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Supplementary Material 
 

Data Analysis    
 
 The change of coordinates in firing rate space, shown in both Figures 3C and 3D and Figure 6, of 

the main paper was performed by first estimating the spontaneous firing rate iS  for each recorded 
neuron Ni …1=  (where N  is now the number of recorded neurons in the given monkey) using 
400 msec of recorded data during fixation, prior to the beginning of each trial. The presumed slow 

mode is then the N -dimensional spontaneous vector S
G

 whose components are iS . We normalize 
S
G

 to obtain the unit vector ||/=ˆ SSS
GG

. If )(trG  is the instantaneous firing rate at a given time t , 
the component along the spontaneous vector S

G
 (the solid lines in Figures 5C, 5D and 6) is given 

by StrtrS
ˆ)(=)( ⋅

G
. The norm of the orthogonal component (the dashed lines in the same figures) is 

given by 
Srr S
ˆ−

G
. 

 

 The correlation coefficient (the dotted lines) differs from Sr  because the mean across neurons is 
subtracted from the rG  and   

G
S  vectors. Let   

G
1  be the vector whose elements are all equal, 

normalized so that   
G
1 ⋅

G
1 =1/N . Then   

G
r (t) ⋅

G
1  is simply the instantaneous mean firing rate across 

neurons at time t . Let   ′ 
G
r (t) =

G
r (t) − N

G
1 (

G
r (t) ⋅

G
1 ) and   ′ 

G
S =

G
S − N

G
1 (

G
S ⋅

G
1 ). Then the correlation 

coefficient is |||)(|/)( StrStr
GGGG ′′′⋅′ . 

 
Linear Model Analysis 
 
     In the main paper it is argued that a rapid reduction of LIP rate dynamics to a single dimension 
is the key to understanding the common crossing time of all the LIP neurons. The purpose of the 
remaining sections is to show concretely that this rapid reduction can be implemented generically in 
a linear model of the rate dynamics, without any need for fine tuning. We choose a linear model 
because it is the simplest model that can fit the observed firing rate data. Also the linear model has 
the advantage that it can be analyzed exactly, yielding intuition for how the common crossing time 
can arise robustly. However we stress that the underlying idea of rapid dimensionality reduction can 
be equally well implemented in more complex, nonlinear models and we are not committed to a 
linear model of actual LIP dynamics. 

  
Single Neuron Dynamics and the Fine Tuning Problem.  

 
 We begin by reviewing the linear rate dynamics (see also Seung, 2003) of a single neuron 

with time constant τ , a recurrent excitatory autapse w , and external input I . The firing rate )(tr  
obeys the differential equation  

  .= Iwrr
dt
dr

++−τ  (1) 

 
Here 1<w  to ensure the stability of (1). We can rewrite this equation as  

  .
1

=
1 w

Ir
dt
dr

w −
+−

−
τ  (2) 

 
We see two important effects due to the recurrent feedback w . First, the effective input is amplified 



by the factor 
w−1

1 , leading to an amplified steady state response 
w

I
−1

 obtained by setting the 

derivative on the left hand side of (2) to zero. Second, the effective time constant τ~   multiplying 
the derivative,  

  ,
1

=~
w−

ττ  (3) 

is also amplified by the same factor, leading to a slower dynamics. This slowness is essentially the 
price that is paid for amplification via recurrent feedback.  

 In this simple model, we wish to explore the dependence of the peak visual response V , the 
delay period activity D , and the effective time constant τ~  on the various parameters. We model 
the visual response by turning on a constant visual input VI  for ot  = 100 msec, as is done in the 
experiment. Assuming the initial rate (0)r  is negligible, the time course of the visual response 
while the input is present, obtained by solving (2), is  

  o

V
t tt

w
Ietr ≤≤
−

− − 0for
1

)(1=)(
~/τ  (4) 

Again τ~  is the effective time constant given in (3), not the single neuron time constant τ . The 
peak visual response is then obtained by setting 0= tt  in (4),  

  .
1

)
~/(1= 0

w
IeV

V
t

−
− − τ  (5) 

We next model the delay period activity D  as the steady state response to a top-down feedback 
input TI . This yields immediately  

  .
1

=
w

ID
T

−
 (6) 

So now equations (3), (5) and (6) give us the relationship between the observed quantities τ~ , V  
and D  in terms of the model parameters τ , w , TI  and VI .  

 Now suppose we have a collection of neurons in LIP with various values for the 4 model 
parameters. The heterogeneity of the neural data forces us to choose diverse values of the model 
parameters for each neuron. However, the experimental data provides a strong constraint that for 
every neuron i ,  

  ,ln~
c

i

i
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D
V
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where ct  is the common crossing time of all the neurons. Using Eqs. (3),(5)-(6), this becomes  
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 In the regime   t0/ ˜ τ i <<  1, when neuronal decay times are longer than the input stimulus 
duration, as is our case, this can be rewritten as  

  .~ln~
cT
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V
io

i t
I
It

≈
τ

τ  (9) 

 
Thus, to realize this experimental constraint, one must impose biophysically unreasonable 

constraints on the diverse model parameters for each neuron. For example, in (9), suppose a neuron 
has a particularly long decay time iτ~ . The left hand side is dominated by a linear increase in iτ~  

which means the ratio of inputs T
i

V
i

I
I  inside the logarithm will have to decrease exponentially to 

compensate for the larger iτ~  in order to maintain the constraint. Similarly suppose a neuron 



receives a particularly large visual input V
iI , but a small top down feedback signal T

iI . Such a 
neuron must have its intrinsic neuronal time constant iτ  and recurrent excitation iw  tuned so that 
its observed decay time iτ~  is small enough to compensate for the large ratio of inputs. 

 
 More generally, there is no biophysical basis for postulating various unrealistic constraints, 

of the type above, that relate the top-down feedback input, bottom-up visual input, strength of 
connectivity and neuronal time constants to each other. Hence we say that the experimental data 
cannot be explained at the single neuron level without severe fine tuning problems, at least in this 
simple model. A cursory examination of more complex nonlinear models (unpublished) indicates 
that any such single neuron explanation will likely suffer from a similar fine tuning problem.  

 
A generic solution through linear network dynamics.  

 
 We now explore how recurrent network connectivity can realize the observed constraint (7) 

without fine tuning. Following the main paper, first consider N  neurons sharing the same 
receptive field. Their dynamics is governed by the vector equation  

  .= IrWr
dt
rd GGGG

++−τ  (10) 

 Here rG  is an N dimensional vector whose i 'th component is the firing rate of neuron i . W  
is an N  by N  matrix whose elements ijw  represent the strength of recurrent excitation from 
neuron j  to neuron i . For simplicity, we choose each neuron i  to have the same time constant τ . 
Alternatively we could, and later will, replace τ  with a diagonal matrix T  of different time 
constants for each neuron. The initial choice of a single time constant yields a simpler conceptual 
understanding of how the common crossing time arises. As in the first section, we will consider two 
different inputs, a visual input VI

G
 and a top-down input TI

G
 which give rise to the visual transient 

V
G

 and the delay period activity D
G

 respectively.  
 In order to analyze (10), it is useful to perform a change of basis to the right eigenvectors of 

the matrix W . One can find a change of basis matrix U  and a diagonal matrix Λ  such that  
  .=1 Λ− WUU  (11) 
 The elements iλ  along the diagonal of Λ  are the eigenvalues of W . If one performs a 

change of basis by substituting cUr GG =  and IUI
GG ~=  into (10), then the dynamics decouples in 

terms of the new variables cG . Each component ic  of cG  obeys an independent equation  
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 One can think of the dynamical variables )(tci  as the N  ``eigenmodes'' of the N  neurons. 

These modes evolve independently of each other. Here iI~  is the input to the i 'th eigenmode. iI~  in 

the new mode basis is related to jI  in the old neuron basis by jij
N

ji IUI 1
1=

=~ −∑ . At any given time, 

the activities of the neurons can be recovered from the activities of the modes using .=
1= jij

N

ji cUr ∑   

 The time evolution of the eigenmodes ic  in (12) is exactly equivalent to that of a single 
neuron in (2) where the eigenvalue iλ  of the mode plays the role of the recurrent connectivity w . 
Thus all the intuition gained in the previous section applies to the dynamics of the modes. Modes 

whose eigenvalues are close to one amplify their inputs by a factor 
iλ−1

1  but are very slow at 

reaching their steady state values. On the other hand, modes whose eigenvalues are closer to zero do 
not amplify their inputs much, but are very fast and rapidly approach equilibrium. If we try to 



explain the common crossing time ct  via a rapid reduction in the dynamics to a single dimension, 
then it is now clear that we can arrange for this rapid reduction by having precisely one eigenvalue 
of W  close to one, while the rest of the eigenvalues are close to zero.  

 We now show that we can achieve this situation for very generic choices of the synaptic 
connectivity matrix W , without relying on any fine tuning. In fact this situation holds if we choose 
the elements ijw  essentially at random. In keeping with anatomical data showing that cortical 
connectivity is sparse, with rarely more than a 10% chance of any two randomly chosen neurons 
sharing a synaptic connection (Holmgren et al., 2003; Markram, et al., 1997), we will choose each 

ijw  to be nonzero with probability 0.1=p . When ijw  is chosen to be nonzero, we will set 
Nwwij /= , where w  is drawn for each i  and j  from a gaussian distribution with mean wµ  and 

variance 2
wσ . Thus W  is a random N  by N  matrix whose entries are drawn independently from 

a distribution described by three parameters, p , wµ , and 2
wσ .  Supplementary Figure 1 shows the 

eigenvalue distribution for a random matrix drawn from this distribution with parameters 200=N , 
0.1=p , 8=wµ , and 4=2

wσ . We see that the spectrum is exactly what we desired. There is a 
circular cloud of eigenvalues near the origin of complex plane, and precisely one eigenvalue far out 
on the real axis, close to 1.  

 

 
Supplementary Figure 1. 

 
 One can heuristically understand the structure of this eigenvalue spectrum, and its 

dependence on the parameters, as follows. We can write JMW +=  where M  is the mean matrix, 

in which every element ijM  assumes the same value wp
N

µ1 , the mean value of the elements of 

W . J  is then a random matrix whose elements have zero mean, and variance. 
 

 2222 ))/(1(= Nppp ww −+ µσσ  
 
 The eigenvalues of M  are easily understood: the uniform vector, consisting of all neurons 

firing at the same rate, is an eigenvector of M with eigenvalue wpµ . Every other vector orthogonal 
to this uniform mode consists of elements that sum to zero and hence is an eigenvector of M with 
eigenvalue zero. That is, a matrix with uniform elements naturally has a gap in its set of eigenvalues, 
as we are looking for, with one positive eigenvalue and all other eigenvalues equal to zero. 

The eigenvalues of J  are also well understood from results in random matrix theory. Girko's 



circular law (Girko, 1984) states that an N  by N  random matrix, with entries drawn 
independently from a gaussian distribution with zero mean and fixed variance 2σ , has eigenvalues 
that are uniformly distributed within a circle in the complex plane centered at the origin. The radius 
of this circle is Nσ . Although the elements of J  do not come from a Gaussian distribution, the 
circular law depends essentially on the standard deviation of the distribution and is a good 
approximation for large enough N.  Thus, the radius of the cloud does not depend in detail on the 
the matrix elements of J, and is given by  

  R = pσ w
2 + µw

2 p(1− p)
N

. (13) 

  
With the above parameter values, the radius R  of the eigenvalue cloud, given theoretically in (13), 
is 0.19, which agrees with the picture in Supplementary Figure 1. 

 

The most important feature of (13) is the 
N
1  dependence of R . We see that by increasing N , 

we can compress the cloud of eigenvalues near the origin. Compressing the eigenvalues along the 
real axis makes the associated eigenmodes decay even faster. Compressing them along the 
imaginary axis suppresses any oscillations. 

The full distribution of eigenvalues of W  can be understood at least heuristically as a 
perturbation of the spectrum of M  induced by J . We have checked numerically that a single 
eigenvalue of the full random matrix W  always lies with high probability close to the single 
nonzero eigenvalue wpµ  of M .  In fact the standard deviation of its position is equal to the 
standard deviation σ  of the weights of  W, without the extra factor of N  that contributes to the 
radius of the cloud.  This can be proven using matrix perturbation theory, or checked numerically.  
In any case, heuristically we do not expect this eigenvalue to be much perturbed because J acting on 
the uniform vector gives a vector whose elements have zero mean and variance NN 1/2 ∝∝ σ , 
meaning that the uniform vector is nearly an eigenvector of J with eigenvalue 0. The cloud of other 
eigenvalues near the origin represents a breaking of the degeneracy of the zero eigenvalues of M, as 
these eigenvalues spread out into a cloud whose radius is determined by the variance of the 
elements of J .  

 

It is important to note that while the radius of this cloud scales as 
N
1 , the location of the 

maximal eigenvalue is independent of N , implying that the time scale associated with this slow 
mode is independent of the number of neurons in the modelled patch. This independence of the 
slowest time scale on the number of neurons crucially depends on our N1/  scaling of the weights, 
which was necessary for the network to remain stable (real part of maximal eigenvalue 1< ) as the 
number of neurons in it, N , was scaled up. Once weights are fixed, however, involving more 
neurons in a pattern increases the overall recurrent excitation involved and leads to a slower decay 
of that pattern. In the nonlinear scenario, one can actually fix the weights, since stability can be 
achieved by nonlinear saturating effects, rather than weight rescaling as the number of neurons 
involved in any pattern increases. Thus in the nonlinear case, modulation of the number of 
participating neurons in any given neuronal activity pattern can act as powerful method to control 
the decay time scale of that pattern. 

In Rajan and Abbott, 2006, it was shown that the same analysis will apply to a more realistic 
weight matrix that results when one considers that there are separate populations of excitatory and 
inhibitory neurons. Again, so long as the mean over all weights is positive -- that is, excitation and 
inhibition are not quite balanced, but instead each cell receives a slight excess of excitation -- there 
will be one eigenvalue corresponding to this nonzero mean, and a cloud of eigenvalues near the 
origin induced by the random variations in weights. 



  
 
 Armed with these results we can now connect to the data. To do so, we must first choose 

numerical values for the various parameters to fit the observed data. We have already chosen the 
sparse connectivity 0.1=p  in accordance with anatomical data. Our next choice is the time scale 
τ  for the rate dynamics. It is thought (Shriki, et al., 2003) that in the reduction from biophysical 
spiking networks to phenomenological rate models, the dominant contribution to the time scale τ  
comes from the time scale at which NMDA receptors inactivate. This time scale can range from 
40-80 msec (Lester, et al., 1990). We simply choose τ  to be 60 msec. However the observed decay 
time constants of the neurons recorded in Bisley and Goldberg, 2005, are much longer, and are on 
the order of 300 msec. This long time scale most likely occurs due to a slow mode arising out of 
recurrent excitation. We have seen that the maximal eigenvalue of the random connectivity matrix 

W  is very close to wpµ , yielding a longest network time scale 
wpµ

τ
−1

. Matching this longest 

time scale to 300 msec allows us to solve for wµ , yielding wµ  = 8. Furthermore we allow for 
heterogeneity in the synaptic weights by choosing 4=wσ . This parameter is not crucial, since 
substantial heterogeneity is already contributed by p .  

 We can also tolerate further heterogeneity by allowing the actual time constants iτ  of each 
neuron to fluctuate about their mean value τ . In keeping with the variance in NMDA receptor 
closing times, we choose iτ  from a gaussian distribution with mean τ  already chosen to be 60 
msec, and a standard deviation 20=τσ  msec. The relevant random matrix is no longer W  but 
rather TWI 1)( −− , where T  is the matrix of time constants. However the essential intuition 
presented above remains the same for this matrix. If the matrix assumes its mean value, it will 

consist of one eigenvalue equal to 
wpµ

τ
−1

 and the rest of the eigenvalues equal to τ . Just like in 

the case of W , the degeneracy of eigenvalues in the random case expands into a cloud centered at 
60=τ  msec, while the outlier eigenvalue remains at 300  msec. The essential structure of one 

slow mode and multiple fast modes is preserved. 
With the mean values τ , p  and wµ  fixed, we must choose the inputs to each neuron V

iI
G

 

and T
iI
G

. These two inputs independently determine the observed range of peak visual responses iV  
and delay activities iD . In keeping with the idea that no individual parameters in the linear model 
(10) have to be fine tuned, just as we picked the connectivity matrix randomly, we also pick the 
visual and top-down inputs randomly. In fact we draw them from a uniform distribution between a 
minimum and maximum firing rate. This uniform distribution is the maximal entropy distribution 
consistent with the fact that neurons have limits on their firing rate, and hence this choice introduces 
no further assumptions about the inputs. In order to qualitatively fit the range of peak visual 
responses, we choose Imin

V  = 80 Hz and V
maxI  = 200 Hz, and to fit the range of delay period activities, 

we choose Imin
T  = 10 Hz and T

maxI  = 30 Hz.  These values are consistent, in the former case, with 
the firing rates of visually responsive neurons in lower areas thought to provide feedforward inputs 
to LIP, and, in the latter case, with the firing rates of neurons in the frontal eye field thought to 
participate in a top-down feedback signal to LIP. 

 
 With these natural parameter choices, we have seen in the main paper that the constraint 

across neurons (7) arises essentially for free, as long as N  is large enough. Again, the essential 
idea is that since the largest eigenvalue of W  is close to 0.8=wpµ , whereas the eigenvalue with 

the next largest real part scales as N1/  in (13), for large enough N  there is a separation of time 



scales between the slow mode and all the other modes. After the stimulus turns off, all the fast 
modes decay quickly with a time constant close to 60=τ  msec, leaving only the slow mode at 
longer time scales. When the neurons cross their delay activity, the dynamics has already become 
one dimensional, yielding the common crossing time for all neurons in the same patch, as explained 
in the main paper. 

Also discussed in the main paper was the correlation between spontaneous activity, and peak 
visual as well as delay activity.  For N=100 neurons it was found that there exists a correlation 
between spontaneous and delay activity, but not between spontaneous and visual.  In this simple 
linear model, such correlations depend slightly on N.  As N increases, there are more and more fast 
modes (precisely N-1 of them), and their presence contributes to a slight decay of the correlation 
coefficient between spontaneous and both delay as well as visual transients.  However for any N, 
spontaneous is more correlated with delay than with visual, as discussed in the main body.  
Furthermore, for N in the range of 100 to 1000, which may be roughly the number of strong 
synapses activated by a single input to a visual cortical neuron, the observed correlations are 
consistent with the data. 

   
Invariance of the crossing time across different patches.   

 
 We have analyzed how a common crossing time can be achieved generically in a single patch, 

but we must also explain why the crossing time of neurons, chosen in different patches that are not 
coupled to each other, nevertheless remains invariant across such neurons. We can think of the 
crossing time, expressed as the constant of proportionality in (7), as a random variable itself. Our 
goal is to obtain a rough estimate of its variance.  

 Since the time at which the neurons cross their delay activity is dominated by the slow one 
dimensional dynamics of a single mode )(tcs , the dominant contribution to the crossing time ct  
arises from the time the slow mode )(tcs  in the visual transient crosses its own level of excitation 
in the delay period. We can ignore the contribution of all the faster modes because of their rapid 
decay. The crossing time of the slow mode itself depends on three quantities: the slow mode's peak 
excitation level sV  due to visual input, its delay period excitation level sD , and its decay time 
constant sτ . We have already seen from the random matrix results that the time constant sτ  is, 

with high probability, close to 
wpµ

τ
−1

. Now the peak slow mode visual response sV  depends on 

the total input to that mode. The input to this mode is given by the inner product of the randomly 
chosen neuronal input vector VI

G
 with the eigenvector associated with the slow mode. This 

eigenvector is random since the connectivity matrix W  is random, but as we have seen above, it is 
a uniform mode with all positive entries. Thus the visual input to the slow mode, and hence the 
peak visual response sV , arises from the sum of N  independent random numbers; therefore it 

must have coefficient of variation (standard deviation over mean) that scales as N1/ . A similar 
logic applies to sD . 

 
 So for randomly chosen connectivities W  and inputs VI

G
 and DI

G
, the properties of the 

slow mode, sτ , sV  and sD  are strongly peaked about their mean values. Exploiting this fact, we 
calculate the dependence of the mean value of tc  on the parameters of the various distributions we 
have chosen.  In the equations below, each of the quantities sτ , sV , sD  as well as tc  are to be 
thought of as the mean values of the associated variables which arise in a large random network 
with random inputs.  We can treat the slow mode as if it were a single neuron, yielding  



  
Vs ∝ (1− e− t0/τ s ) Imean

V

1− pµw

Ds ∝
Imean

T

1− pµw

.
 (14) 

 Now solving for tc  in Vs e
−

tc

τ s = Ds , yields the final dependence of tc  on parameters,  
  

  tc = τ s

ln[(1− e− t0/τ s ) Imean
V

Imean
T ]

. (15) 

 The final result is intuitive: the time scale of the slow mode sτ  sets the time scale of the 
crossing time, while the ratio of feedforward visual input to top-down feedback signal can tune this 
crossing time, essentially setting the level of distractibility of the monkey. Due to N1/  averaging 
effects, for each randomly chosen patch, the probability distribution for the crossing time ct  of that 
patch is strongly peaked about its mean value in (15). Hence ct , which controls the distractability 
of the monkey, is an emergent property that does not depend on the details of each patch, but rather 
on the gross statistical properties of the distribution from which the patches are drawn. 
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