pump powers �Ip� can be acheived
in a PhCWG at frequencies with low group velocities.

Table 1 shows the results of Eq. (7) as being ap-
plied to two different PhCWG schemes for SRS. The
group velocities are calculated from the slope of the
projected band structure. The first (scheme 1) in-
volves utilizing both the guided modes of the W1
waveguide; odd parity is the pump mode and even
parity is the Stokes mode. The wavelength separa-
tion of the modes at the edge of the Brillioun zone is
matched to the LO–TO frequency separation of the
pump and Stokes beams [15.6 THz in Si (Ref. 16)].
The second (scheme 2) utilizes a wide bandwidth
PhCWG17 for the Stokes and pump modes to exist
both in the fundamental mode and below the light
line. The arrows in Fig. 2 indicate the pump and
Stokes frequency locations for both schemes.

From the results of Table , the Raman gain, which
is proportional to 	 /vg

pvg
s, is enhanced by up to ap-

proximately 104 (scheme 1,66 000; scheme 2,86)
times compared to bulk Si based on a comparison of
the respective group velocities. The results in Table 1
also show a 	 value of the same order with a conven-
tional SOI waveguide.13 In addition, we note a reduc-
tion in 	 in scheme 1 as compared to scheme 2, due to
the lower modal overlap. However, the single mode
(scheme 2) operation has the disadvantage that only
the Stokes mode, is at low group velocities for en-
hanced SRS.

The above results highlight the benefits of SRS en-
hancement through slow-light interactions in com-
pact PhCWG schemes. This approach can be readily
extended to include two photon and bulk free carrier
absorption effects13 by the addition of loss terms to
Eq. (7), which may limit the effective Raman gain in
PhCWGs. These effects, in the experimental realiza-
tion of silicon SRS amplification and lasing in slow-
light PhCWGs, can be surmounted with pulsed-laser
operation4 or p-i-n diodes5 to sweep the free carriers.

In addition, we note recent theoretical18 and
experimental19 studies of PhCWGs, which show that
slow group velocity modes exhibit increased scatter-
ing losses. These losses are from coupling and intrin-

Table 1. Group Velocity and Effective Susceptibility
in PhCWG Schemes

Scheme vg
s vg

p 	��10−19 m2 V−2�

1 0.00017c 0.0077c 0.55
2 0.0041c 0.24c 2.02
sic (backscatter) reflection. Coupling into slow-light
modes is currently the dominant loss experimentally,
although this can in principle be reduced through
careful adiabatic coupling between the PhCWGs and
input–output channel bus waveguides. Moreover,
with thorough attention to fabrication disorder, re-
flection losses in PhCWG are suggested to be compa-
rable with index-guided waveguides.20 These scatter-
ing losses can thus potentially be smaller than the
enhanced SRS gain discussed, permitting the possi-
bility for compact silicon Raman amplifiers and la-
sers. We also note that, for the same desired Raman
gain, the device length is reduced by �c /vg�2, allowing
compact integration for high-density photonic cir-
cuits.
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