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Tracking neurons recorded from tetrodes across time
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Abstract

Tetrodes allow isolation of multiple neurons at a single recording site by clustering spikes. Due to electrode drift and perhaps due to
time-varying neuronal properties, positions and shapes of clusters change in time. As data is typically collected in sequential files, to track
neurons across files one has to decide which clusters from different files belong to the same neuron. We report on a semi-automated neuron
tracking procedure that uses computed similarities between the mean spike waveforms of the clusters. The clusters with the most similar
waveforms are assigned to the same neuron, provided their similarity exceeds a threshold. To set this threshold, we calculate two distributions:
of within-file similarities, and of best matches in the across adjacent file similarities. The threshold is set to the value that optimally separates
the two distributions. We compare different measures of similarity (metrics) by their ability to separate these distributions. We find that these
metrics do not differ drastically in their performance, but that taking into account the cross-channel noise correlation significantly improves
performance of all metrics. We also demonstrate the method on an independent dataset and show that neurons, as assigned by the procedure,
have consistent physiological properties across files.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A tetrode is a set of four closely located single electrodes
made of very thin wire, each about 10–15�m in diame-
ter. The typical distance between the centers of the tips
is about 20–30�m. In comparison with traditional extra-
cellular electrodes, tetrodes provide more information per
spike and thus allow isolation of more neurons with higher
reliability (Gray et al., 1995). To sort spikes from different
neurons, spike features such as first peak amplitude, width,
peak-to-peak amplitude, principal components, etc., are
measured on each of the four channels. Consider a case in
which only amplitudes of the first peak at each channel are
used. Then every tetrode spike can be described by four
values and thus corresponds to a point in a four-dimensional
space. One of the natural ways to visualize this space is to
use its projections on different planes. A standard choice
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of the projections is six planes given by all possible pairs
of the axes: (A1, A2), (A1, A3), (A1, A4), (A2, A3), (A2,
A4), (A3, A4). Fig. 1 shows the typical scatter plot of spike
amplitudes, with points colored according to their assigned
clusters.

As recordings at a single site can be quite long (several
hours and more), drift in the amplitudes and shapes of spikes
recorded at a site is often observed (Lewicki, 1998; Snider
and Bonds, 1998). This drift makes spike clustering much
harder since it “smears” the clusters and effectively increases
their size, which can lead to significant cluster overlap and
thus make the clusters inseparable. This effect is much less
pronounced at shorter time-scales of 10–20 min or less. So
even in the case when the clusters obtained from a long
recording are completely inseparable, smaller chunks of the
same recording might produce quite distinct clusters. For a
number of practical reasons, recordings at a site in acute
cortical recording are typically done in chunks of less than
20 min duration (which correspond to computer data files),
and the clusters can be considered stationary within each
file. Fig. 2 illustrates the effect of electrode drift at a single
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Fig. 1. An example of tetrode spike clustering. For each tetrode spike, four amplitudes of the first peak (A1–A4, one per channel) were measured and
each spike was represented by a point in the four-dimensional space corresponding to the measured amplitudes. The projections of points in this space
onto the six planes defined by the coordinate axes are shown. The points are colored according to the assigned cluster. Spikes that are not clusterable
(mostly low-amplitude) are not shown.

Fig. 2. An example of cluster drift. The centers of the clusters are shown
for projectionA1–A3 (seeFig. 1) as they were changing in time. Different
clusters are labeled by different shapes and the numbers inside the shapes
correspond to the consecutive file number at the recording site (total eight
files, of 2–10 min duration). Total time at the site was 1 h and 40 min.

site over an interval of 1 h and 40 min. During this time eight
files were recorded, with the duration of each file varying
between 2 and 10 min. The positions of cluster centers ob-
tained from each file are labeled with the file number, and
the corresponding clusters across files (as assigned by the
methods to be described in this paper) are coded with sym-
bols and colors.

As a result of “per file” clustering one gets information
about cell activity in each file, but the information on the cor-
respondence of clusters across files is missing. A researcher
can try to match the clusters across files visually, e.g. by
comparing cluster shapes and positions across files that are
adjacent in time. This method is highly subjective, unreli-
able, and time-consuming. Another problem is that the num-
ber of clusters may change from file to file. A cluster can
disappear due to electrode drift or because it corresponds to
a neuron that did not respond to the stimuli presented in a
given file. The same effects can also lead to appearance of
new clusters. Strictly speaking, recording in the presence of
electrode drift cannot be called “single site recording”, but
what really matters is the ability to record from the same
set of neurons for a long enough period. The procedure sug-
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gested in this paper makes it possible to track neurons across
files recorded at the same site in a systematic and objective
way.

2. Methods

2.1. Surgery and anesthesia

We recorded from area 17 of 9 anesthetized adult cats.
In the beginning of the experiment a cat was anesthetized
using isoflurane carried by oxygen (typical concentration
1.5–5% for 1 l/min flow). After reaching the proper level
of anesthesia and for the remainder of the experiment
the animal was anesthetized with pentobarbital (to effect,
25 mg/kg surgical dose, IV), and isoflurane was discontin-
ued. The animal was mounted in a stereotax, a craniotomy
was made above the visual cortex, and the dura in that
area was removed. In some cases the brain surface was
covered with agar to reduce tissue pulsation. After the
surgery the animal was paralyzed with a continuous infusion
of gallamine (10 mg/(kg h) IV) or pancuronium bromide
(0.088 mg/(kg h) IV) diluted in Ringer solution with 2.5%
dextrose (5–10 ml/(kg h)), and was actively ventilated with
a 1:1 mixture of oxygen and nitrous oxide. Every 6–12 h at-
ropine sulfate (0.04 mg/kg2) was given to reduce secretions,
and dexamethasone (2 mg/kg2 or IV) was given to control
edema. To prevent onset of infection, cefizox (10 mg/kg)
was given at 12 h intervals. Heart rate, EKG, EEG, respira-
tory rate, rectal body temperature, O2 saturation, expiratory
CO2, and lung pressure were monitored and logged on a
per minute basis using an automated system of our design.

Contact lenses were chosen to provide the best focus at
a distance of 35–40 cm by reflecting the optic disk onto a
white background using a fiber optic light source.

2.2. Tetrode fabrication

In this study we used both home-made and commercially
available (Thomas Recording, Germany) tetrodes. In-house
tetrodes were made with a technique similar toWilson and
McNaughton (1993)andGray et al. (1995). We used either
NiCr (15�m wire diameter) or tungsten (7.5–12.5�m wire).
The four wires were twisted together, then quickly heated by
a heat gun to slightly melt the wire insulation and so attach
the wires to one another. The four wire ends at one side
were then manually stripped of their insulation. The exposed
wire ends were then spot welded to an electronic connector
or gold-plated and soldered to the connector. The twisted
strand of four wires was threaded through a small tubing
(approximately 28 gauge) and the connector was attached to
the tubing with an epoxy glue. The twisted part of the wires
was cut with fine scissors at the other end of the tubing
leaving 5–7 mm of the wire protruding from the tubing. The
tetrode tips were gold-plated to bring the tip impedance in
the range of 0.7–1.2 MOhm at 1 kHz.

For the physiological test of the method (described be-
low) we used modified tetrodes developed in our lab. They
had five wires: a central one which served as a spacer and
four thinner wires twisted around it. This geometry provided
a better tetrode “stereo effect” by increasing the measuring
base. The central wire was “free-floating” while the periph-
eral wires were connected to the amplifier. All five wires
were made of insulated tungsten with core diameters of the
central and peripheral wires of 25 and 10�m correspond-
ingly. The impedance of the peripheral wires was in the
range of 0.7–1.4 MOhm at 1 kHz.

2.3. Data acquisition

The tetrode was connected to a custom-made head stage
amplifier (based on the INA110 chip by Burr-Brown) pro-
viding a gain of 10, dc coupled. The signal was further am-
plified and filtered by a CyberAmp 380 (Axon Instruments)
with the following settings: gain of 1000, ac coupling at
300 Hz, a fourth-order Bessel type low-pass filter at 3000 Hz,
and a notch filter at 60 Hz. The voltages were sampled at a
rate of 15 or 20 kHz with 12 bit resolution and the data were
continuously streamed to disk. Recording to a file was ini-
tiated approximately 1 s before the stimulus onset and was
terminated approximately 1 s after the stimulus presentation
was completed.

2.4. Visual stimulation

Once a stable active site was located, various visual
stimulus sets were shown for periods of 2–20 min each;
the response to each such set constituted one file. Stimu-
lus sets varied from experiment to experiment—the most
“typical” sequence being as follows. First, moving sinu-
soidal gratings of different orientations (spatial frequency:
0.5 cycles/degree, temporal frequency: 3 cycles/s, contrast:
80–100%), were shown for 4 s each, separated by a 1 s
blank period. The set of orientations covered 360◦ with a 5◦
step and was presented in a pseudo-random order, with each
orientation repeated twice. The response to this “orientation
tuning batch” constituted one file and was used to find the
orientation tuning curves (OTCs) of the neurons. Next a
checkerboard noise stimulus was presented. Typical size of
the stimulus was 90× 90 blocks, and each block could take
at random one of three levels of luminance. As the noise
stimulus did not cover the whole screen, its position and
the block size were chosen to maximize the multiunit re-
sponse. The response to this noise presentation constituted
a second file. During the noise presentation, the orienta-
tion tuning dataset was analyzed to determine the preferred
orientations of the neurons at the site. Finally, a set of grat-
ings with spatial frequencies of 0.1, 0.14, 0.2, 0.28, 0.4,
0.57, 0.8, 1.13, 1.6, 2.26, 3.2, and 4.0 cycles/degree, and
temporal frequency fixed at 3 cycles/s were presented at the
found preferred orientations. There were 4–8 repetitions of
each set randomly intermixed. The response to this “spatial
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frequency batch” constituted a third file. Thereafter other
noise or grating stimulus sets were presented.

2.5. Datasets

In this study we used two non-overlapping datasets: the
first one was used to compare different waveform metrics,
while the second dataset was used to verify the method on
the physiological properties of recorded neurons.

The first set included 33 sites recorded from four cats,
with 5–39 files recorded at each site, a total of 350 files.
Typical duration of a file was from 2 to 20 min, and total
time at a site varied between 40 min and 13 h. Out of 33 sites,
four were recorded using commercial tetrodes, four using
tungsten gold-plated tetrodes, and in the remaining 25 sites
NiCr gold-plated tetrodes were used. A 15 kHz sampling
rate was used in nine sites, and a 20 kHz rate was used in the
rest. The number of distinguishable clusters per file varied
between 3 and 9 with a median of five clusters. In this set
we did not use sites that had less than five files recorded or
that had files with less than three clusters.

The second set included 10 sites recorded from five cats
(different from the first set). At each site from 4 to 8 files
were recorded, a total of 66 files. File durations varied from
5 to 19 min, and total time at a site varied between 1 h and
2 h 10 min. The number of distinguishable clusters per file
was between 2 and 9 with a median of 7 clusters. Sampling
rate was 20 kHz for all files and only tungsten five wire
tetrodes were used. In recording of this dataset we used bi-
lateral pneumothorax and lumbar suspension in an attempt
to stabilize the electrode. Recordings at all sites had orienta-
tion tuning batches in the first and in the last files at the site,
but the batches were somewhat different than previously de-
scribed: each drifting grating orientation was presented for
1 s and repeated four times.

Spikes were clustered with a manual clustering program
“spiker” developed in our lab and available for download-
ing from http://millerlab.ucsf.edu. To cluster we used the
amplitudes of the first peak (four per event), which were
extracted after a 1:10 Fourier interpolation of the spike.
After clustering, all individual spike waveforms were 1:10
Fourier-interpolated, aligned at the first peak, 10:1 deci-
mated, and then averaged per assigned cluster. Averaged
spike waveforms containing 0.9 ms before the first peak and
1.2 ms after the peak were saved to disk and were used to
link the neurons across files; the length of each waveform
was 33 or 43 points, depending on the sampling rate. An
example of average waveforms of four neurons recorded in
the same-file is shown inFig. 3.

2.6. Computing preferred orientation and width of the
orientation tuning curve

We used orientation tuning of V1 neurons to test the
method (details of the test are explained later). For every
neuron from the second dataset, an orientation tuning curve

Fig. 3. An example of average spike waveforms. Each subplot corre-
sponds to a different neuron. Within each subplot the four waveforms are
shown—one per tetrode channel.

was computed. Those neurons that did not show orienta-
tion selectivity and/or did not demonstrate a reproducible
response to repetitive presentation of the same visual stim-
ulus were excluded.

To check if the response was orientation selective, we first
computed the neuron’s preferred orientation as

ϕpref = 1

2
arctan

{ ∑72
k=1rk · sin(2ϕk)∑72
k=1rk · cos(2ϕk)

}
. (1)

Here,rk = r(ϕk) represents the average spike raterk elicited
by the grating of orientationϕk.

Then we determined the component of the response along
the preferred orientation as

Rij =
72∑

k=1

n
ij
k · cos [2(ϕk − ϕpref)], (2)

wheren
ij
k indicate the number of spikes elicited by thejth

cycle of theith repetition of the grating of orientationϕk.
A neuron was considered to be orientation selective if the

set of{Rij} had mean value significantly different from zero.
Significance was estimated using at-test, with significance
level 0.01.

Linear regression analysis was performed to assess OTC
reproducibility. If the regression coefficient of the sum of
the first two stimuli repetitions onto the sum of the third

http://millerlab.ucsf.edu
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and forth repetitions was significantly different from 0 (P <

0.01), then the OTC was considered as reproducible and
accepted for further analysis.

Given that the orientation tuning curve,rk = r(ϕk) does
not take negative values,rk can be viewed as a distribution,
and the width of the OTC can be computed as the standard
deviation of this distribution:

w =
√√√√∑72

k=1(ϕk − ϕpref)2 · rk∑72
k=1rk

, (3)

whereϕk −ϕpref is computed as the shortest distance around
a circle of 180◦, e.g. 5◦ and 175◦ have a difference of
10◦.

3. Measures of similarity between spike waveforms

To trace neurons across files a measure of spike similar-
ity (a metric) is required along with some criteria that al-
low one to decide whether certain clusters from different
files have been recorded from the same neuron at the site.
It is natural to assume that if the spikes of two clusters
recorded in different files appear to be similar, they were
recorded from the same neuron, and if the spikes are not
similar, they were generated by two different neurons. To
measure spike similarity we used average waveforms de-
scribed above. Four average spike waveforms (each 33 or
43 points long) can be represented as a matrix [xct], where
index c represents four channels andt is the time index.
As we are considering metrics that take into account only
per-element differences of the two waveform matrices, the
matrices can be transformed into 132- or 172-dimensional
vectors�x by concatenating the rows of the original matrix.
These vectors correspond to points in a multidimensional
space. An obvious metric in this space is the Euclidean dis-
tance, however certain properties of the tetrode recordings
suggest that other metrics can be beneficial for linking the
neurons.

Waveform vectors can be represented as:

�x = ||�x|| · �u, (4)

where ||�x|| is the length of the vector, while�u = �x/||�x||
can be interpreted as the “shape” of the spike vector. Obvi-
ously the shape is very important in differentiating between
spikes coming from different neurons, but it is not clear how
strongly one should weight the length in trying to distin-
guish mean waveforms of different neurons. The basic idea
of the tetrode is that the ratios of spike amplitudes on the
four electrodes should stay roughly the same for spikes from
a given neuron, even as absolute amplitudes may change,
e.g. the amplitude can decrease over a burst. For the met-
ric to ignore such variations, it should be scale-invariant,
i.e. insensitive to the differences due to scaling of the spike
waveforms.

Two metrics that are at the opposite extremes in the sen-
sitivity to scaling are the correlation coefficient:1

C = �x · �y
||�x||||�y|| , (5)

and the Euclidean distance:

ED = ||�x − �y||, (6)

where�x and�y are the waveform vectors of two neurons. If
�x or/and �y are scaled, the correlation coefficient does not
change, while the Euclidean distance is quite sensitive to
scaling. There is a relationship between these two metrics
which can be written as:

−(ED)2 = −||�x − �y||2

= 2||�x||||�y||
(

C − 1

2

[ ||�x||
||�y|| + ||�y||

||�x||
])

, (7)

where C is the correlation coefficient introduced in (5).
Note that the term [(||�x||/||�y||) + (||�y||/||�x||)] is insensitive
to equal scaling of the two spike vectors, but is sensitive
to the differential scaling of the two. The influence of the
differential scaling can be titrated with a set of metrics
parameterized byγ

Dγ = C − γ

2

[‖�x‖
‖�y‖ + ‖�y‖

‖�x‖
]

. (8)

For γ = 0, D0 = C which is not sensitive to scaling, while
for γ = 1, D1 is sensitive to differential scaling only;D1/2
will be somewhere in between regarding the sensitivity to
differential scaling. In this study we consider similarity
metricsD0, D1/2, D1 and ED, which have different sensi-
tivity to different types of vector scaling. Note that we are
using negative values of ED as a similarity measure.

4. Cross-channel whitening (CCW)

The noise in the tetrode recordings is strongly correlated
across channels, and it is dominated by the firing of the sur-
rounding, “background” neurons (Rebrik et al., 1997, 1999).
The high degree of the noise correlation between the tetrode
channels means that some directions in the four-dimensional
channel space are “noisier” than the others. This is illus-
trated inFig. 4Awhere the signal measurements made at two
tetrode channels are plotted against each other (spikes make
a negligible statistical contribution to this distribution). This
plot can also be viewed as a projection of a four-dimensional
scatter plot of the four-dimensional sample points onto the
plane defined by the two coordinate axes. In this space the
distances between points of spike waveforms should be cor-
rected for the direction in which they were measured: dis-
tances measured along the diagonal (the noisiest direction)

1 Strictly speaking,C is the cosine of the angle between the vectors
x and y, but since the dc is removed from the voltage traces, the means
of x and y are close to 0, so we refer toC as a correlation coefficient.
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Fig. 4. Demonstration of the cross-channel whitening procedure. Here
each sample of a continuous tetrode recording is plotted as a point with
the coordinates given by the voltages at tetrode channels 1 and 2 (total of
10 000 points taken from 10 random chunks). Panel (A) shows the original
(raw) data, panel (B) shows the same data after cross-channel whitening.

should be less significant than distances measured in the per-
pendicular direction. This correction can be achieved by the
standard procedure of “cross-channel whitening” (Bishop,
1995). Firstly one finds the eigenvectors�ea of the 4× 4
cross-channel correlation matrix. These vectors give four or-
thogonal directions in the “channel space”, and along each
direction, the noise is uncorrelated with the noise along other
directions (note that we are not considering time-correlations
here). The corresponding eigenvaluesλa give the variance
of the noise along each direction. Then the shift from the
raw voltage basis [xct ], to the CCW basis, [x′

ct] is made:

[x′
ct] = [ecc][xct], (9)

where the rows of the 4× 4 transform matrix [ecc]are equal
to:�ea/

√
λa. In this basis the noise distribution is circular, and

all directions are equivalent in their “noisiness” as shown in
Fig. 4B.

Alternatively one can use Mahalanobis distance (Bishop,
1995) as a measure of the spike similarity, i.e. use the com-
plete covariance matrices describing each cluster’s wave-
forms, and express the distance between two clusters as the
Euclidean distance between their means divided by the geo-
metric mean of their standard deviations. In this case scaling

of distance in the waveform space would take into account
the shape and the size of both clusters. We did not take this
approach since it is more computationally expensive, and
because the major source of the spike variance—common
background noise—is accounted for in the simpler approach
described above.

5. Tracking neurons across files

Tracking of neurons across files is equivalent to arranging
clusters from different files into a number of groups corre-
sponding to neurons recorded at this site. A straightforward
way to assign clusters to a neuron is to find the best match
between clusters of the two neighboring files and to assign
both of them to the same neuron. One could repeat this pro-
cedure by excluding the matched clusters and then finding
the best match among remaining clusters, and so on. It is
obvious however that members of some poorly matching
pairs could actually belong to different neurons. Hence, we
need a similarity threshold, below which clusters are never
assigned to the same neuron. To get such a threshold, we
assume that for most of the recording we are observing the
same set of neurons, and we also assume that the changes
of the spike shapes from file to file are relatively small. In
this case it is natural to expect that the similarity between
clusters recorded in the same-file, which correspond to dif-
ferent neurons, should be smaller than the similarity of the
best matches across consecutive files, which are taken to
correspond to the same neuron. We can calculate the dis-
tribution of the “same-file” similarities and the “best across
adjacent files” similarities at a given site. Note that in the
“best match” similarities each cluster is represented in one
pair only, while all possible same-file pairs are included in
the calculation of the same-file similarity distribution. An
example of these distributions is shown inFig. 5A. The dis-
tribution of the same-file similarities represents the similari-
ties of waveforms of different neurons, while the distribution
of the across files similarities for the most part represents the
similarity of the same neuron waveforms recorded in differ-
ent files. So a threshold that separates these two distributions
can be used to separate pairs of clusters coming from dif-
ferent neurons from pairs of clusters coming from the same
neuron. Since these distributions can overlap, finding an op-
timal position of the threshold is not trivial, and requires an
error function that weights two different types of errors: a
false-positive, i.e. assigning clusters from two different neu-
rons to the same neuron, and a false-negative, i.e. failing to
detect a pair of clusters originating from the same neuron.
We weight both types of errors equally, so the error function
is simply the number of the same-file similarities above the
threshold plus the number of the across-file similarities be-
low the threshold. Note that we have a slight bias to overes-
timate the number of false-negative errors since in the error
function calculations we assume that each neuron is always
represented in both files, while in reality we “drop” neurons



A.A. Emondi et al. / Journal of Neuroscience Methods 135 (2004) 95–105 101

Fig. 5. Distributions of within-file similarities (white bars) and across-file similarities (grey bars) for two particular adjacent files at a single site. The
solid line shows the error as a function of the threshold position. The dashed line shows the optimal threshold position. Results in (A) and (B) were
calculated for the raw waveforms, and (C) and (D) for the whitened waveforms. In (A) and (C) the Euclidean distance was used, and in (B) and (D)
the correlation coefficient. The difference between raw and whitened results shown here is typical.

once in a while.Fig. 5A shows an example of the number
of misclassifications as a function of the threshold position.

Based on these considerations we suggest the following
algorithm to assign clusters to neurons:

Step 1. Allocate a number of neurons equal to the number
of clusters recorded in the first file at a site.

Step 2. From the list of all pairs of clusters taken between
the first and the second files exclude the pairs that
have similarity below the threshold.

Step 3. Among the remaining pairs find the one with the
highest similarity and assign the cluster from the
second file to the same neuron as the other cluster in
the pair. Exclude from the list of pairs all members
that contain either cluster from the best matching
pair.

Repeat step 3 until the list of pairs is exhausted.
Step 4. If there are clusters in the second file that have not

been assigned to a neuron, add the corresponding
number of neurons and assign the unmatched clus-
ters from the second file to the new neurons.

Steps 2–4 are repeated for the remaining consecutive pairs
of files recorded at the site, i.e. files 1–2, 2–3, 3–4, etc. (files
are assumed to be ordered by the time of the recording).
As a result of this procedure we get a number of neurons
which are represented as lists of clusters assigned to a given
neuron.

Obviously this algorithm can be extended to include pairs
of more distant-in-time files, like 1–3, 2–4, and so on, but for
the purposes of this paper we decided not to include distant
matches since they are progressively more sensitive to the
electrode drift and the assumption of recording from the
same set of neurons in the two files becomes unreliable. In
the case when distant-in-time links are absolutely necessary
one has to design the error function accordingly.

6. Results

6.1. Comparison of different metrics

As illustrated inFig. 5, different metrics produce different
distributions of across- and within-file similarities of wave-
forms. The better the separation of the distributions, the more
reliable is the neuron tracking. We used several approaches
to estimate the impact of CCW and to rate the metrics by
their ability to separate the distributions. The obvious choice
is to use the value of the error function taken at the optimal
threshold, or the error rate which we define as

Erracross+ Errwithin

Nacross+ Nwithin
,

where Erracross is the number of across-file best matches
with similarity below the threshold, Errwithin the number



102 A.A. Emondi et al. / Journal of Neuroscience Methods 135 (2004) 95–105

Table 1
Performance of the similarity metrics, see explanation in the text

Similarity metric Error rate Drop rate (%) MD N Best

Average (%) Across fraction (%) Within fraction (%) Error rate Drop rate MD

Raw
γ = 1 7.88 81 19 6.36 2.11 3 4 2
γ = 0.5 7.49 78 22 5.88 2.22 8 3 1
γ = 0 8.42 64 36 5.39 2.28 4 6 0
ED 8.48 70 30 5.96 2.20 1 3 2

Whitened
γ = 1 5.50 74 26 4.05 3.31 15 12 5
γ = 0.5 5.55 71 29 3.95 3.41 18 15 5
γ = 0 6.35 61 39 3.89 3.47 8 15 14
ED 6.08 65 35 3.95 2.83 16 15 4

of within-file similarities above the threshold, andNacross
and Nwithin are the number of across-file and within-file
pairs contributing to the distributions at the site. Note that
not all the contributions to Erracrossare truly errors; some
are mismatched pairs that the algorithm correctly excludes
from being assigned to the same neuron. Thus, the error
rate is an overestimate of the true number of errors. The
“average error rate” column inTable 1gives the average
of this error rate across all sites. It is clear that the met-
rics based on the whitened data have a better performance
then the metrics based on the raw data. On the other hand
the distinction between different metrics within these two
groups is small. A more detailed comparison of the error
rate is shown inFig. 6A where the averages across spe-
cific groups (raw/whitened) are plotted against each other
for all recording sites. It is again obvious that CCW leads
to a lower error rate. Interestingly, the fraction of errors
that are across-file (seeTable 1) is quite substantial: over
70%. Again, these errors could reflect the success of the
algorithm in excluding false matches, as neurons are lost or
gained across files due to electrode drift or changes in the
stimulus, rather than a failure of the algorithm.

Another way of rating the metrics is to compare them by
their ability to link neurons, so that the best metric would be
the one with the smallest number of neurons that could not be
linked across the files (dropped). We defined the “drop rate”
as Erracross/Nacross. Again the group of metrics based on
CCW appears to be superior to the raw data group, while the
variations within the groups are not substantial (seeTable 1
andFig. 6B). The drop rate estimates the probability of drop-
ping a neuron while recording at a site. Given that, we can
estimate a “neuron half-lifetime”, i.e. the number of files af-
ter which there is a 50% chance of dropping a neuron. Neu-
ron half-lifetime can also be interpreted as the number of
files after which we lose 50% of the original neurons. For the
value of the drop rate of 3.89%, the estimated half-lifetime
is 17.5 files, which for the purposes of our experiments was
quite sufficient. At the same time this value varies signifi-
cantly from site to site (seeFig. 6B) and one should use this
value more as a metaphor rather than a strict law analogous
to exponential decay law in the nuclear physics.

Finally, to assess the separation of the two distributions
we calculated the Mahalanobis distance (MD) which in our
case is defined as:

MD = |µacross− µwithin|√
σacross· σwithin

, (10)

Fig. 6. Comparison of the results for the whitened and for the raw
waveforms: (A) error rate, (B) drop rate, (C) Mahalanobis distance. Points
represent different sites, bar lengths show the range of the values calculated
for the four different distance metrics:D0, D1/2, D1 and ED. Vertical
axis corresponds to the whitened data, horizontal axis corresponds to the
raw data.
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whereµacrossandµwithin are the averages of the across and
within similarities, andσacrossandσwithin are their standard
deviations. This measure can be interpreted as the distance
between the centers of the two distributions measured in
units of the geometric mean of their standard deviations.
As can be seen inTable 1and Fig. 6C, according to this
metric, the channel-whitened group better separates the
distributions.

For each measure of performance we can calculate the
number of sites at which a given metric produced the best
(or tied for best) separation. These values are shown in the
“N Best” part of Table 1. Note that the error rate and the
drop rate measures of performance are discrete, so that at
any given site there could be a number of metrics that pro-
vide equally good separation. For this reason, the columns
in the “N Best” part of the table do not add up to 33 (the
number of sites). As can be seen fromTable 1, the distinc-
tion between the metrics based on the raw and CCW data
is substantial, while the differences within the CCW group
are not strong. Overall there is a certain bias to favor the
metric withγ = 0 since it has the lowest drop rate and the
biggest MD. This metric (the correlation coefficient) does
not take into account the amplitudes of the spikes, but uses
only their shapes. For practical reasons however it seems
that the choice of a particular metric within the CCW group
is less important than insuring the quality of the dataset
itself by reducing the noise, stabilizing the electrode, etc.

6.2. Demonstration of the method

The fact that the clusters can be linked across files still
does not guarantee that the clusters are assigned correctly to
the underlying neurons. One can indirectly verify the track-
ing by comparing physiological properties derived from the
clusters linked to the same neuron. One would expect that if
the linkage is correct, the properties will be the same for the
linked clusters while the properties for the non-linked clus-
ters should show some scatter from file to file. Since most of
the neurons in V1 show orientation tuning, we used preferred
orientation (defined inSection 2) as the neuronal property
against which we checked our method. We did the tests for
the sites where orientation tuning batches were recorded in
the first and in the last files at that site (the second dataset
in Section 2). This way we could compare orientation tun-
ing of neurons as measured from the first and the last file.
Ideally they should be identical.

To link the clusters from the second dataset we used the
correlation metric (γ = 0), with CCW. The procedure found
34 matched pairs out of 53 and 66 clusters in respectively the
first and the last files recorded at the 10 sites. Twenty seven
out of 34 pairs passed the test on orientation tuning curve
selectivity and reproducibility (seeSection 2). A histogram
of pairwise orientation tuning differences in linked pairs
is shown inFig. 7A. As expected, this distribution tends
to cluster around 0◦. This is in contrast with the overall
distribution of pairwise differences for all possible pairs (97

Fig. 7. Distributions of the pairwise differences in the preferred orienta-
tions for: (A) linked cluster pairs, (B) all cluster pairs, (C) two repetitions
of the orientation batch at the same site.

total) shown inFig. 7B. Note that only the pairs across the
clusters that were linked in the first and in the last files at
the same site are included.

The outliers in the distribution of pairwise differ-
ences (Fig. 7A) can come from two different sources: (a)
“false-positive” link errors, i.e. clusters from two different
neurons incorrectly linked together, (b) errors in the mea-
surements of the preferred orientation. We tried to estimate
the contribution of the second source by the following pro-
cedure. We divided our orientation batches in which we had
four repetitions of the same orientation into two batches of
two repetitions each. The distribution of differences in the
preferred orientations as measured from the first and from
the second parts of the orientation batch (shown inFig. 7C)
can be used as an estimate of the measurement error. It is
clear that the distributions shown inFig. 7A and Care very
close, but still the relative number of outliers in 7A seems
to be bigger: given the total of 27 links in 7A, one expects
to see 2.7 cases of over 15◦ difference based on the distri-
bution in 7C, but in fact there are four such cases in 7A.
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Fig. 8. Pairwise differences in the preferred orientations of the linked
cluster pairs vs. the OTC width. Each horizontal line connects two points
representing the OTC widths in the pair.

However, a scatter plot of the differences in preferred
orientations of linked clusters versus the widths of their
OTCs (Fig. 8) shows that all of the outliers are coming from
clusters with wide OTCs whose preferred orientation is pre-
sumably poorly defined. Furthermore both clusters in each
outlier pair have wide OTCs. Since the clusters were linked
simply by waveform shape without regard for functional
properties, this matching of OTC width is suggestive that
the outliers indeed represent single neurons that have been
correctly linked, and that their large differences in preferred
orientations are simply due to their preferred orientations
being poorly defined.

It is possible that the probability of incorrect linking in-
creases for clusters with low-amplitude spikes which are
harder to isolate. If this were the case one would expect to
find a negative correlation between the differences in pre-
ferred orientations of linked clusters and the spike ampli-
tudes. However a scatter plot of orientation difference versus
spike amplitude (not shown) does not demonstrate such a
tendency: the linear regression explains only 6% of the total
variance (F(1, 26) = 1.58,P > 0.22). Also, the spike ampli-
tudes of three out of the four outliers are above the median.

From the available data we cannot determine the actual
number of errors in the linkage since incorrectly linked clus-
ters can have similar preferred orientations just by chance
and will not stand out in the distribution. On the other hand
we cannot exclude a possibility that the outliers in the distri-
bution are due to non-stationarity of the OTCs over a period
of 1 h or more: small changes in the shape of wide OTCs
can lead to significant changes in preferred orientation. In
any case we find the results of this test quite promising
given that we did not optimize the error function against the
false-positive errors and that the stimuli were not optimized
to drive all neurons in all files.

We also tried to link the clusters without tracing them
from file to file, just by making a direct link between the

first and the last files at a site (using our linking algorithm
as though those two files were adjacent). Surprisingly, the
results of this “direct” linkage were not much different from
the “chain” linkage: 27 pairs were linked and 23 out of 27
pairwise differences were within 15◦. Examination of the
linked pairs revealed that 23 pairs were identical to those ob-
tained through the chain linkage (four pairs being different),
and 21 out of these 23 pairwise differences were within 15◦.

7. Discussion

Suppose we call a cluster “static” if it was formed in the
absence of electrode drift. In this case its size and shape
are defined by the background noise and by intrinsic spike
variability. If the electrode drifts these “static” clusters
move in the parameter space producing “dynamic” clusters
that are bigger in size than the “static” clusters. The drift
also leads to jumps in the cluster position from file to file
as shown inFig. 2. One can think of the resulting cluster
picture as a painting made with spray paint: the paint spot
is the “static” cluster, continuous trajectories correspond
to the within-file drift, and the jumps from one trajectory
to another correspond to the between-file interruptions. It
is obvious that for a successful linkage of clusters across
files it is sufficient to keep both across and within-file drifts
much smaller than the “static” cluster size, which can also
be viewed as the smallest possible distance between the
same-file clusters. However, the requirement is not absolute:
e.g. if clusters drift along sufficiently separated trajectories,
it may be possible to link the clusters in spite of drift that
is significantly larger than the static cluster size.

As we reformulate the problem as a dynamic one it be-
comes clear that to deal with cluster drift one can use contin-
uous tracking of clusters (Snider and Bonds, 1998). We could
not implement this approach with the available dataset: it had
inter-file gaps in the recording. Continuous tracking how-
ever is not sufficient by itself for reliable tracking: the neu-
rons should not have long interruptions in activity which will
again result in cluster jumps. This requirement has some im-
plications for experimental design: stimuli that are very spe-
cific in the neurons they excite should be intermixed with less
specific stimuli to avoid long periods of silence of any given
neuron. In the case of discrete tracking and matching limited
to adjacent files (as presented in this paper), this means that
all neurons should be sufficiently active in all files, which is
sometimes hard to achieve. Our tests with either chained or
direct linkage of clusters in files separated by many interme-
diate files illustrate this point: some neurons were lost in the
chained linkage due to neuron inactivity in the intermediate
files, while the direct linkage lost some pairs due to electrode
drift. To provide better neuron tracking one can periodically
repeat special runs that sufficiently excite all neurons at a
site and use these runs as reference points for the linkage.

Another possible way to improve the method is to add a
probabilistic measure of the cluster-linkage confidence, i.e.
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to build a model that will give an estimate of the probability
that a given pair of clusters is linked. To deal with confidence
issues in the current implementation of the method one can
use the error measures (described in this paper), so at least
some obviously bad datasets can be avoided.

In the second dataset (seeSection 2) we used electrode
stabilization procedures, but we did not see any apparent
difference from the first dataset in regard to either “static”
or “dynamic” cluster size. If relatively long sessions at a site
are required (well above 1 h), one should consider usage of
chronically implanted electrodes which are known to have a
much smaller rate of electrode drift. One can even imagine
an electrode manipulator that will automatically adjust the
position of the electrode to compensate for the cluster drift.

Although we used data acquired in an acute experiment,
the method we suggest may also be useful for chronic exper-
iments: e.g. for linking clusters between recording sessions
separated by days or weeks. Essentially the same rules ap-
ply to chronic recordings, but the time-scale of the drift is
very different.

In conclusion: we have demonstrated a simple, automated
procedure for tracking neurons across time that seems to per-
form well, as assessed both by estimates of errors based on
the distributions of cluster similarities and by the common-
ality of functional properties of clusters that the procedure
links together as representing a single neuron. The procedure
as formulated relies on time being discretized into a set of
files: the procedure links clusters across files, while cluster
drift within a file is ignored (it simply adds to the variability
of the cluster). The most important technical point to emerge
is that it is important to take account of cross-channel
correlations by measuring waveform similarities in the

cross-channel-whitened (CCW) space, rather than in the
space of raw voltages; this greatly improves performance.
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