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Signal-to-noise ratios in physical systems can be significantly degraded
if the outputs of the systems are highly variable. Biological processes
for which highly stereotyped signal generations are necessary features
appear to have reduced their signal variabilities by employing multi-
ple processing steps. To better understand why this multistep cascade
structure might be desirable, we prove that the reliability of a signal
generated by a multistate system with no memory (i.e., a Markov chain)
is maximal if and only if the system topology is such that the process
steps irreversibly through each state, with transition rates chosen such
that an equal fraction of the total signal is generated in each state. Fur-
thermore, our result indicates that by increasing the number of states,
it is possible to arbitrarily increase the reliability of the system. In a
physical system, however, an energy cost is associated with maintaining
irreversible transitions, and this cost increases with the number of such
transitions (i.e., the number of states). Thus, an infinite-length chain,
which would be perfectly reliable, is infeasible. To model the effects of
energy demands on the maximally reliable solution, we numerically op-
timize the topology under two distinct energy functions that penalize
either irreversible transitions or incommunicability between states, re-
spectively. In both cases, the solutions are essentially irreversible linear
chains, but with upper bounds on the number of states set by the amount
of available energy. We therefore conclude that a physical system for
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which signal reliability is important should employ a linear architecture,
with the number of states (and thus the reliability) determined by the
intrinsic energy constraints of the system.

1 Introduction

In many physical systems, a high degree of signal stereotypy is desirable.
In the retina, for example, the total number of G proteins turned on during
the lifetime of activated rhodopsin following a photon absorption event
needs to have a low variability to ensure that the resulting neural signal is
more or less the same from trial to trial (Rieke & Baylor, 1998). If this were
not the case, accurate vision in low-light conditions would not be possible.
Biology offers a myriad of other examples where signal reproducibility or
temporal reliability is necessary for proper function: muscle fiber contrac-
tion (Edmonds, Gibb, & Colquhoun, 1995b), action potential generation
and propagation (Kandel, Schwartz, & Jessell, 2000), neural computations
underlying motor control (Olivier, Davare, Andres, & Fadiga, 2007) or time
estimation (Buhusi & Meck, 2005), ion channel and pump dynamics (Ed-
monds, Gibb, & Colquhoun, 1995a), circadian rhythm generation (Reppert
& Weaver, 2002), cell-signaling cascades (Locasale & Chakraborty, 2008),
and others. In some cases, it may be possible to reduce signal variability
by making a system exceedingly fast, but in many cases, a nonzero mean
processing time is necessary. The mechanism involved in the inactivation
of rhodopsin, for example, needs to have some latency in order for enough
G proteins to accumulate to effect the neural signal. In this article, we ad-
dress the question of how to design a physical system that has a low signal
variability while maintaining some desired nonzero mean total signal (and
thus a nonzero mean processing time).

A previous numerical study of the variability of the signal generated dur-
ing the lifetime of activated rhodopsin found that a multistep inactivation
procedure (with the individual steps proposed to be sequential phosphory-
lations) was required to account for the low variability observed experimen-
tally (Hamer, Nicholas, Tranchina, Liebman, & Lamb, 2003). This theoretical
prediction was borne out when knockouts of phosphorylation sites in the
rhodopsin gene were seen to result in increased variability (Doan, Mendez,
Detwiler, Chen, & Rieke, 2006). These results led us to consider more gen-
erally whether a multistep system is optimal in terms of the reliability of an
accumulated signal. Specifically, we limit ourselves to consider memoryless
systems where the future evolution of the system dynamics depends on the
current configuration of the system but not simultaneously on the history of
past configurations. If such a memoryless system has a finite or countable
number of distinct configurations (states) with near-instantaneous transi-
tion times between them, it can be modeled as a continuous-time Markov
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chain. This class of models, though somewhat restricted, is sufficiently rich
to adequately approximate a wide variety of physical systems, including
the phosphorylation cascade employed in the inactivation of rhodopsin.
By restricting ourselves to systems that can be modeled by Markov chains,
our goal of identifying the system design that minimizes the variance of
the total generated signal while maintaining some nonzero mean may be
restated as the goal of determining the Markov chain network topology that
meets these requirements given a set of state-specific signal accumulation
rates.1 This is the primary focus of the work presented here.

The article is organized as follows. In section 2, we review basic
continuous-time Markov chain theory, introduce our notation, and review
the necessary theory of the “hitting time,” or first passage time, between two
states in a Markov network. We then define a random variable to represent
the total signal generated during the path between the first and last states in
the network and show that this is a simple generalization of the hitting time
itself. The squared coefficient of variation of this variable (the CV2, or ratio
of the variance to the square of the mean) will be our measure of the variabil-
ity of the system modeled by the Markov chain. In section 3, we present our
main theoretical result regarding the maximally reliable network topology.
Simply stated, we prove that a linear Markov chain with transition rates
between pairs of adjacent states that are proportional to the state-specific
signal accumulation rates is optimal in that it minimizes the CV2 of the total
generated signal. In the special case that the state-specific signal accumula-
tion rates are all equal to one, the total generated signal is the hitting time,
and the optimally reliable solution is a linear chain with the same transition
rate between all adjacent states (see Figure 1b). As an intermediate step, we
also prove a general bound regarding the signal reliability of an arbitrary
Markov chain (see equation 3.3), which we show to be saturated only for
the optimal topology. In section 4, we numerically study the deviations
from the optimal solution when additional constraints are applied to the
network topology. Specifically, we develop cost functions that are meant to
represent the energy demands that a physical system might be expected to
meet. As the available “energy” is reduced, the maximally reliable structure
deviates further and further from the optimal (i.e., infinite energy) solution.
If the cost function penalizes a quantity analogous to the Gibbs free en-
ergy difference between states, then the resulting solution is composed of
two regimes: a directed component, which is essentially an irreversible lin-
ear subchain, followed by a diffusive component, where the forward and
backward transition rates between pairs of states along the chain become
identical (see section 4.2). In the zero energy limit, the maximally reliable

1As we show, in the case that the state-specific signal accumulation rates are all unity,
then the generated signal is the system processing time itself.
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Figure 1: (a) Schematic of a six-state Markov chain. The circles and arrows rep-
resent the states and the transitions between states, respectively. The thicknesses
of the arrows correspond to the values of the transition rates or, equivalently,
the relative probabilities of transition. Nonexistent arrows (e.g., between states
2 and 3) reflect transition rates of zero. (b) A linear Markov chain with the same
transition rate λ between all pairs of adjacent states in the chain (i.e., λi+1,i = λ).
This topology uniquely saturates the bound on the CV2 of the hitting time t1N

(see equation 3.1).

solution is purely diffusive, which is a topology amenable to analytic in-
terpretation (see section 4.2.1). If instead the cost function penalizes all
near-zero transition rates, then states are seen to merge until, at the mini-
mum energy limit, the topology reduces to a simple two-state system (see
section 4.3). In sections 4.4 and 4.5, we present a brief analytic comparison
of the solutions given by the two energy functions to show that although
they superficially seem quite different, they are in fact analogous. In both
cases, the amount of available energy sets a maximum or effective maxi-
mum number of allowable states, and within this state space, the maximally
reliable Markov chain architecture is a linear chain with transition rates be-
tween each pair of adjacent states that are proportional to the state-specific
signal accumulation rates. Finally, in section 4.6, we argue that structure is
necessary for reliability and that randomly connected Markov chains do not
confer improved reliability with increased numbers of states. From this, we
conclude that investing the energy resources needed to construct a linear
Markov chain would be advantageous to a physical system.

2 Continuous Time Markov Chains

A Markov chain is a simple model of a stochastic dynamical system that
is assumed to transition between a finite or countable number of states
(see Figure 1a). Furthermore, it is memoryless—the future is independent
of the past given the present. This feature of the model is called the Markov
property.
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In this article, we consider homogeneous continuous-time Markov
chains. These are fully characterized by a static set of transition rates
{λi j : ∀i,∀ j �= i} that describe the dynamics of the network, where λi j is
the rate of transition from state j to state i . The dwell time in each state
prior to a transition to a new state is given by an exponentially distributed
random variable, which appropriately captures the Markovian nature of
the system. Specifically, the dwell time in state j is given by an exponential
distribution with time constant τ j , where

τ j ≡ 1∑
k �= j λk j

, (2.1)

the inverse of the sum of all of the transition rates away from state j . Once a
transition away from state j occurs, the probability p j→i that the transition
is to state i is given by the relative value of λi j compared to the other rates
of transitions leaving state j . Specifically,

p j→i = λi j∑
k �= j λk j

= λi jτ j . (2.2)

It is convenient to construct an N × N transition rate matrix to describe
a homogeneous continuous-time Markov chain as follows:

A ≡


q1 λ12 · · · λ1N

λ21 q2 · · · λ2N
...

...
. . .

...
λN1 λN2 · · · qN

 , (2.3)

where q j = −1/τ j . Note that each column of A sums to zero and that all off-
diagonal elements (the transition rates) are nonnegative. The set of all N × N
matrices of this form corresponds to the full set of N-state continuous-time
Markov chains. For an introduction to the general theory of Markov chains,
see, for example, Norris (2004).

2.1 Hitting Times and Total Generated Signals. In this article, we con-
sider the reliability of the total signal generated during the time required for
a Markovian system to arrive at state N given that it starts in state 1.2 This
time is often referred to as the hitting time, which can be represented by
the random variable t1N. The total generated signal, F1N, can subsequently
be defined in terms of the hitting time and the state-specific signal accu-
mulation rates. If the rate of signal accumulation in state i is given by the

2States 1 and N are arbitrary, albeit convenient, choices. The labels of the states can
always be permuted without changing the underlying network topology.
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coefficient fi , and the current state at time t is denoted q (t), then we can
define the total signal as

F1N =
∫ t1N

0
fq (t) dt. (2.4)

Note that in the case that fi = 1,∀i , the total generated signal equals the
hitting time. The statistics of the random variables t1N and F1N are governed
by the topology of the network, namely, the transition matrix A. Our goal
is to identify the network topology that minimizes the variance of the total
signal and thus maximizes the reliability of the system, while holding the
mean total signal constant.

Recall that the standard expression for the probability that a Markovian
system that starts in state 1 is in state N at time t is given as

p(q (t) = N) = eT
NeAte1, (2.5)

where e1 ≡ (1, 0, . . . , 0)T and eN ≡ (0, . . . , 0, 1)T (i.e., the first and Nth stan-
dard basis vectors, respectively) (Norris, 2004). If the Nth column of A is a
zero vector so that transitions away from state N are disallowed, making N
a so-called collecting state of the system, then p(q (t) = N) is equivalent to
the probability that the hitting time t1N is less than t. Assuming that this is
true,3 then the time derivative of equation 2.5 is the probability density of
the hitting time itself:

p(t1N) = eT
NAeAt1N e1. (2.6)

Note that state N must be collecting in order for this distribution to integrate
to 1. Additionally, p(t1N) is well defined only if state N is both accessible from
state 1 and is the only collecting state or collecting set of states accessible
from state 1. We consider only topologies for which these three properties
hold.

We can show that studying the statistics of the hitting time t1N is equiv-
alent to studying the statistics of the the total generated signal F1N since
the two random variables are simple transforms of each other. To determine
the probability distribution of F1N, we can consider the signal accumulation
rates to simply rescale time. The transition rate λi j can be stated as the num-
ber of transitions to state i per unit of accumulated time when the system
is in state j , and so the ratio λi j/ f j can similarly be stated as the number
of transitions to state i per unit of accumulated signal when the system is

3Whether N truly is collecting or not does not affect the hitting time t1N since this
random variable is independent of the behavior of the system after arrival at state N.
Thus setting the Nth column of A to zero does not result in a loss of generality.
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in state j . Thus, by dividing each column of A by the corresponding signal
accumulation rate, we can define the matrix Ã with elements φi j ≡ λi j/ f j .
Then the probability distribution of F1N is given, by analogy with the hitting
time distribution (see equation 2.6), as

p(F1N) = eT
NÃeÃF1N e1. (2.7)

Thus, for the remainder of the article, we focus solely on the reliability of
a Markovian system as measured by the statistics of the hitting time rather
than of the total generated signal (i.e., we consider fi = 1,∀i). This can
be done without loss of generality since the results we present regarding
the reliability of the hitting time can be translated to an equivalent set of
results regarding the reliability of the total generated signal by a simple
column-wise rescaling of the transition rate matrices.

2.2 The CV2 as a Measure of Reliability. It is clear that given a Markov
chain with a set of fixed relative transition rates, the reliability of the system
should be independent of the absolute values of the rates (i.e., the scale)
since a scaling of the rates would merely rescale time (e.g., change the units
from seconds to minutes). Furthermore, the variance and the square of the
mean of the hitting time t1N would be expected to vary in proportion to each
other given a scaling of the transition rates, since again this is just a rescaling
of time. This can be demonstrated by noting, from equation 2.3, that scaling
the rates of a Markov chain by the same factor is equivalent to scaling A,
since A is linear in the rates λi j , and, from equation 2.6, that scaling A is
equivalent to rescaling t1N and thus the statistics of t1N. Therefore, we use
the squared coefficient of variation (CV2, or the dimensionless ratio of the
variance to the square of the mean) to measure the reliability of a Markov
chain and seek to determine the network topology (i.e., with fixed relative
rates, but not fixed absolute rates), which minimizes the CV2 and thus is
maximally reliable.

3 Optimal Reliability

Intuitively, it seems reasonable that an irreversible linear chain with the
same transition rate between all pairs of adjacent states (i.e., λi+1,i = λ for
all i and for some constant rate λ, and λi j = 0 for j �= i − 1; see Figure 1b)
may be optimal. For such a chain, the hitting time t1N equals the sum from
1 to M (where we define M ≡ N − 1 for convenience) of the dwell times in
each state of the chain ti,i+1. This gives the CV2 as

CV2 ≡ var(t1N)
〈t1N〉2
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=
var

(∑M
i=1 ti,i+1

)
〈∑M

i=1 ti,i+1〉2

=
∑M

i=1 var(ti,i+1)(∑M
i=1 〈ti,i+1〉

)2 , (3.1)

where we use the fact that the dwell times are independent random vari-
ables, and so their means and variances simply add. Since the ti,i+1 are
drawn from an exponential distribution with mean 1/λ and variance 1/λ2,
the CV2 reduces further as

CV2 =
∑M

i=1
1
λ2(∑M

i=1
1
λ

)2

=
M
λ2( M
λ

)2

= 1
M

. (3.2)

It is trivial to show using simple quadratic minimization that the
constant-rate linear chain is optimal over all possible irreversible linear
chains since its variance is minimal for a given mean, but the proof that no
other branching, loopy, or reversible topologies exist that may have equal or
lower variabilities as measured by the CV2 appears to be less obvious. The
main mathematical result of this article is that no other topologies reach a
CV2 of 1/M. Our proof, detailed in appendix A, proceeds in two steps. First,
we prove that the following bound holds for all N-state Markov chains:

CV2 ≥ 1
M

. (3.3)

Second, we show that our proposed constant-rate linear chain is the unique
solution that saturates this bound.

Confirming the relevance of this theoretical result to natural systems, the
best fit of a detailed kinetic model for rhodopsin inactivation to experimen-
tal data has exactly the constant-rate linear chain architecture, although for
the total generated signal rather than for the lifetime of the system (i.e., in
each phosphorylation state, the rate of subsequent phosphorylation is pro-
portional to the state-specific G protein activation rate, and so the mean
fraction of the total signal accumulated in each state is constant) (Gibson,
Parkes, & Liebman, 2000; Hamer et al., 2003). We postulate that studies
of other biological systems for which temporal or total signal reliabilities
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are necessary features will uncover similar constant-rate linear topologies.
Although not experimentally validated, previous theoretical work (Miller
& Wang, 2006) has shown that a constant-rate linear chain could be imple-
mented by the brain as a potential mechanism for measuring an interval of
time. Specifically, if a set of strongly intraconnected populations of bistable
integrate-and-fire neurons is weakly interconnected in a series, then the
total network works like a stochastic clock (i.e., in the presence of noise).
By activating the first population through some external input, each subse-
quent population is activated in turn after some delay given by the strength
of the connectivity between the populations. The time from the activation
of the first population until the last is equivalent to the hitting time in a lin-
ear Markov chain with each population representing a state. Interestingly,
Miller and Wang (2006) use this timing mechanism as a way to explain the
well-known adherence to Weber’s law seen in the behavioral data for inter-
val timing (Gibbon, 1977; Buhusi & Meck, 2005), while our result indicates
that this timing architecture is optimal without reference to the data.4

4 Numerical Studies of Energy Constraints

Given the inverse relationship between the CV2 of the hitting time (or
the total generated signal) and the number of states for a system with a
linear, unidirectional topology (see equation 3.2), it would seem that such a
system may be made arbitrarily reliable by increasing the number of states.
Why, then, do physical systems not employ a massively large number of
states to essentially eliminate trial-to-trial variability in signal generation?
The inactivation of activated rhodopsin, for example, appears to be an
eight-state (Doan et al., 2006) or nine-state (Hamer et al., 2003) system.
Why did nature not increase this number to hundreds of thousands of
states? In the case of rhodopsin, one might speculate that the reduction in
variability achieved with only eight or nine states is sufficient to render
negligible the contribution that the variability in the number of G proteins
generated by rhodopsin adds to the total noise in the visual system (i.e., it is
small compared to other noise components such as photon shot noise and
intrinsic noise in the retinothalamocortical neural circuitry); more generally,
for an arbitrary system, it is reasonable to hypothesize that a huge number
of states is infeasible due to the cost incurred in maintaining such a large
state-space. We will attempt to understand this cost by defining a measure
of “energy” over the topology of the system.

4In animal and human behavioral data, the variance of a measured interval of time
is proportional to the square of its mean (Weber’s law). As discussed in section 2.2, all
timing mechanisms that can be modeled as Markov chains will have a constant CV2 (and
will thus exhibit Weber’s law), but our proof shows that a constant-rate linear mechanism
is optimally reliable.
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The optimal solution given in the previous section consists entirely of
irreversible transitions. We can analyze the energetics of such a topology
by borrowing from Arrhenius kinetic theory and considering transitions
between states in the Markov chain to be analogous to individual reactions
in a chemical process. An irreversible reaction is associated with an infinite
energy drop, and thus our optimal topology is an energetic impossibility.
Even if one deviates slightly from the optimal solution and sets the
transitions to be nearly, but not perfectly, irreversible, then each step is
associated with a large, though finite, energy drop. Thus, the total energy
required to reset the system following its progression from the first to the
final state would equal the sum of all of the energy drops between each
pair of states. In this context, it is apparent why a physical system could not
maintain the optimal solution with a large number of states N since each
additional state would add to the total energy drop across the length of the
chain. At some point, the cost of an additional state would outweigh the
benefit in terms of reduced variability, and thus the final topology would
have a number of states that balances the counteracting goals of variability
reduction and conservation of energy resources.

Specifically, in Arrhenius theory, energy differences are proportional to
the negative logarithms of the reaction rates (i.e., �E ∝ − ln λ). In sec-
tions 4.2 and 4.3, we define two different energy functions, both consistent
with this proportionality concept, but apply it differently and have differ-
ent interpretations. We then numerically optimize the transition rates of an
N-state Markov chain to minimize the CV2 of the hitting time while hold-
ing the total energy Etot constant. This process is repeated for many values
of Etot to understand the role that the energy constraints defined by the
two different energy functions play in determining the minimally variable
solution. As expected and shown in the results here, the CV2 of the optimal
solution increases with decreasing Etot.

4.1 Numerical Methods. Constrained optimization was performed us-
ing the optimization toolbox in Matlab. Rather than minimize the CV2 of
the hitting time directly, the variance was minimized while the mean was
constrained to be 1, thus making the variance equal to the CV2. Expressions
for the mean and the variance of the hitting time for arbitrary transition rate
matrices are given using the known formula for the moments of the hitting
time distribution (Norris, 2004; see appendix B for a derivation). In order to
implicitly enforce the constraint that the rates must be positive, the rates λi j

were reparameterized in terms of θi j , where θi j ≡ − ln λi j . The variance was
then minimized over the new parameters rather than the rates themselves.
The gradients of these functions with respect to θ were also used to speed
the convergence of the optimization routine. The gradients of the mean,
variance, and energy functions are given in appendix C.

For each value of Etot, parameter optimization was repeated with mul-
tiple initial conditions to both discard locally optimal solutions and avoid
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numerically unstable parameter regimes. For the second energy function
(see section 4.3), local optima were encountered, while none were observed
in the parameter space of the first (see section 4.2).

4.2 Energy Cost Function I: Constrain Irreversibility of Transitions.
Our first approach at developing a reasonable energy cost function is pred-
icated on the idea that if the values of the reciprocal rates between a single
pair of states (e.g., λi j and λ j i for states i and j) are unequal, then this asym-
metry should be penalized, but that the penalty should not depend on the
absolute values of the rates themselves. Thus, if two states have equal rates
between them (including zero rates), no penalty is incurred, but if the rates
differ significantly, then large penalties are applied. In other words, per-
fectly reversible transitions are not penalized, while perfectly irreversible
transitions are infinitely costly. From an energy standpoint, different rates
between a pair of states can be thought of as resulting from a quantity anal-
ogous to the Gibbs free energy difference between the states. In chemical
reactions, reactants and products have intrinsic energy values defined by
their specific chemical makeups. The difference between the product and
the reactant energies is the Gibbs free energy drop of a reaction. If this value
is negative, then the forward reaction rate exceeds the backward rate, and
vice versa if the value is positive. By analogy then, we can consider each
state in a Markov chain to be associated with an energy, and thus the rela-
tive difference between the transition rates in a reciprocal rate pair is due to
the energy drop between their corresponding states.5 For nonzero energy
differences, one of the rates is fast because it is associated with a drop in
energy, while the other is slow since energy must be invested to achieve
the transition. If the energy difference is zero, then both rates are identical.
This idea is schematized in Figure 2a where the energy drop �Ei j between
states i and j results in a faster rate λ j i than λi j .

Thus, the total energy of the system Etot can then be given as the sum of
the energy drops between every pair of states:

Etot ≡
∑
i, j

|�Ei j |, (4.1)

where we exclude pairs that contain state N (i.e., since the outgoing rates
for transitions away from state N do not affect the hitting time t1N and thus
can always be set to equal the reciprocal incoming rates to state N, mak-
ing those energy drops zero) and count each rate pair only once (because

5Note that an arbitrary Markov chain is not conservative (i.e., the path integral of the
energy depends on the path), so, although for a pair of states i and j each state can be
thought of as having an associated energy, these associated energies may change when i
and j are paired with other states in the chain.
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Figure 2: (a) Schematization of the energy associated with the transitions be-
tween states i and j for the energy cost function given in equation 4.3. The
energies of each state are not equal, and so the transition rates differ (i.e., λ j i

from state i to j is faster than λi j from j to i). For this cost function, the height
of the energy barrier in the schematic, which can be thought to represent the
absolute values of λi j and λ j i , does not contribute to Etot, which is affected
only by the difference between the energies associated with each state

∣∣�Ei j

∣∣.
(b) The contribution to the total energy Etot for the pair of transition rates λi j

and λ j i under the first energy function (see equation 4.3). For rates that are
nearly identical (i.e., when the ratio λi j/λ j i is close to one),

∣∣�Ei j

∣∣ is near zero,
but it increases logarithmically with the relative difference between the rates.
(c) Similar to a, but for the energy cost function given in equation 4.15. In this
case, the transition rate λ j i from state i to j is faster, and thus associated with
a lower energy barrier, than the rate λi j from j to i . (d) The contribution to the
total energy Etot for the transition rate λi j under the second energy function
(see equation 4.15). For large transition rates, Ei j is near zero, but it increases
logarithmically for near-zero rates. Note that the abscissas in b and d are plotted
on a log scale.

|�Ei j | = |�E ji |). From Arrhenius kinetic theory, the Gibbs free energy dif-
ference is proportional to the logarithm of the ratio of the forward and
backward reaction rates, and so we use the following definition for the
energy drop (plotted in Figure 2b for a single pair of reciprocal rates):

�Ei j = ln
λi j

λ j i
. (4.2)
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Therefore, the complete energy cost function is

Etot =
∑
i, j

∣∣∣∣ln λi j

λ j i

∣∣∣∣ . (4.3)

Note that the individual magnitudes of the rates do not enter into the energy
function, only the relative magnitudes between pairs of reciprocal rates.

The results of numerical optimization of the rates λi j to minimize the CV2

of the hitting time t1N under the energy function defined in equation 4.3 are
given in Figure 3a. At large values of Etot, the optimized solution approaches
the asymptotic CV2 limit of 1

M (i.e., the CV2 of the unconstrained or infinite
energy, ideal linear chain; see equation 3.2). As the available energy is
decreased, the CV2 consequently increases until, at Etot = 0, the CV2 reaches
a maximal level of 1

ξ (M) (the function ξ (M) will be defined in section 4.2.1).
Upon inspection, for large values of the total energy, the optimized tran-

sition rate matrix is seen, as presumed, to be essentially identical to the ideal,
infinite energy solution. Specifically, the forward transition rates along the
linear chain (i.e., the elements of the lower subdiagonal of the transition
rate matrix; see equation 2.3) are all essentially equal to each other, while
the remaining rates are all essentially zero. Since the energy function does
not penalize symmetric reciprocal rate pairs, the reciprocal rates between
nonadjacent states in a linear chain (which are both zero and thus symmet-
ric) would not contribute to the energy. Thus, it would be expected that the
optimal solutions found using this energy function would be linear chains,
and indeed the minimization procedure does drive rates between nonad-
jacent states to exactly zero, or, more precisely, the numerical limit of the
machine. The only deviations away from the ideal, infinite energy solution
occur in the rates along the lower and upper subdiagonals of the transition
rate matrix (i.e., the forward and backward rates between adjacent states
in the linear chain). As the available energy is decreased, these deviations
become more pronounced until the lower and upper subdiagonals become
equal to each other at Etot = 0. An analytical treatment of the structure of
this zero energy solution is given in section 4.2.1.

An inspection of the transition rate matrix at intermediate values of Etot

reveals that as the minimum CV2 solution deviates between the infinite
energy and the zero energy optima, the pairs of forward and backward
transition rates between adjacent states become equal, and thus give no
contribution to Etot, in sequence, starting from the last pair in the chain
(λM−1,M and λM,M−1) at some relatively high energy value and ending with
the first pair (λ12 and λ21) at Etot = 0. This sequential merging of rate pairs,
from final pair to first pair, with a decrease in the available energy was a
robust result over all network sizes tested. In Figure 3b, for example, the
results are shown for the optimization of an eight-state Markov chain. It
is clear from the figure that the transition rates deviate smoothly from the
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Figure 3: (a) The minimum CV2 achieved by the numerical optimization pro-
cedure as a function of Etot for an eight-state Markov chain using the energy
function defined in equation 4.3. At large energy values, the CV2 approaches
the asymptotic infinite energy limit ( 1

M ), while at Etot = 0, the CV2 reaches its
maximum value of 1

ξ (M) (the function ξ (M) is given by equation 4.7). (b) The
transition rate values for the six nonzero pairs of rates between adjacent states
along the linear chain (e.g., λ12 and λ21, λ23 and λ32). At large values of Etot, the
forward rates (solid lines) and the backward rates (dashed lines) approach the
infinite energy limits of M

T (for T ≡ 〈t1N〉) and zero, respectively. As the energy
is decreased, the rates smoothly deviate from these ideals until, at energy value
E6, the rates λ67 and λ76 (denoted with the •) merge and remain merged for all
lower energy values. Between E6 and E5, the rates again change smoothly until
the rates λ56 and λ65 (�) merge. This pattern repeats itself until ultimately the
first rate pair in the chain—λ12 and λ21 (�)—merges at Etot = 0. The zero energy
solutions λ1, . . . , λ6 are given by equation 4.5. Inset: The final, unpaired rate in
the chain (λ87) versus Etot. Its zero energy solution λM is also given by equa-
tion 4.5. As discussed in section 4.2.1, this rate is proportional to M, whereas
the zero energy solutions of the paired rates are proportional to i2, and so λM is
considerably slower than, for example, λM−1. Note that the abscissas are plotted
on a log scale and that the ordinate in b is plotted on a square root scale for
visual clarity.
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infinite energy ideal as Etot is decreased, until the final rate pair (denoted
with the •) merges together at the energy level E6. At all lower energy
values, these two rates remain identical and thus, given the definition of
the energy function (see equation 4.3), are noncontributory to Etot. After this
first merging, the rates again deviate smoothly with decreasing Etot until
the next rate pair (�) merges. This pattern repeats itself until, at Etot = 0,
all rate pairs have merged. The value of the unpaired rate at the end of the
chain (λ87 in this case) as a function of the available energy is shown in the
figure inset. At intermediate values of Etot, the as-yet unmerged rate pairs
(except for the first rate pair, λ12 and λ21) are all identical to each other. That
is, all of the forward rates in these unmerged rate pairs are equal, as are all
of the backward rates. For example, above E6 in Figure 3b, the forward rates
λ32, . . . , λ65 are equal, as are the backward rates λ23, . . . , λ56. In other words,
the �, �, �, and � traces lie exactly on top of each other. Only the • traces,
corresponding to the rate pair that is actively merging in this energy range,
and the � traces, corresponding to the first rate pair, deviate from the other
forward and backward rates. Between E5 and E6, the same unmerged rates
continue to be equal except for λ56 and λ65 (�), which have begun to merge.6

Essentially this means that the behavior of the system at intermediate values
of Etot is insensitive to the current position along the chain anywhere within
this set of states with unmerged rate pairs (i.e., the forward and backward
rates are the same between all adjacent states in this set).

We can understand why rate pairs should merge by considering the
energy function to be analogous to a prior distribution over a set of param-
eters in a machine-learning-style parameter optimization (e.g., a maximum
a posteriori fitting procedure). In this case, the parameters are the loga-
rithms of the ratios of the pairs of rates and the prior distribution is the
Laplace, which, in log space, gives the L1-norm of the parameters (i.e., ex-
actly the definition of the individual terms of Etot; see equation 4.3). As is
well known from the machine-learning literature, a Laplace prior or, equiv-
alently, an L1-norm regularizer, gives rise to a sparse representation where
parameters on which the data are least dependent are driven to zero and
thus ignored, while those that capture important structural features of the
data are spared and remain nonzero (Tibshirani, 1996). In this analogy, Etot

is similar to the standard deviation of the prior distribution (or the inverse
of the Lagrange multiplier of the regularizer), in that, as it is decreased
toward zero, it allows fewer and fewer nonzero log rate ratios to persist.
Ultimately, at Etot = 0, the prior distribution overwhelms optimization of
the CV2, and all the pairs of rates are driven to be equal, thus making the

6It is not clear why the first rate pair has its own unique behavior. Attempts to ana-
lytically solve for the rate values at finite, nonzero energies were unsuccessful, but these
numerical results were robust. Similarly, we were unable to determine expressions for the
merge-point energies.



1878 S. Escola, M. Eisele, K. Miller, and L. Paninski

log rate ratios zero. This analogy might lead one to consider energy func-
tions that correspond to other prior distributions, but, unlike equation 4.3,
functions based on other priors (e.g., a quadratic that would correspond to
a gaussian prior) do not result in a clear interpretation of what the energy
means, and thus they were not pursued in this work.

One interpretation of the solutions of the optimization procedure at
different energy values shown in Figure 3b is as follows. Before a rate pair
merges, the corresponding transition can thought of as directed with the
probability of a forward transition exceeding that of a backward transition.
After a merger has taken place, the probabilities of going forward and
backward become equal, and we term this behavior diffusive. At high values
of Etot, the solution is entirely directed, with the system marching from the
first state to the final state in sequence. At Etot = 0, the solution is purely
diffusive, with the system performing a random walk along the Markov
chain. At intermediate energy values, both directed and diffusive regimes
coexist. Interestingly, the directed regime always precedes the diffusive
regime (i.e., the rate pairs toward the end of the chain merge at higher
energy values than those toward the beginning of the chain). Recalling our
analogy from the previous paragraph, the first parameters to be driven to
zero using a Laplace prior are those that have the least impact in accurately
capturing the data. Therefore, in our case, we expect that the first log rate
ratios driven to zero are those that have the least impact on minimizing
the CV2 of the hitting time t1N. Thus, our numerical results indicate that
at energy levels where a completely directed solution is not possible, it
is better, in terms of variability reduction, to first take directed steps and
then diffuse rather than diffuse and then take directed steps or mix the two
regimes arbitrarily. We present a brief interpretation as to why this structure
is favored in section 4.2.2. A schematic of an intermediate energy solution
is shown in Figure 4.

4.2.1 Zero Energy or Pure Diffusion Solution. If Etot is zero under the energy
function given by equation 4.3, then all pairs of rates λi j and λ j i are forced to
be equal. The rates corresponding to transitions between nonadjacent states
in the linear chain (i.e., for |i − j | �= 1) are driven to zero by the optimization
of the CV2, while the adjacent state transition rates remain positive. It is
possible to analytically solve for the rates in such a zero energy chain as
well as find a semiclosed-form expression for the CV2 of the hitting time
t1N (see appendix D for details).

To simplify notation a bit, since transitions between adjacent states are
equal and, between nonadjacent states, zero, we can consider only the rates
λi for i ∈ {1, . . . , M} where λi ≡ λi,i+1 = λi+1,i . Then the CV2 can be shown
to be

CV2 = xT Zx
T2 , (4.4)
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Figure 4: Schematic of a nonzero, finite energy solution for a seven-state Markov
chain optimized under the energy function given in equation 4.3. In this case,
the first two transitions can be called directed since their forward rates exceed
their backward rates. The forward rate λ21, for example, is determined by the
height of the energy barrier between states 1 and 2 (i.e., it is proportional to
e−�E1 . This rate will be a larger value than the backward rate λ12 (proportional
to e−�E1−�E2 ). On the other hand, the rates between states toward the end of the
chain are equal, as represented by states that are at the same energy level. The
decreasing energy barriers toward the end of the chain represent the empirical
result that the rates increase down the length of the chain (see Figure 3). The
larger energy barrier for the final transition to state N represents the result that
this rate is much slower than the other rates at the end of the chain. As shown
in section 4.2.1 for the Etot = 0 solution, the final rate is a linear function of M,
while the other rates grow quadratically (see equation 4.5). Note that the energy
level of state N is not represented since there is no reverse transition N → M to
consider.

where we have defined the vector x as xi ≡ 1
λi

, the matrix Z as Zi j ≡
min (i, j)2, and, for notational convenience, T as 〈t1N〉. The λi that mini-
mize this CV2 are

λi =



ξ (M)
2T (4i2 − 1), i �= M

ξ (M)
T (2M − 1), i = M

, (4.5)

which, substituted back into equation 4.4, give the minimum CV2 as

CV2 = 1
ξ (M)

. (4.6)
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The function ξ (M) is calculated as

ξ (M) = 1
2

(
�

(
M + 1

2

) + γ
) + ln 2, (4.7)

where �(x) is the digamma function defined as the derivative of the log-
arithm of the gamma function (i.e., �(x) ≡ d

dx ln 	(x)) and γ is the Euler–
Mascheroni constant. Although �(x) has no simple closed-form expression,
efficient algorithms exist for determining its values. For M = 1, ξ (1) = 1,
and, as can be shown by asymptotic expansion of �(x), ξ (M) grows loga-
rithmically with M.

Compared to the CV2 versus number-of-states relationship at infinite en-
ergy (see equation 3.2) in the zero energy setting, the CV2 scales inversely
with log N (see equation 4.6) rather than with N, and thus adding states
gives logarithmically less advantage in terms of variability reduction. Fur-
thermore, to achieve even this modest improvement with increasing N, the
rates must scale with i2 (i.e., λi ∝ 4i2 − 1; see equation 4.5), and thus the
rates toward the end of the chain need to be O(N2 ln N), while those near
the start are only O(ln N). To summarize, then, the zero energy setting has
two disadvantages over the infinite energy case. First, for the optimal so-
lution, the CV2 is inversely proportional to the logarithm of N rather than
to N itself, and second, even to achieve this modest variability reduction, a
dynamic range of transition rates proportional to N2 must be maintained.

4.2.2 The Diffusive Regime Follows the Directed Regime. We can understand
the numerical result that, at intermediate energy values, the diffusive regime
always follows the directed regime by careful consideration of the structure
of this solution. First, let us assume that for some value of Etot, the directed
regime consists of Mi directed transitions and that the remainder of the
system consists of a purely diffusive tail with Mr transitions (where N =
Mi + Mr + 1). Recalling that transitions to state N are always unpaired,
then there are actually Mi + 1 directed transitions for this intermediate en-
ergy solution: Mi in the directed regime and one at the end of the diffusive
tail. However, the energy resources of the system are being devoted solely to
maintain the Mi transitions composing the directed regime, since the energy
function (see equation 4.3) does not penalize perfectly reversible transitions
or transitions leading to state N, such as the one at the end of the diffusive
tail.

Now consider if the diffusive regime preceded the directed regime. Then,
although there would still be Mi + 1 directed transitions (one at the end
of the diffusive regime leading into the directed regime and Mi in the
directed regime), the energy resources would be apportioned in a new
manner. The final transition of the directed regime, since it leads to state
N, would not incur any penalty, while the final transition of the diffusive
regime would incur a penalty since it now leads to the first state of the



Maximally Reliable Markov Chains Under Energy Constraints 1881

directed regime rather than to state N. In other words, the final transition
of the diffusive regime is penalized, as are the first Mi − 1 transitions of
the directed regime. It is now possible to understand why our numerical
optimizations always yield solutions with directed-first, diffusive-second
architectures. If the transition rate at the end of the diffusive regime λM r (to
use the notation introduced in section 4.2.1) is greater than the transition
rate at the end of the directed regime λ, then more energy would be required
for the diffusive-first architecture, which would penalize λM r , than for the
directed-first architecture, which does not. Numerically, λM r is always seen
to be greater than λ, and the following simple analysis also supports this
idea.

If we approximate the directed regime as consisting of Mi perfectly irre-
versible transitions with backward rates of exactly zero, then the directed
and diffusive subchains can be considered independently, and thus their
variances can be added as

var(t1N) = var(ti ) + var(tr )

= T2
i

Mi
+ T 2

r

ξ (Mr )
, (4.8)

where we have multiplied the expressions for the CV2 of an ideal linear
chain (see equation 3.2) and a zero energy, purely diffusive chain (see equa-
tion 4.6) by the squares of the mean processing times for each subchain
(Ti and Tr ) to get the variances. In order to find the relative rates between
the directed and diffusive portions of the chain, we minimize equation 4.8
with respect to the subchain means subject to the constraint that the mean
total time is T . This gives

Ti = Mi

Mi + ξ (Mr )
T (4.9)

and

Tr = ξ (Mr )
Mi + ξ (Mr )

T. (4.10)

The forward rate along the directed portion of the chain is thus

λ= Mi

Ti

= Mi + ξ (Mr )
T

, (4.11)
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and the final rate along the diffusive portion (see equation 4.5) is thus

λM r = ξ (Mr )
T r

(2Mr − 1)

= Mi + ξ (Mr )
T

(2Mr − 1)

= λ (2Mr − 1) . (4.12)

Therefore, for the case of a perfectly irreversible directed regime, the final
transition rate of the diffusive regime is always larger than the rate of the
directed regime as long as Mr > 1. Although this result does not necessarily
hold for real intermediate energy solutions (where the directed regime is not
perfectly irreversible), this analysis seems to explain the numerical result
that the directed-first architecture is optimal.

4.3 Energy Cost Function II: Constrain Incommunicability Between
States. Although the results from the previous section are revealing and
provide insight into why a physical system might be limited in the number
of directed steps it can maintain (as discussed in section 4.4, the diffusive
tail found at intermediate values of Etot in the previous section is essentially
negligible in terms of variability reduction), it is unclear whether the energy
cost function given in equation 4.3 is generally applicable to an arbitrary
multistate physical process. Therefore, as a test of the robustness of our
results, we defined an additional cost function to determine the behavior
of the optimal solution under a different set of constraints. As shown in
sections 4.4 and 4.5, the results given by our second cost function, while
superficially appearing to be quite different, are in fact analogous to those
given in the preceding section.

Our second energy cost function is predicated on the idea that there
should be a large penalty for all near-zero rates, or, equivalently, that
the maintenance of incommunicability between states should be costly.
Although not as neatly tied to a physical energy as the first energy function
(which is exactly analogous to the Gibbs free energy; see section 4.2), a small
rate of transition between two states can be thought of as resulting from
a high “energy” barrier that is preventing the transition from occurring.
Inversely, a large rate corresponds to a low energy barrier, and in the limit,
one can think of two states with infinite transition rates between them as in
fact the same state. This idea is schematized in Figure 2c for the transitions
between a pair of states i and j . The energy E ji can be thought of as the
energy needed to permit the transition from i to j , and similarly for Ei j .
Given our intuition regarding the relationship between energies and rates,
from the diagram one expects that the rate λ j i is faster than the rate λi j ,
since E ji is less than Ei j . The total energy in the system Etot can simply be
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defined as the sum of energies associated with each transition in the system:

Etot ≡
∑
i, j

Ei j . (4.13)

The energies of the transitions originating in state N are excluded from
the preceding sum since their associated transition rates do not affect the
hitting time t1N (i.e., transitions away from state N are irrelevant).

To determine a reasonable expression for the individual transition ener-
gies, we choose a function such that for near-zero transition rates, Ei j → ∞,
and, for large transition rates, Ei j → 0, which corresponds to our intuition
from the previous paragraph. The following definition for the transition
energy, plotted in Figure 2d, meets these two conditions:

Ei j ≡ − ln λi j + ln(λi j + 1). (4.14)

Therefore, the sceond energy cost function is

Etot =
∑
i, j

− ln λi j + ln(λi j + 1). (4.15)

Our results are insensitive to the exact definition of the function as long as
the asymptotic behaviors at transition rates of zero and infinity are retained.

The results of numerical optimization of the rates λi j to minimize the CV2

for a five-state Markov chain are given in Figure 5a. For large values of Etot,
the optimal solution is represented by the � trace. This solution asymptotes
to 1

4 , which is the theoretical minimum for N = 5 (see equation 3.2). Thus,
the optimized transition rate matrix looks essentially identical to the ideal,
infinite energy solution:

A =



− 4
T 0 0 0 0
4
T − 4

T 0 0 0

0 4
T − 4

T 0 0

0 0 4
T − 4

T 0

0 0 0 4
T 0


, (4.16)

where T ≡ 〈t1N〉. Since Etot is finite, transition rates of exactly zero are not
possible, but for large enough values of Etot, the rates given as zero in
equation 4.16 are in fact optimized to near-zero values. Note that this is
a different behavior from that seen in the previous section, where recip-
rocal rates between nonadjacent states in the linear chain were optimized
to exactly zero (or, at least, the machine limit) and only the forward and
backward rates along the linear chain were affected by the amount of avail-
able energy. In this case, all of the rates in the matrix are affected by Etot,
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Figure 5: (a) The minimum achievable CV2 resulting from numerical optimiza-
tion of the rates of a five-state Markov chain as a function of Etot (given by
equation 4.15). The trace marked with the � corresponds to a solution close to
the five-state linear chain given by equation 4.16, which is the theoretical op-
timum. As Etot decreases, this solution deviates from the optimal linear chain,
and the CV2 increases from the theoretical limit ( 1

4 ) until, at the intersection
of the � and � traces, the solution corresponding to a linear chain with four
effective states (two of the five available states have merged; see equation 4.17)
becomes optimal. This four-state chain also deviates from its theoretical mini-
mum with decreasing Etot until the linear chain with three effective states (see
equation 4.18), shown with the �, becomes optimal. The minimum energy limit
corresponds to a chain with two effective states (see equation 4.19), and this so-
lution is represented with the •. See the text for a fuller interpretation of these
results. (b–d) The optimal transition rates as they vary with Etot for Markov
chains with five (b), four (c), and three (d) states. At large energy values, the
rates along the lower subdiagonal of the transition rate matrix (i.e., the rates that
compose the linear chain) are equal to M

T , while all other rates are essentially
zero (thus, the upper and lower sets of curves in b–d). These are the optimal
solutions. As Etot decreases, the rates deviate from their ideal values and the
CV2 grows as in a. The dashed vertical lines mark the energy values where the
CV2 is equal for numerically optimized chains of different lengths. At E5→4, for
example, the minimum achievable CV2 is the same for both the five- and four-
state Markov chains. This is where the � and � traces cross in a. It is clear from
these crossing points that the linear structure of the shorter chain is essentially
fully intact, while that of the longer chain has started to degrade significantly.
In d, the three-state Markov chain is seen to converge to the two-state solution
(shown with the•) at Emin. One of the rates becomes 1

T , while the others diverge
to infinities (i.e., two of the three states merge).

and the degree to which the rates given as zero in equation 4.16 deviate from
true zero depends on the energy. Thus, while in the previous section, the
linear architecture is maintained at all values of Etot, optimization under the
second energy function would be expected to corrupt the linear structure,
and, indeed, as Etot is decreased, all of the near-zero rates, including those
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between nonadjacent states in the linear chain, deviate further from zero.
Concomitantly, the minimum CV2, as shown in Figure 5a, is seen to rise as
expected.

The � trace in Figure 5a corresponds to another stable solution of the op-
timization procedure, which, for large values of Etot, is not globally optimal.
Inspection of the solution reveals the following transition rate matrix:

A =



− 3
T 0 ∞ 0 0
3
T − 3

T ∞ 0 0
0 3

2T −∞2 ∞ 0
0 3

2T ∞2 −∞ 0
0 0 ∞ 3

T 0


, (4.17)

where, in the third column, ∞2 is an infinity of a different order from the
other infinities in the column (e.g., 10100 versus 1050). This hierarchy of
infinities is an artifact of the numerical optimization procedure, but the
solution is nonetheless revealing. Essentially, states 3 and 4 are merged
into a single state in this solution. Whenever the system is in state 3, it
immediately transitions to state 4 because the infinity of the higher order
(i.e., ∞2) dominates. From state 4, the system immediately transitions back
to state 3, and thus states 3 and 4 are equivalent. There is a single outflow
available from this combined state to state 5 with rate 3

T . Furthermore, there
are two sources of input into states 3 and 4, both from state 2, but since the
states are combined, this is the same as a single source with a total rate also
of 3

T . Finally, there is an irreversible transition from state 1 to 2 with rate 3
T .

This, then, is exactly the optimal solution for a four-state Markov chain: for
large values of Etot, every forward rate is equal to 3

T , all other rates are near
zero, and the CV2 asymptotes to the theoretical minimum of 1

3 .
The solution to which the � trace corresponds can be interpreted simi-

larly to that of the � trace, except that in this case, states 2, 3, and 4 have all
merged, and thus the effective number of states is three, not four. For large
Etot, the transition matrix approaches

A =



− 2
T ∞ ∞ 0 0
2

3T −∞2 ∞ ∞ 0
2

3T ∞ −∞2 ∞ 0
2

3T ∞2 ∞2 −∞ 0
0 ∞ ∞ 2

T 0


, (4.18)

which is the optimal solution for a three-state Markov chain (i.e., the forward
rates are 2

T , the others rates are zero, and the asymptotic CV2 is 1
2 ).
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The• represents the two-state system where the first four states have all
merged:

A =



−∞2 ∞ ∞ ∞ 0

∞ −∞2 ∞ ∞ 0

∞ ∞ −∞2 ∞ 0

∞2 ∞2 ∞2 −∞ 0

∞ ∞ ∞ 1
T 0


. (4.19)

In this case, the constraints on the desired mean and on Etot cannot both be
met for arbitrary values of the two variables. There is only one rate available
to the optimization procedure in a two-state system, and thus, for mean T ,
the transition rate must be 1

T . Therefore, Etot is not a free variable and is
locked to ln (T + 1) by equation 4.15. This is another point of difference
from the results in the preceding section where the constraint on the mean
could still be satisfied when the energy was zero (i.e., when all reciprocal
pairs of rates of were equal).

Analysis of the behavior of the solutions with greater than two states
as the total energy is decreased is revealing. In all cases, as expected, the
minimum values of the CV2 deviate from the infinite energy asymptotes,
but, more interestingly, the curves cross. At the point where the � and �
traces cross in Figure 5a, for example, the four-state system becomes the
globally optimal solution despite the fact that its theoretical minimum at
infinite energies is higher than that of the five-state system (i.e., 1

3 > 1
4 ). This

can be understood by considering how the available energy that constitutes
a given value of Etot is divided up among the rates of the system. The
largest penalties are being paid for the near-zero rates, and thus most of
the available energy is apportioned to maintain them. As Etot is decreased,
maintaining the near-zero rates becomes impossible, and so the network
topology begins to deviate significantly from the infinite energy optimum
with the CV2 growing accordingly. This deviation occurs at higher values
of Etot for a five-state system than for a four-state system because there are
more near-zero rates to maintain for a larger value of N.

Thus, we can understand the trade-off imposed on the system by the
energy function given in equation 4.15. The inability to maintain a long,
irreversible linear chain at decreasing energy values drives the system to
discard states and focus on maintaining a linear chain of a shorter length
rather than a branching or loopy chain with more states. Figures 5b to 5d
show the degree to which the transition rates deviate from their optimal
values for Markov chains of five, four, and three states. The energy thresh-
olds below which a four-state chain outperforms a five-state chain and a
three-state chain outperforms a four-state chain are indicated in the figures.
It is clear that at these crossing points, the linear structure of the shorter
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chain is essentially totally intact, while that of the longer chain has been
significantly degraded.

4.4 Comparison of Energy Functions I and II at Finite Nonminimal
Energies. The results of the optimizations under the two energy functions
in the preceding sections are illuminating. From the theoretical develop-
ment of the optimal linear Markov chain topology (see section 3), we saw
that the CV2 of the hitting time was equal to 1

M (see equation 2.9), which
suggests that a physical system can arbitrarily improve its temporal reliabil-
ity by increasing the number of states. If, however, as in the second energy
function (see equation 4.15), a cost is incurred by a system for maintaining
zero transition rates (which, functionally, results in incommunicability be-
tween states), then, given a finite amount of available energy, we see from
section 4.3 that there is some maximum number of states N max achievable
by the system regardless of the total allowable size of the state space N. The
CV2 is thus at best equal to 1

M max
where Mmax ≡ N max − 1 (i.e., assuming

that the linear chain architecture with N max states is essentially fully intact;
see Figure 5).

Alternatively, as in the first energy function (see equation 4.3), by em-
ploying a cost incurred for the inclusion of asymmetries between reciprocal
pairs of transition rates in the system topology (i.e., irreversible transitions),
then, as shown in section 4.2, only a subset of the total number of transitions
can be close to irreversible, while the rest must be fully reversible with equal
forward and backward transition rates (see Figure 3). Although in this case,
a larger N will always result in a lower CV2, a simple analysis reveals that
an effective maximum number of states Neff can be defined that is much
less than N itself. If, as in the analysis in section 4.2.2, one assumes that
the first Mi transitions form a perfect, irreversible linear chain and that the
remainder of the system consists of Mr fully reversible transitions (where
N = Mi + Mr + 1), then, by combining equations 4.8, 4.9, and 4.10, the CV2

is given as

CV2 = 1
Mi + ξ (Mr )

. (4.20)

By comparing equation 4.20 with the CV2 equation for the ideal chain (see
equation 3.2), we can equate the denominators and thus define an effective
number of states as

Neff ≡ Mi + ξ (Mr ) + 1. (4.21)

Since ξ (M) grows logarithmically, Neff ≈ Mi unless the magnitude of N
is on the order of e M i or greater. Furthermore, since the available energy
dictates what fraction of the N-state chain can be irreversible and thus the



1888 S. Escola, M. Eisele, K. Miller, and L. Paninski

value of Mi , then, in the absence of a massive state space, the energy is the
primary determining factor in setting the temporal variability, while the
value of N itself is secondary.

From this, it appears that the maximally reliable solutions at finite non-
minimal energies under either energy constraint are in fact quite similar. If
irreversibility is penalized, then, as long as N is limited enough such that
ξ (Mr ) 
 Mi , the available energy sets the number of states to Neff (≈ Mi ).
If, rather, incommunicability is penalized, then, regardless of how large N
is permitted to be, the available energy mandates that the number of states
be limited to N max. Furthermore, in both cases, the solutions are essentially
irreversible linear chains. The only difference between the two solutions—
the diffusive tail at the end of the chain optimized under the first energy
function—has minimal impact on the behavior of the system.7

Figure 6a shows the relationship between the total allowable number
of states N and the minimum achievable CV2 under the two energy cost
functions where the available energies have been tuned such that Mmax

and Mi are equal, finite, and nonzero. As is clear from Figure 6, although
the variability does continue to decrease as N is increased past Mi for the
solutions determined under the first energy function (�), the difference
compared to the variability resulting from the second energy function (�)
is minimal. The values of the CV2 as functions of N are shown for two
different settings of Mmax and Mi , and although the domain of N stretches
over several orders of magnitude in the figure, the primary determinants
of the CV2 are the values of Mmax and Mi , not N, for both settings.

4.5 Comparison of Energy Functions I and II at Minimal Energies.
Although optimization at finite nonminimal energy values under the two
cost functions results in similar solutions, at minimal energies, the solutions
seem quite different. Recall from section 4.2.1 that at Etot = 0 (the minimal
energy value under the first energy function), the CV2 of the minimally
variable solution is equal to 1

ξ (M) and thus decreases toward zero with
increasing N. Under the second energy function, however, the CV2 is always
equal to 1 for all N at the minimal energy value (recall from section 4.3 that
with mean hitting time T , the minimal energy value is ln(T + 1) at which
point all of the states have merged leaving Nmax equal to 2). These different
behaviors as functions of N are shown in Figure 6b as the � and �, traces
respectively. Although 1

ξ (M) approaches zero much more slowly than the
CV2 of the infinite energy solution ( 1

M ), it is still significant compared to
the CV2 of the minimal energy solution under the second cost function
(i.e., 1). However, as discussed in section 4.2.1, to achieve a CV2 of 1

ξ (M) , the

7Note that many more states may be in the diffusive tail than in the irreversible linear
chain portion of the solution, but as long as ξ (Mr ) 
 Mi , these states fail to remarkably
change the reliability of the system.
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Figure 6: (a) The decrease in the CV2 as a function of the total allowable size
of the state space N for maximally reliable solutions determined under the first
(�) and second (�) energy functions where the energies have been tuned such
that Mi = Mmax = 10 (solid lines) and Mi = Mmax = 20 (dashed lines). Over a
large range of N, the solutions determined under the first energy function are
seen to deviate little from those determined under the second despite their long,
diffusive tails. The CV2 in the infinite energy case ( 1

M ) is shown as a reference
(�). (b) The CV2 as a function of N for the minimal energy solutions resulting
from the first energy function ( 1

ξ (M) ; �) and the second energy function (1; �).
Unlike in a for nonminimal energies, these solutions differ quite significantly
with N. However, if the range of transition rates is restricted, then the CV2 of the
solution determined under the first energy function does not decrease to zero
with increasing N but rather reaches a constant as in the• trace for a maximally
restricted range where all the transition rates are equal (then CV2 = 2

3 ; see the
text for details). The infinite energy solution is again shown for comparison.
Note that the abscissas are plotted on a log scale.

transition rates near the end of the linear chain must be on the order of N2

times larger than the values of the rates near the beginning of the chain.
Maintaining such a large dynamic range of rates may be infeasible in

the context of a specific system, and so it is reasonable to consider what
the advantage is in terms of variability reduction of having such a large
range of rates versus having a single nonzero rate (i.e., a constant rate λ for
all reciprocal pairs of rates between adjacent states in the linear chain). By
substituting a constant rate into equation 4.4 and simplifying, the following
can be shown:

CV2 = 2
3

(
1 + 1

N2 − N

)
. (4.22)

This rapidly gives a CV2 of 2
3 with increasing N (the• trace in Figure 6b), and

thus it is clear that only with an unrestricted range of rates can the variability
be driven arbitrarily close to zero by adding states. If an unrestricted range
is not feasible, then even at minimal energy values, the solutions given by
the two energy cost functions are not qualitatively different. That is, both
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Figure 7: (a) The mean and the ±1σ deviations of the CV2 as a function of
N, determined empirically from 2000 random transition rate matrices at each
value of N, with rates drawn as i.i.d. samples from an exponential distribution.
For large N, the distribution of the CV2 is a delta function at 1. This indi-
cates that random N-state chains are performing identically to two-state chains.
(b–d) The instantaneous (in black) and mean (in gray) transition rates to state N
as the system transitions between the first N − 1 states of random (b) 10, (c) 100,
and (d) 1000-state chains with transition rates drawn i.i.d. from an exponential
distribution with mean 1. The correlation time of the instantaneous transition
rate scales as 1/N, and so, for large N, the mean rate, which is also the mean of
the distribution from which the transition rates are drawn, dominates.

result in constant values of the CV2 that are independent of N (compare the
� and • traces in Figure 6b).

4.6 Reliability of Random Transition Rate Matrices. In all cases, under
either energy function at any amount of available energy from the minimal
possible value to infinity, the goal of the system is to reduce the temporal
variability within the given energy constraints, and, as has been shown
throughout this article, this is achieved by choosing the maximally reliable
network structure among the set of structures that meet the constraints.
Thus, it is reasonable to consider the value of choosing an explicit structure
rather than an arbitrary random connectivity between a set of states. In
Figure 7a, we show the distribution of the CV2 as a function of N, calculated
empirically from 2000 random transition matrices at each value of N, with
transition rates λi j drawn as independent and identically distributed (i.i.d)
samples from an exponential distribution. As N increases, the distribution
of the CV2 quickly converges to a delta function centered at one. This is the
CV2 of a minimally reliable two-state system. Numerical studies using other
random rate distributions with support on the positive real line (e.g., the
uniform, gamma, log-normal) produced the same result.

While initially surprising, the convergence observed in Figure 7a can
be easily understood as a consequence of the averaging phenomenon
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illustrated in Figures 7b to 7d. These figures show λ(t), the instantaneous
transition rate to state N, for sample evolutions of random matrices with 10,
100, and 1000 states. If the state of the system at time t is given by q (t), then
λ(t) equals λNq (t), the rate of transition from state q (t) to state N. As is clear
from the figures, the correlation time of λ(t) goes to zero with increasing N
(it can be shown to scale as 1/N), and so a law of large numbers averaging
argument can be applied to replace λ(t) with its mean (i.e., λ̄, the mean of
the distribution from which the transition rates are drawn). In particular,
the time-rescaling theorem (Brown, Barbieri, Ventura, Kass, & Frank, 2002)
establishes that the random variable u, defined as

u =
∫ t1N

0
λ(t)dt, (4.23)

is drawn from an exponential distribution with mean one. By the averaging
argument, u reduces as follows:

lim
N→∞

u = λ̄t1N. (4.24)

Finally, since u is distributed exponentially with mean one, then t1N is
distributed exponentially with mean 1/λ̄, and thus must have a CV2 of 1
(confirming the numerical results).

These results make clear the advantage of specific network structure over
arbitrary connectivity. A CV2 of 1 is the same as the reliability of a two-state,
one-step process. That is, a random network structure, regardless of the size
of N, is minimally reliable.

5 Summary

Many physical systems require reliability in signal generation or temporal
processing. We have shown that for systems that may be modeled reason-
ably well as Markov chains, an irreversible linear chain architecture with
the same transition rate between all pairs of adjacent states (see Figure 1b) is
uniquely optimal over the entire set of possible network structures in terms
of minimizing the variability of the hitting time t1N (equivalently, the archi-
tecture that optimally minimizes the variability of the total generated signal
F1N is a linear chain with transition rates between pairs of adjacent states
that are proportional to the state-specific signal accumulation rates). This
result suggests that a physical system could become perfectly reliable by
increasing the length of the chain, and so we have attempted to understand
why perfect reliability is not observed in natural systems by employing
energy cost functions that, depending on the amount of available energy,
reduce the possible set of network structures by some degree. Although the
two functions are quite different, the optimal network structures resulting
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from maximizing the system reliability under the constraints of either func-
tion are in fact quite similar. In short, they are irreversible linear chains with
a fixed maximum length.

We would predict that natural systems for which temporal or total sig-
nal reliabilities are necessary features would be composed of linear chains
of finite length, with the length determined by the specific constraints en-
countered by the system. This prediction has applications across many
disciplines of biology. For example, it suggests both that the sequence of
openings and closings in the assemblage of ion channels responsible for
active membranes processes (i.e., action potentials) and the progression of
a dynamical neural network through a set of intermediate attractor states
during the cognitive task of estimating an interval of time, should be irre-
versible linear processes. Our analysis is also useful in the event that some
system for which signal reliability is important is found to have a branching
or loopy structure. By setting the linear structure as the theoretical limit,
deviations from this limit may offer insight into what other counteracting
goals physical systems are attempting to meet.

Appendix A: Proof of the Optimality of the Linear, Constant-Rate
Architecture

The primary theoretical result of this article is that a linear Markov chain
with the same transition rate between all pairs of adjacent states is optimally
reliable in terms of having the lowest CV2 of the hitting time from state 1 to
state N of any N-state Markov chain (see Figure 1b). To establish this result,
we prove the following two theorems.

Theorem 1 (general bound). The following inequality holds for all Markov
chains of size N and all pairs of states i and j :

CV2
i j ≥ 1

N − 1
, (A.1)

where the CV2
i j is the squared coefficient of variation of ti j , the hitting time from

state i to j .

Theorem 2 (existence and uniqueness). The equality CV2
i j = 1

N−1 holds if and
only if states i and j are the first and last states of an irreversible, N-state linear
chain with the same forward transition rate between all pairs of adjacent states and
with state j as a collecting state.

We employ an inductive argument to prove these theorems. It is trivial
to establish the base case of N = 2. Since the random variables t12 and
t21 are both exponentially distributed (i.e., with means 1/λ21 and 1/λ12,
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Figure 8: (a) A sample path through an N-state Markov chain conditioned on
the assumption that the system loops back to return to the start state i twice
(R = 2). By conditioning the hitting time ti j on such a path, proof by induction
is possible since the time required for the final transit to state j refers, by
definition, to a network of size N − 1 excluding state i . The wavy lines indicate
unspecified paths requiring unspecified numbers of transitions. (b) A schematic
of how the hitting time ti j conditioned on two loops (R = 2) is decomposed into
a set of conditionally independent random variables according to equations A.2
and A.4. The upper box represents the conditional hitting time ti j |R, while the
smaller boxes represent the proportion of the total time due to, in sequential
order from left to right: wi,1, the dwell time in state i prior to loop 1; tloop,1, the
subsequent time required to loop back to i ; wi,2, the dwell time in i prior to
loop 2; tloop,2, the subsequent time required to loop back to i ; wi , the dwell time
in i prior to the final transit to j ; and tpath, the time required for the final transit
to j . Note that the blocks representing the loop times and the final transit time
correspond sequentially to the wavy lines labeled 1, 2, and 3 in a.

respectively), and since the CV2 for exponential distributions is known to
be unity, theorem 1 holds. Furthermore, both t12 and t21 satisfy the conditions
for theorem 2 (i.e., they are hitting times between the first and last states
of linear chains with the same transition rates between all pairs of adjacent
states), and both saturate the bound. As they are the only hitting times in
a two-state network, then theorem 2 also holds for N = 2. This establishes
a base case and allows us to employ an inductive argument to prove the
general result (i.e., by assuming that theorems 1 and 2 hold for networks of
size N − 1 and proving that they hold for networks of size N).

The logic of the proof is illustrated in Figure 8. We break up the hitting
time ti j into a sum of simpler, independent random variables whose means
and variances can be easily determined and to which some variance in-
equalities and the induction principle can be applied. Specifically, ti j can be
decomposed into the following sum:

ti j = ti+l + tpath, (A.2)
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where ti+l is the total time the system spends in the start state i and during
any loops back to state i , while tpath is the time required for the transit along
the path through the network to state j after leaving state i for the final time.
The important part of this decomposition is that tpath is a random variable
over a reduced network of size N − 1 (excluding state i), which will allow
us to apply the inductive principle. Since ti+l and tpath are independent
variables due to the Markov property, their means and variances simply
add, and so we can write the following expression for the CV2

i j of the
hitting time ti j :

CV2
i j ≡ var

(
ti j

)
〈ti j 〉2

= var(ti+l ) + var
(
tpath

)
(〈ti+l〉 + 〈tpath〉)2 . (A.3)

To establish theorem 1, this quantity must not be less than 1
N−1 for any

topology, and to establish theorem 2, it must equal 1
N−1 only for a hitting

time ti j where i is the first state and j the final state of a constant-rate,
irreversible linear chain of length N. To analyze equation A.3 and thus
establish these theorems, we need expressions for the means and variances
of the total pre–final transit time ti+l and of the final transit time tpath.

A.1 Mean and Variance of the Pre–Final Transit Time ti+l. The statistics
of ti+l can be determined by first considering the conditional case where the
number of return loops back to state i prior to hitting state j is assumed to
be R. Then ti+l (the sum of the total dwell time in start state i plus the total
loop time) conditioned on R can be further decomposed as follows:

ti+l |R =
(

R∑
r=1

wi,r + tloop,r

)
+ wi , (A.4)

where wi,r is the dwell time in state i at the beginning of the r th loop, tloop,r

is the time required to return to state i for the r th loop, and wi is the dwell
time in state i prior to the final transit to state j .8 The total hitting time
ti j conditioned on R loops is given as the sum of the right-hand side of
equation A.4 and tpath (see Figure 8 for a schematic when R = 2).

The conditional pre–final transit time ti+l |R is simple to analyze since,
due to the Markov principle, the random variables on the right-hand side

8Note that hitting time variables (e.g., ti j ) refer to specific start and end states (i and
j , in this case), while tloop and tpath refer to specific end states (i and j , respectively), but
not specific start states.
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of equation A.4 are all conditionally independent given R. Thus, we can
calculate the conditional mean and variance as

〈ti+l〉p(ti+l |R) =
(

R∑
r=1

〈wi,r 〉 + 〈tloop,r 〉
)

+ 〈wi 〉

= (R + 1) 〈wi 〉 + R 〈tloop〉 (A.5)

and

var(ti+l )p(ti+l |R) = (R + 1) var(wi ) + R var
(
tloop

)
= (R + 1) 〈wi 〉2 + R var

(
tloop

)
, (A.6)

where we have used the notation that 〈 f (x)〉p(x) and var( f (x))p(x) are de-
fined, respectively, as the mean and variance of f (x) over the distribution
p(x). In equations A.5 and A.6, we are able to drop the r indices since we
assume time homogeneity and thus that (1) the distribution over the dwell
time in state i prior to loop r (wi,r ) is the same for every loop r and the same
as the distribution over the dwell time in i prior to the final transit to j (wi ),
and that (2) the distribution over the time required to loop back to i for the
r th loop (tloop,r ) has the same distribution for each loop. Furthermore, in
equation A.6, since the dwell time wi is an exponentially distributed ran-
dom variable and thus has a variance equal to the square of its mean, we
have substituted var(wi ) with 〈wi 〉2.

To construct expressions for the marginal mean and variance of the pre–
final transit time (〈ti+l〉p(ti+l ) and var(ti+l )p(ti+l )) from the conditional mean and
variance (see equations A.5 and A.6), the following identities are useful:

〈x〉p(x) = 〈〈x〉p(x|y)〉p(y) (A.7)

and

var(x)p(x) = var
(〈x〉p(x|y)

)
p(y) + 〈var(x)p(x|y)〉p(y)

. (A.8)

Thus, for the marginal mean, we have

〈ti+l〉p(ti+l ) = 〈〈ti+l〉p(ti+l |R)〉p(R)

= 〈(R + 1)〈wi 〉 + R 〈tloop〉〉p(R)

= (〈R〉 + 1) 〈wi 〉 + 〈R〉〈tloop〉. (A.9)
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Similarly, for the marginal variance, we have

var(ti+l )p(ti+l ) = var(〈ti+l〉p(ti+l |R))p(R) + 〈var(ti+l )p(ti+l |R)〉p(R)

= var((R + 1)〈wi 〉 + R 〈tloop〉)p(R)

+〈(R + 1)〈wi 〉2 + R var
(
tloop

)〉p(R)

= var(R 〈wi 〉 + R 〈tloop〉)p(R)

+(〈R〉 + 1)〈wi 〉2 + 〈R〉var
(
tloop

)
= var(R)(〈wi 〉 + 〈tloop〉)2 + (〈R〉 + 1)〈wi 〉2

+〈R〉var
(
tloop

)
=〈R〉(〈R〉 + 1)(〈wi 〉 + 〈tloop〉)2

+(〈R〉 + 1)〈wi 〉2 + 〈R〉var
(
tloop

)
, (A.10)

where we have used the fact that the mean dwell time 〈wi 〉 and the mean
loop time 〈tloop〉 are both independent of R, and, in the final step, the fact
that the number of loops R is given by a shifted geometric distribution, and
thus has a variance equal to 〈R〉(〈R〉 + 1).

By expanding the first term in equation A.10, and then refactorizing
and substituting in the expression for the mean (see equation A.9), we can
rewrite the variance of ti+l as

var(ti+l ) = 〈R〉(var(tloop) + 〈tloop〉2) + ((〈R〉 + 1)〈wi 〉
+ 〈R〉〈tloop〉)2

= 〈R〉(var(tloop) + 〈tloop〉2) + 〈ti+l〉2. (A.11)

A.2 Variance of the Final Transit Time tpath in Terms of Hitting Times.
In order to get an expression for the variance of the time for the final transit
tpath in terms of hitting times over reduced networks of size N − 1 (so that
we can use induction), we apply the identity given in equation A.8 to
decompose the variance of tpath as

var
(
tpath

) ≡ var
(
tpath

)
p(tpath)

= var
(
〈tpath〉p(tpath|k)

)
p̂(k)

+
〈
var

(
tpath

)
p(tpath|k)

〉
p̂(k)

,

(A.12)

where state k is the first state visited by the system after state i at the
beginning of the final transit from i to j . The random variable tpath was
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originally defined as the time required for the final transit to state j , and
so, given a specific start state, tpath|k is thus the time required for the path
from state k to state j , which is exactly the definition of the hitting time tk j .
Substituting this equivalence into equation A.12, we get the following:

var
(
tpath

) = var(〈tk j 〉) p̂(k) + 〈var(tk j )〉 p̂(k)

= var(〈tk j 〉) p̂(k) + 〈CV2
k j 〈tk j 〉2〉

p̂(k)
, (A.13)

where we have replaced the variance of the hitting time tk j with the product
of the squares of the CV and the mean, an equivalent formulation.

A.3 Establishing Theorem 1. Returning to the CV2
i j of the hitting time

ti j (see equation A.3), we can replace var(ti+l ) with the second term of
equation A.11 and var

(
tpath

)
with the second term of equation A.13 (the first

terms of equations A.11 and A.13 are nonnegative) to state the following
bound:

CV2
i j ≥

〈ti+l〉2 + 〈CV2
k j 〈tk j 〉2〉

p̂(k)(〈ti+l〉 + 〈tpath〉)2 . (A.14)

Next, we can employ the inductive step of the proof and assume that theo-
rem 1 is true for the reduced networks represented by tk j (recall that these
subnetworks are of size N − 1 since state i is withheld by definition from
tpath and thus from tk j ). This substitution yields the expression

CV2
i j ≥

〈ti+l〉2 + 1
N−2 〈〈tk j 〉2〉 p̂(k)(〈ti+l〉 + 〈tpath〉)2 . (A.15)

We can also use the fact that the second moment of a random variable is not
less than the square of its mean (i.e., 〈x2〉 ≥ 〈x〉2) to perform an additional
inequality step:

CV2
i j ≥

〈ti+l〉2 + 1
N−2 〈〈tk j 〉〉2

p̂(k)(〈ti+l〉 + 〈tpath〉)2 . (A.16)

Finally, recalling that the hitting time mean 〈tk j 〉 is equivalent to 〈tpath〉p(tpath|k),
we can use the identity given in equation A.7 to replace 〈〈tk j 〉〉 p̂(k) and state
the following final expression for the CV2

i j :

CV2
i j ≥ 〈ti+l〉2 + 1

N−2 〈tpath〉2(〈ti+l〉 + 〈tpath〉)2 (A.17)
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or

CV2
i j ≥ L2 + 1

N−2 P2

(L + P)2 , (A.18)

where, for notational simplicity, we have replaced 〈ti+l〉 and 〈tpath〉 with L
and P , respectively.

Our goal is to establish that the CV2
i j is not less than 1

N−1 for all networks
of size N. Since equation A.18 is true for all networks, if the minimum
value of the ratio on the right-hand side of the inequality is greater than or
equal to 1

N−1 , the theorem is proved. The network topology affects this ratio
through the values of L and P , and so we minimize with respect to these
variables, ignoring whether the joint minimum of L and P corresponds to
a realizable Markov chain (i.e., since the unconstrained minimum cannot
be greater than any constrained minimum, if the inequality holds for the
unconstrained minimum, it must hold for all network structures):

CV2
i j ≥ min

networks
CV2

i j

≥ min
L ,P

L2 + 1
N−2 P2

(L + P)2 . (A.19)

Note that the ratio in equation A.19 is a Rayleigh quotient as a function of the
vector (L , P)T and thus has a known minimum solution (which we derive
here for clarity) (Strang, 2003). Equation A.19 gives rise to a Lagrangian
minimization as

L (L , P) = L2 + 1
N − 2

P2 − φ(L + P), (A.20)

with Lagrange multiplier φ. Differentiating with respect to L and P gives
expressions for these variables in terms of φ as

∂

∂L
L (L , P) = 2L − φ

Lmin = φ

2
(A.21)

and

∂

∂ P
L (L , P) = 2P

N − 2
− φ

Pmin = φ

2
(N − 2). (A.22)
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Substituting these expressions back into equation A.19 establishes the proof
of the theorem:

CV2
i j ≥

(
φ

2

)2 + 1
N−2

(
φ

2 (N − 2)
)2

(
φ

2 + φ

2 (N − 2)
)2

= 1 + (N − 2)

(1 + (N − 2))2

= 1
N − 1

. (A.23)

A.4 Establishing Theorem 2. In order to prove that an irreversible linear
chain with the same forward transition rate between all adjacent pairs of
states is the unique topology that saturates the bound on the CV2

i j of the
hitting time ti j given by theorem 1, we follow a similar inductive approach
as in section A.3. To derive the inequality expression for the CV2

i j given
by equation A.18, three successive inequality steps were employed. For
equation A.18 to be an equality—a necessary condition for the bound in
theorem 1 to also be an equality—each of those steps must be lossless. If the
steps are lossless only for the linear chain architecture, then the theorem is
proved.

Consider the second inequality step (the inductive step) in section A.3,
which results in equation A.15. Recall that the hitting times tk j represent
subnetworks of size N − 1 starting in some set of states K where every
k ∈ K is reachable by a single transition from state i . For equation A.15 to
be an equality, the CV2

k j must be equal to 1
N−2 for all k ∈ K. By assuming

the inductive hypothesis that, for networks of size N − 1, constant-rate
linear chains are the only topologies that saturate the bound, then, for
equation A.15 to be an equality, all the states in set K must be start states
of linear chains of length N − 1. This is clearly possible only if the set K
consists of a single state k.

This constraint, that there is a single state k reachable by direct transition
from state i and that this state is the start state of a constant-rate linear chain
of length N − 1, forces the other two inequality steps in section A.3 (see
equations A.14 and A.16) to also be equalities. The mean number of loops
〈R〉 is zero since no loops are possible (i.e., after transitioning from state i to
k, the system follows an irreversible linear path to j , which never returns to
i), and so the first term of equation A.11 is zero. Furthermore, the variance
of 〈tk j 〉 is zero since there is only one k ∈ K, and so the first term of equa-
tion A.13 is also zero. Thus, the substitutions comprising the first inequality
step (see equation A.14) are lossless. Similarly, since there is only one k ∈ K,
the second moment of 〈tk j 〉 equals the square of its mean, which makes the
substitution resulting in the final inequality (see equation A.16) also lossless.
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Therefore, if and only if the network topology is such that state k is the
only state reachable from state i and state k is the start state of a constant-rate
linear chain of length N − 1, then the following holds:

CV2
i j = 〈ti+l〉2 + 1

N−2 〈tpath〉2(〈ti+l〉 + 〈tpath〉)2 . (A.24)

We can simplify this expression by noting (1) that R = 0 and so 〈ti+l〉 =
〈wi 〉 = 1/λki where λki is the transition rate from state i to state k, (2) that
there is only one k ∈ K, and so 〈tpath〉 = 〈tk j 〉, and (3) that tk j represents a
constant-rate linear chain of length N − 1, and so its mean hitting time
will be the number of transitions divided by the constant transition rate
(i.e., 〈tk j 〉 = N−2

λ
for constant rate λ):

CV2
i j =

(
1

λki

)2
+ 1

N−2

( N−2
λ

)2

(
1

λki
+ N−2

λ

)2

= λ2 + (N − 2)λ2
ki

(λ + (N − 2)λki )
2 . (A.25)

As in section A.3, to determine the relative values of λki and λ that
minimize the CV2

i j , we can define the following Lagrangian:

L (λ, λki ) = λ2 + (N − 2)λ2
ki − φ (λ + (N − 2)λki ) . (A.26)

Differentiating by each variable and substituting out the Lagrange multi-
plier φ establishes the theorem:

∂

∂λ
L (λ, λki ) = 2λ − φ

φ = 2λ, (A.27)

∂

∂λki
L (λ, λki ) = 2(N − 2)λki − φ(N − 2)

λki = φ

2
λki = λ. (A.28)

All transition rates are equal, and so the uniqueness proof is complete. An
N-state Markov chain saturates the bound given in theorem 1 if and only if it
is an irreversible linear chain with the same forward transition rate between
all pairs of adjacent states. Furthermore, the bound is saturated only for the
hitting time from the first to the last state in the chain (see Figure 1b).
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Appendix B: The Moments of ti j

For clarity, we give a derivation of the explicit formula for the nth moment
of the hitting time ti j from state i to j for the Markov chain given by the
transition rate matrix A j . The subscript j in A j is used to denote the fact
that the j th column of the matrix is a vector of all zeros (i.e., j is a collecting
state). For the purposes of this derivation, we assume that the underlying
transition rate matrix A, without the connections away from j removed,
represents a Markov chain for which all states are reachable from all other
states in a finite amount of time. In other words, A is assumed to be ergodic
(although the resulting formulas still hold if this assumption is relaxed).
Substituting t for ti j to simplify notation and using the expression for the
probability distribution of ti j given in equation 2.6, we have

〈tn〉=
∫ ∞

0
tn p(t)dt

=
∫ ∞

0
tneT

j A j eA j tei dt

= eT
j

∫ ∞

0
tneA j tdt A j ei , (B.1)

where we have used the fact that a matrix commutes with the exponentia-
tion of itself.

In order to evaluate this integral, it is convenient to construct an identity
matrix defined in terms of A j and a pseudoinverse of A j , PA. If the eigen-
value decomposition of A j is RDL (with L = R−1), then PA ≡ RPDL where
PD is a diagonal matrix composed of the inverse eigenvalues of A j except
for the j th entry which is left at zero (the j th eigenvalue of A j is zero). In
matrix notation, PD is given as

PD ≡ (
D + e j eT

j

)−1 − e j eT
j , (B.2)

which gives PA as

PA ≡ RPDL

= R[
(
D + e j eT

j

)−1 − e j eT
j ]L

= [
R

(
D + e j eT

j

)
L
]−1 − Re j eT

j L

= (
A j + e j 1T)−1 − e j 1T , (B.3)
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where, in the final step, we have used the fact that the j th column of R (the
j th right eigenvector of A j ) is e j (since the j th column of A j is 0) and the
fact that the j th row of L (the j th left eigenvector) is 1T ≡ [1, . . . , 1] (since
the columns of A j all sum to 0). Thus, Re j = e j and eT

j L = 1T .9

To construct an appropriate identity matrix, we calculate the product of
A j and its pseudoinverse as

A j PA = RDL · RPDL

= R (DPD) L

= R
(
I − e j eT

j

)
L

= I − e j 1T (B.4)

where we have used the fact that DPD is an identity matrix except for a
zero in the j th diagonal entry (due to the noninverted zero eigenvalue).
Furthermore, it is trivial to show that An

j P
n
A = A j PA for any positive integer

n (since A j e j = 0), and so we have derived the following expression for the
identity matrix:

I = An
j P

n
A + e j 1T . (B.5)

Finally, this allows us to restate the transition rate matrix as

A j = A j · I

= A j
(
An

j P
n
A + e j 1T)

= An+1
j Pn

A, (B.6)

where again we have used the fact that e j is the eigenvector of A j associated
with the zero eigenvalue.

Substituting equation B.6 and the eigenvalue decomposition of A j into
equation B.1 gives

〈tn〉= eT
j

∫ ∞

0
tneA j tdt An+1

j Pn
Aei

= eT
j

∫ ∞

0
tneRDLtdt (RDL)n+1 Pn

Aei

9Note that PA defined in this manner does not meet all of the conditions of the
unique Moore-Penrose pseudoinverse (Penrose & Todd, 1955). Though the equalities
A j PAA j = A j and PAA j PA = PA hold (as long as A j is an appropriately structured
transition rate matrix with j as the unique collecting state), the products PAA j and A j PA
are not symmetric matrices (as they are for the Moore-Penrose pseudoinverse).
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= eT
j

∫ ∞

0
tnReDtLdt RDn+1LPn

Aei

= eT
j R

∫ ∞

0
tneDtDn+1dt LPn

Aei . (B.7)

The off-diagonal elements of the integral portion of equation B.7 are zero,
as is the j th diagonal element (i.e., the zero eigenvalue of A j associated
with eigenvector e j ). The kth diagonal element of the integral for k �= j is
given by

[∫ ∞

0
tneDtDn+1dt

]
k
= ηn+1

k

∫ ∞

0
tneηk tdt, (B.8)

where ηk is the kth eigenvalue. These integrals are analytically tractable:

[∫ ∞

0
tneDtDn+1dt

]
k
= ηn+1

k

∫ ∞

0

dn

dηn
k

eηk tdt

= ηn+1
k

dn

dηn
k

∫ ∞

0
eηk tdt

= ηn+1
k

dn

dηn
k

(
− 1

ηk

)

= ηn+1
k (−1)n+1 n!

ηn+1
k

= (−1)n+1n! (B.9)

where we have used the fact that all of the eigenvalues of A j except the
j th are strictly negative, which is a result of the following argument. Since
A j is a properly structured transition rate matrix for a continuous-time
Markov chain, there exists a finite, positive dt such that I + A j dt is a prop-
erly structured transition probability matrix for a discrete time Markov
chain. We can rewrite this probability matrix as R (I + Ddt) L and use the
Perron-Frobenius theorem, which states that the eigenvalues of transition
probability matrices (i.e., the entries of I + Ddt) are all less than or equal
to one (Poole, 2006). Furthermore, since we assumed that the underlying
Markov chain A is ergodic, the Perron-Frobenius theorem asserts that ex-
actly one of the eigenvalues is equal to one. Thus, it is clear that one of the
entries of D is equal to zero and the rest are negative.

Substituting the result from equation B.9 back into equation B.7, gives
the final expression for the moments of the hitting time:
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〈tn〉= (−1)n+1n!eT
j R

(
I − e j eT

j

)
LPn

Aei

= (−1)n+1n!eT
j

(
I − e j 1T)

Pn
Aei

= (−1)nn!
(
1 − e j

)T Pn
Aei . (B.10)

As an alternative to the preceding somewhat cumbersome algebra, it is
also possible to use an intuitive argument to find the analytic expression
for the first moment (mean) of the hitting time (Norris, 2004). With the
expression for the first moment known, the higher-order moments can then
be derived using Siegert’s recursion (Siegert, 1951; Karlin & Taylor, 1981).

Appendix C: The Gradients of the Mean, Variance, and Energy Cost
Functions

From appendix B, the expressions for the mean and variance of the hitting
time t1N are given as

〈t1N〉 = − (1 − eN)T PAe1 (C.1)

and

var(t1N) = 2 (1 − eN)T P2
Ae1 − 〈t1N〉2. (C.2)

The definition of PA (see equation B.3) and the expression for the derivative
of an inverse matrix (∂M−1 = −M−1 (∂M) M−1) give the following:

∂PA = ∂[
(
AN + eN1T)−1 − eN1T ]

=− (
AN + eN1T)−1

∂A
(
AN + eN1T)−1

=−[
(
AN + eN1T)−1 − eN1T ]∂A[

(
AN + eN1T)−1 − eN1T ]

=−PA∂APA, (C.3)

where we have defined ∂A as the derivative of AN with respect to the
variable of interest, and have used the fact that eN and 1T are the right
and left eigenvectors of AN associated with the zero eigenvalue and thus
that both (∂A) eN and 1T∂A are zero. Therefore, the gradients of the mean
and variance with respect to the optimization parameters θi j (where θi j ≡
− ln λi j for transition rate λi j ) can be shown to be

∂

∂θi j
〈t1N〉= (1 − eN)T PA∂Ai j PAe1, (C.4)
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and

∂

∂θi j
var(t1N) = 2 (1 − eN)T

×PA
{[

e1 (1 − eN)T − I
]
PA∂Ai j − ∂Ai j PA

}
PAe1, (C.5)

where the element in the kth row and lth column of the differential matrix
∂Ai j is given by

[∂Ai j ]kl =



−λi j , k = i and l = j
λi j , k = j and l = j
0, otherwise

. (C.6)

Energy cost function I (see section 4.2), given as

Etot =
∑
i, j

∣∣∣∣ln λi j

λ j i

∣∣∣∣ , (C.7)

has a gradient of

∂

∂θi j
Etot =




1, λi j < λ j i

−1, λi j > λ j i

0, λi j = λ j i

, (C.8)

while energy cost function II (see section 4.3), given as

Etot =
∑
i, j

− ln λi j + ln
(
λi j + 1

)
, (C.9)

has a gradient of

∂

∂θi j
Etot = 1

1 + λi j
. (C.10)

Appendix D: Derivation of Pure Diffusion Solution

At Etot = 0, under the energy function given in equation 4.3, it is possible to
analytically solve for the transition rates that minimize the CV2 of the hitting
time. First, note that all pairs of reciprocal rates must be equal (since the
energy is zero), and furthermore, that all pairs of rates between nonadjacent
states are equal to zero. Thus, to simplify notation, we shall consider only
the rates λi for i ∈ {1, . . . , M} where λi ≡ λi,i+1 = λi+1,i and M ≡ N − 1. This
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yields the following transition rate matrix:

AN ≡



−λ1 λ1 0 · · · 0 0

λ1 −λ1 − λ2 λ2 · · · 0 0

0 λ2 −λ2 − λ3 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −λM−1 − λM 0

0 0 0 · · · λM 0


. (D.1)

From our general definitions of the moments of t1N for abitrary Markov
chains (see equation B.10), we have, respectively,

〈t1N〉 = − (1 − eN)T PAe1 (D.2)

and

var(t1N) = 〈t2
1N〉 − 〈t1N〉2

= 2 (1 − eN)T P2
Ae1 − 〈t1N〉2, (D.3)

where PA ≡ (
AN + eN1T

)−1 − eN1T (see equation B.3) as before. For the
specific tridiagonal matrix AN given in equation D.1, PA can be shown to
be

PA =



−∑
i≥1

1
λi

−∑
i≥2

1
λi

−∑
i≥3

1
λi

· · · − 1
λM

0

−∑
i≥2

1
λi

−∑
i≥2

1
λi

−∑
i≥3

1
λi

· · · − 1
λM

0

−∑
i≥3

1
λi

−∑
i≥3

1
λi

−∑
i≥3

1
λi

· · · − 1
λM

0
...

...
...

. . .
...

...

− 1
λM

− 1
λM

− 1
λM

· · · − 1
λM

0∑
i≥1

i
λi

∑
i≥2

i
λi

∑
i≥3

i
λi

· · · M
λM

0


, (D.4)

from which, with a bit more manipulation, we can give expressions for the
mean and variance as follows:

〈t1N〉=
M∑

i=1

i
λi

= xT z (D.5)
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and

var(t1N) =
M∑

i=1

1
λi

M∑
j=1

min(i, j)2

λ j

= xT Zx, (D.6)

where we have defined the vectors x and z as xi ≡ 1
λi

and zi ≡ i , respectively,
and the matrix Z as Zi j ≡ min (i, j)2.

Finding x, and thus the rates λi , that minimizes the CV2 of t1N is equiva-
lent to employing Lagrangian optimization to minimize the variance while
holding the mean constant at 〈t1N〉. This gives the following simple linear
algebra problem:

xmin = arg min
x

(
xT Zx − αxT z

)
, (D.7)

where xmin is guaranteed to be the unique optimum since Z is positive
definite (see section D.1) and the constraint is linear. Thus, the solution can
be found by setting the gradient to zero:

0 =∇x
(
xT Zx − αxT z

) ∣∣∣
x=xmin

0 = Zxmin − αz

xmin =αZ−1z. (D.8)

Note that we did not enforce that the elements of x (and thus the rates λi )
be positive under this optimization. However, if the solution xmin has all
positive entries, as will be shown, then this additional constraint can be
ignored.

Some algebra reveals that Z−1 is a symmetric tridiagonal matrix with
diagonal elements

[Z−1]i i =




4i
4i2 − 1

, i < M
1

2M − 1
, i = M

, (D.9)

and subdiagonal elements

[Z−1]i,i+1 = [Z−1]i+1,i = − 1
2i + 1

, i < M. (D.10)
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Substituting this inverse into the expression for the minimum above (see
equation D.8) yields, for i < M,

[xmin]i =α[Z−1z]i

=α

− 1
2i − 1

4i
4i2 − 1

− 1
2i + 1




i − 1
i

i + 1


= 2α

4i2 − 1
, (D.11)

and, for i = M,

[xmin]M =α
[
Z−1z

]
M

=α

− 1
2M − 1

1
2M − 1

  M − 1
M


= α

2M − 1
. (D.12)

For positive values of α—corresponding to positive values of 〈t1N〉—all
of the elements of xmin are positive, and thus this solution is reasonable.
Therefore, the following rates minimize the processing time variability for
a zero-energy, purely diffusive system:

1
λi

=




2α

4i2 − 1
, i �= M

α

2M − 1
, i = M

. (D.13)

To determine α from 〈t1N〉, we substitute the solution (see equation D.13)
into the expression for the mean given by equation D.5:

〈t1N〉=
M∑

i=1

i
λi

=
(

M−1∑
i=1

2αi
4i2 − 1

)
+ αM

2M − 1
+

(
2αM

4M2 − 1
− 2αM

4M2 − 1

)

= α

[(
M∑

i=1

2i
4i2 − 1

)
+ M

2M + 1

]

= α

[(
M∑

i=1

2i
4i2 − 1

)
+

(
M∑

i=1

1
4i2 − 1

)]
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= α

(
M∑

i=1

2i + 1
4i2 − 1

)

= α

(
M∑

i=1

1
2i − 1

)

= α ξ (M), (D.14)

where we have defined ξ (M) ≡ ∑M
i=1

1
2i−1 and have taken advantage of the

following series identity (which can easily be shown by induction):

M
2M + 1

=
M∑

i=1

1
4i2 − 1

. (D.15)

Our introduced function, ξ (M), can be shown to have the following
closed-form solution (Abramowitz & Stegun, 1964):

ξ (M) = 1
2

(
�

(
M + 1

2

) + γ
) + ln 2, (D.16)

where �(x) is the digamma function defined as the derivative of the log-
arithm of the gamma function (i.e., �(x) ≡ d

dx ln 	(x)) and γ is the Euler–
Mascheroni constant.

From equation D.14, we see that

α = 〈t1N〉
ξ (M)

, (D.17)

which can be substituted back into equation D.13 to give the optimal rates
in terms of 〈t1N〉 rather than α:

1
λi

=




2〈t1N〉
ξ (M) (4i2 − 1)

, i �= M

〈t1N〉
ξ (M) (2M − 1)

, i = M
. (D.18)

It is now possible to find an expression for the CV2 in terms of M and
〈t1N〉. From the derivation of equation D.8, we have

Zxmin = αz, (D.19)
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which can be substituted into equation D.6 to get

var(t1N) = αxT
minz. (D.20)

Finally, using the expressions for the mean and for α (see equations D.5 and
D.17), we obtain the following result:

CV2 = α〈t1N〉
〈t1N〉2

= 1
ξ (M)

= 1
ξ (N − 1)

, (D.21)

where we revert to a notation using the number of states N.

D.1 The Matrix Zi j≡ min(i, j)2 Is Positive Definite. The M × M ma-
trix Z, where Zi j ≡ min (i, j)2, is positive definite. First, note the following
identity:

n2 =
n∑

i=1

2i − 1, (D.22)

which can be easily proven inductively. Now let us define a set of vec-
tors

√
2i − 1 for i = 1, . . . , M where vector

√
2i − 1 consists of i − 1 zeros

followed by M − i + 1 elements all having the value
√

2i − 1—for example,

1 ≡ (1, . . . , 1)T , (D.23)

√
3 ≡ (0,

√
3, . . . ,

√
3)T , (D.24)

and

√
5 ≡ (0, 0,

√
5, . . . ,

√
5)T . (D.25)

From the identity given in equation D.22, Z can be rewritten as the following
sum of outer products:

Z =
M∑

i=1

√
2i − 1

√
2i − 1

T
. (D.26)
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Now consider xT Zx for arbitrary nonzero x. We have

xTZx = xT

(
M∑

i=1

√
2i − 1

√
2i − 1

T
)

x

=
M∑

i=1

xT
√

2i − 1
√

2i − 1
T

x

=
M∑

i=1

(√
2i − 1

T
x
)2

, (D.27)

which must be nonnegative since it is a sum of squares. Furthermore, the√
2i − 1 vectors are linearly independent and, since there are M of them,

they form a basis. Since the projection of an arbitrary nonzero vector on
at least one basis vector must be nonzero, one of the terms in the sum in
equation D.27 must be positive. Thus, we have

xT Zx > 0, (D.28)

and so Z is positive definite.
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