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Abstract

We study a recently proposed “correlation-based”, push-pull model of the circuitry of layer

4 of cat visual cortex (Troyer et al. 1998). This model was previously shown to explain

the contrast-invariance of cortical orientation tuning. Here we show that it can simulta-

neously account for several contrast-dependent (c-d) “nonlinearities” in cortical responses.

These include an advance with increasing contrast in the temporal phase of response to a

sinusoidally modulated stimulus; a change in shape of the temporal frequency tuning curve,

so that higher temporal frequencies may give little or no response at low contrast but rea-

sonable responses at high contrast; and contrast saturation that occurs at lower contrasts

in cortex than in the lateral geniculate nucleus (LGN). In the context of the model cir-

cuit, these properties arise from a mixture of nonlinear cellular and synaptic mechanisms:

short-term synaptic depression, spike-rate adaptation, contrast-induced changes in cellular

conductance, and the nonzero spike threshold. The former three mechanisms are sufficient to

explain the experimentally observed increase in c-d phase advance in cortex relative to LGN.

The c-d changes in temporal frequency tuning arise as a threshold effect: voltage modu-

lations in response to higher-frequency inputs are only slightly above threshold at lower

contrast, but become robustly suprathreshold at higher contrast. The other three nonlinear

mechanisms also play a crucial role in this result, allowing contrast-dependence of tem-

poral frequency tuning to coexist with contrast-invariance of orientation tuning. Contrast

saturation, and the observation that responses to stimuli of increasing temporal frequency

saturate at increasingly high contrasts, can be induced both by the model’s push-pull inhi-

bition and by synaptic depression. Previous proposals explained these nonlinear response

properties by assuming contrast-invariant orientation tuning as a starting point, and adding

normalization by shunting inhibition derived equally from cells of all preferred orientations.

The present proposal simultaneously explains both contrast-invariant orientation tuning and

these contrast-dependent nonlinearities, and requires only processing that is local in orien-

tation, in agreement with intracellular measurements (Anderson et al. 2000; Ferster 1986).
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Abbreviations and Symbols Used in Text: c-d, contrast-dependent; F1, first harmonic;

DC, mean or zeroeth harmonic; G, geniculate; E, excitatory intracortical; I, inhibitory in-

tracortical.
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Introduction

The response properties of simple cells in layer 4 of cat primary visual cortex (V1) serve as

a model system for studying the mechanisms underlying cerebral cortical processing. These

cells are perhaps the best-studied cortical cells, and are the site of emergence of the strong

selectivity for stimulus orientation seen throughout visual cortex (Hubel and Wiesel 1962).

One of the defining characteristics of simple cells is the largely linear nature of their

responses. Their responses to arbitrary stimuli can be reasonably well predicted from a

weighted sum of stimulus intensity, where the weighting is given by the cell’s receptive

field and negative values of the weighted sum are taken to yield zero response (DeAngelis

et al. 1993; Hubel and Wiesel 1962; Jones and Palmer 1987). As predicted by a linear

response model, the shape of a simple cell’s orientation tuning curve is invariant to changes

in stimulus contrast (Sclar and Freeman 1982; Skottun et al. 1987): a change in contrast

scales all responses by a constant, rather than changing the form of the response tuning

curve.

However, other aspects of simple cell responses show a nonlinear dependence on stimulus

contrast (reviewed in Carandini et al. 1998). In this paper we will examine three such

properties: (1) Contrast-dependent phase advance: as the contrast of a sinusoidal grating

stimulus increases, the response of a cortical cell occurs earlier in the stimulus cycle (Albrecht

1995; Dean and Tolhurst 1986). (2) Contrast-dependent temporal frequency tuning: higher

temporal frequencies that yield small or zero responses at low contrast yield reasonable

responses at high contrast (Albrecht 1995; Holub and Morton-Gibson 1981). (3) Contrast

saturation: the change in response amplitude with contrast has a sigmoidal rather than

linear dependence on contrast, saturating at intermediate contrasts (e.g., Albrecht 1995).

The third property involves the nonlinear dependence of scaling on contrast. The first two

involve changes in response more complex than a simple scaling by contrast: responses either

move earlier in time (property 1) or increase differentially across the tuning curve (property

2).

In this paper, we address the question of how a single model circuit, consistent with
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existing experimental knowledge of cat visual cortex, can simultaneously account for both

the linear-like response scaling of contrast-invariant orientation tuning and the above three

nonlinear response properties. In principle, accounting for nonlinear response properties

in isolation may not be difficult, given the many inherently nonlinear properties of the

synapses, cells, and circuits involved. We suggest that the true difficulty lies in simultaneously

accounting for both linear-like and nonlinear response properties: how can the underlying

nonlinear mechanisms be manifest in some aspects of response and yet simultaneously be

hidden in other aspects? Indeed, the difficulty of generating any linear-like responses at

all is well illustrated by the contrast-invariance of orientation tuning in response to drifting

sinusoidal luminance gratings. LGN cells do not provide linear input to simple cells, because

their response rates cannot decrease below zero. As a result, LGN mean firing rates increase

with contrast (whereas under a linear response model, an increase in stimulus contrast would

increase the amplitude of temporal modulation of firing rates without affecting mean rates).

Furthermore, cortical cells integrate this input through the nonlinearity of a nonzero spike

threshold. Thus, the orientation tuning of the LGN input to a simple cell should widen with

increasing stimulus contrast: due to the increase both in modulations and means of LGN

firing rates, a broader range of stimulus orientations should produce suprathreshold LGN

input at higher contrasts.

We have recently demonstrated (Troyer et al. 1998) that the contrast-invariance of ori-

entation tuning can be accounted for by the combination of (1) a simple model intracortical

circuit motivated by numerous intracellular studies (e.g., Anderson et al. 2000; Chung and

Ferster 1998; Ferster 1986, 1988; Ferster et al. 1996; Hirsch et al. 1998; Nelson et al. 1994);

and (2) a “Hubel-Wiesel” (1962) arrangement of lateral geniculate nucleus (LGN) inputs

to simple cells, in which oriented bands of ON- or OFF-center LGN inputs provide input

to the ON- or OFF-subregions, respectively, of the simple cell’s receptive field. Here we

demonstrate, for the first time, a unified mechanistic account of both the linear and nonlin-

ear aspects of simple cell responses. Our previous model incorporated a number of nonlinear

mechanisms, including spike-rate adaptation, contrast-induced changes in cellular conduc-



Kayser et al. –January 29, 2001 5

tance, and the nonzero spike threshold. We now add one additional nonlinear mechanism,

short-term (frequency-dependent) synaptic depression (Abbott et al. 1997; Tsodyks and

Markram 1997). We show that the resulting model explains the three nonlinear properties

noted above, while retaining contrast-invariant orientation tuning.

Importantly, this is the first explanation of these properties using a model circuit that is

purely local in orientation (see Discussion for other models). That is, both the excitatory and

the inhibitory intracortical input received by a simple cell comes primarily from cells having

similar preferred orientation, as suggested by numerous experiments in cat V1 (Anderson

et al. 2000; Chung and Ferster 1998; Ferster 1986, 1988; Ferster et al. 1996; Hirsch et al.

1998).

Some of these results have appeared in abstract form (Priebe et al. 1997).

Modeling Framework

We begin by summarizing the essential information about our model needed to understand

our results. Full details sufficient to replicate our work are in Appendix 1.

Intracortical Circuit

We study a circuit (Troyer et al. 1998) in which (1) geniculocortical synaptic weights to

a cell are described by Gabor functions (Jones and Palmer 1987), with ON-center (OFF-

center) inputs corresponding to positive (negative) portions of the Gabor; and (2) intracor-

tical connections are made between cortical cells based on the correlations between their

RFs, i.e. between the geniculocortical synaptic weights they receive. An excitatory cell

makes strong connections onto other excitatory cells with which it is strongly correlated;

an inhibitory cell makes strong connections onto excitatory cells with which it is strongly

anticorrelated. The dominant resulting connections follow a “push-pull” scheme, and are

illustrated in Fig. 1. A crucial requirement is that inhibition be dominant: the feedforward Place

Fig. 1

about here

inhibitory pathway LGN→I→E must have stronger overall gain than the feedforward ex-
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citatory pathway LGN→E (where E and I indicate excitatory and inhibitory cortical cells,

respectively), as assessed by the mean feedforward inhibition exceeding mean feedforward

excitation over a cycle of response to a sinusoidal stimulus. More specifically, the mean

conductance opened by the two pathways over a cycle must have a sufficiently subthreshold

reversal potential to prevent spiking to a stimulus with orientation orthogonal to a cell’s

preferred orientation.

This architecture can account for cortical orientation tuning and its contrast invariance

(Troyer et al. 1998). How does this circuitry account for orientation tuning? For a stimulus

at a cell’s preferred orientation and spatial phase, other neurons with similar preferred orien-

tation and spatial phase – both excitatory and inhibitory – are strongly activated. However,

the inhibition is directed onto cells with similar preferred orientation but antiphase (opposite

spatial phase) RFs. In the case of a drifting sinusoidal grating of the preferred orientation,

the resulting inhibition received by a cell comes out-of-phase with its excitation, permitting

excitatory cells to respond during the temporal phase in which more excitation is received

than inhibition (Fig. 1A). As the orientation is shifted away from the preferred, temporal

modulation of both feedforward excitation and feedforward inhibition decreases. Since in-

hibition is dominant in the mean, at some orientation the modulation is small enough that

inhibition is dominant at all times, and the cell cannot fire. In particular, for a stimulus at

a cell’s null orientation (perpendicular to the preferred), there is essentially no modulation,

inhibitory neurons of both the cell’s preferred phase and the opposite phase are continuously

activated, and thus excitatory cells of both phases are continuously inhibited (Fig. 1B).

The contrast-invariance of orientation tuning arises because an increase in contrast equally

increases the geniculocortical drive to a given cell and to the anti-phase cells from which it

receives inhibition. Thus, the cutoff orientation – the orientation for which input modula-

tion is sufficiently small that inhibition dominates throughout the cycle – remains essentially

invariant across contrast. A more detailed analysis is given in Troyer et al. (1998).



Kayser et al. –January 29, 2001 7

Rate Model

We studied two forms of model: a conceptual rate model, and a more biophysically-

accurate spiking model. The rate model allowed exploration of the cortical circuit and its

elements within a simple framework. This allowed us both to work out the basic mechanisms

underlying circuit properties, and to explore a significant portion of the given parameter

space, thereby establishing the robustness of these insights. The spiking model, on the other

hand, allowed us to establish that the insights gained from the rate model translated to a

more detailed, more biophysically realistic setting, and thus provided a verification of the

rate model findings. The spiking model also allowed us to examine the role of spike-rate

adaptation, which was not easily accommodated in the rate model.

The rate model consisted of 96 excitatory and 96 inhibitory neurons, with RFs of 12 dif-

ferent orientations and 8 different spatial phases, all centered at the same retinotopic point.

Connections between cortical neurons were made deterministically based on the correlation

between their RFs, as described above. Model neuron firing rates were calculated as the

weighted sum of all the input firing rates from geniculocortical, intracortical excitatory, and

intracortical inhibitory sources, rectified at a threshold – hence the term, “rate model”. The

model was described by eight parameters: the thresholds and membrane time constants of

excitatory and inhibitory cells, the gains of geniculocortical (G), intracortical inhibitory-to-

excitatory (I), and excitatory-to-excitatory (E) cell connections, and a lower bound on the

membrane voltage. Appropriate values for these eight variables were obtained by constrain-

ing the output of the circuit to match a set of experimental findings, including the width

and contrast-invariance of orientation tuning (see Appendix 1); this set did not include the

nonlinear response properties studied here. In addition, two parameters describe synaptic

depression, as described below. For each choice of synaptic depression parameters, we typi-

cally show average results over all sets of the other parameters that met these criteria, thus

examining the robustness of the results across experimentally reasonable model parameters

that are consistent with contrast-invariant tuning.
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Spiking Model

To expand upon the insights obtained from the rate model in a more biophysically real-

istic framework, we used the spiking model of Troyer et al. (1998). 1600 excitatory and 400

inhibitory neurons were laid out in a 2/3mm×2/3mm cortical grid, with retinotopic position

constrained to move smoothly across the grid, and with orientations determined by an exper-

imentally measured map from cat V1. The spatial phase of each RF (which determines the

location of its ON and OFF subregions) was chosen randomly. Connections between cortical

cells were then made probabilistically based on the correlation between the RFs. All neu-

rons were conductance-based integrate-and-fire cells, matched to data from McCormick et al.

(1985) as explained in Troyer and Miller (1997a,b). Excitatory neurons had spike-rate adap-

tation currents. We included only fast (AMPA and GABA-A) synaptic currents, deferring

examination of slow currents (e.g., NMDA and GABA-B) to future work (e.g. Krukowski

2000). Again, parameters were chosen to achieve appropriately narrow, contrast-invariant

orientation tuning, and nonlinear response properties were then studied (see Appendix 1).

Due to the complexity of the model, we present results for only a single set of circuit param-

eters for each set of synaptic depression parameters used.

Visual Stimuli and LGN Inputs

Visual inputs to the models were drifting full-field sinusoidal gratings. LGN responses

were assumed to arise from a spike rate that was the sum of a linear stimulus-induced tem-

poral modulation and a constant background rate, with rates rectified at zero. Amplitudes

of the stimulus modulation were matched to LGN data on X-cell responses across contrast

and temporal and spatial frequency (Sclar 1987), as described in Appendix 1. The rate

model used this rate directly as the LGN response, while the spiking model used Poisson

spike trains sampled from these rates.

The geniculocortical synaptic weights to the simple cells in the model layer 4 were de-

scribed by Gabor functions, with parameters matched to experimental measurements of
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simple cell RFs. In the rate model, the geniculocortical (G) weights were defined determin-

istically by the Gabor distribution, with negative Gabor values indicating OFF weights; the

spiking model RFs were established probabilistically by sampling from the Gabor distribu-

tion.

Synaptic Depression

Synaptic depression is a use-dependent decrease in synaptic efficacy (Abbott et al. 1997;

Markram and Tsodyks 1996); as the firing rate of a presynaptic neuron increases, the in-

fluence of single synapses from that cell onto the postsynaptic neuron declines. Intuitively,

this relationship holds because higher firing frequencies prevent recovery from depression

between input spikes, as discussed below.

One can characterize synaptic depression by two parameters: f , the fractional synaptic

efficacy change after a spike (0 ≤ f ≤ 1), and τ , the time constant of recovery from depres-

sion. Smaller values for f lead to a greater loss of synaptic efficacy after every spike; smaller

values of τ cause faster recovery from this depression. In both the rate and spiking models,

like forms of depression are used: the rate-model depression equation is equal to the average,

over Poisson-sampled spike trains, of the spiking-model depression equation (see Appendix

2); and their behavior in simulations is qualitatively and quantitatively quite similar.

In the experimental literature, two classes of data appear to be present: one in which

synaptic depression is studied through the use of paired-pulse stimuli, and one in which

depression is characterized by probing with trains of stimuli (S. Nelson, personal communi-

cation). These two types of experiment result in different measured values for f and τ , which

we call the “pulse” and “train” parameters, respectively (Table 1). Given this experimental Place

Table 1

about here

uncertainty in parameter values, we examined all results under both choices of parameters.
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Contrast-Invariance of Orientation Tuning

As we have mentioned, one of the critera for selection of our model parameters was that

the resulting circuit should have contrast-invariant tuning. More generally, we have found

that the principles outlined in Troyer et al. (1998) suffice to robustly produce contrast-

invariant tuning across temporal frequencies and in the presence of synaptic depression, two

issues not addressed in the previous work, although we do not discuss this point further here.

Experimental Findings Addressed

Having summarized the model circuit, we now summarize the experimental data on response

nonlinearities that we will address with this model.

Contrast-Dependent Phase Advance

Simple cells respond earlier in time to drifting gratings as the contrast of those gratings

increases, as quantified by the difference in the phase of the first harmonic (F1) of the

cortical spiking responses at each contrast (Albrecht 1995; Dean and Tolhurst 1986). We

reviewed the literature to determine the size of this contrast-dependent (c-d) phase advance

(Fig. 2). We examined both V1 and LGN c-d phase advance, because only the difference Place

Fig. 2

about here

between these values needs to be accounted for by cortical mechanisms. In all cases we report

the advance over three octaves of contrast (e.g. the relative advance between 10% and 80%

contrast).

For V1 simple cells in the cat, c-d phase advance has been measured for approximately

30 cells (Dean and Tolhurst 1986) in one study, and for over 100 cells in another (Albrecht

1995). Mean c-d phase advances were comparable: 42◦ for a 2 Hz grating in the former study,

47◦ and 49◦ for 2Hz and 8Hz gratings, respectively, in the latter. In the LGN, X cells show

25◦ mean c-d phase advance in response to 8Hz (Sclar 1987) and 3Hz (Saul and Humphrey

1990) gratings, while Y cells demonstrate as much or more c-d phase advance as cortical
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simple cells. Both the LGN and cortical measurements are characterized by large standard

deviations. Without a knowledge of the X or Y nature of the geniculocortical inputs to

the cortical cells studied previously, it is difficult to know how much c-d phase advance the

cortex must add, or even whether it adds any at all. An additional uncertainty is raised by

the fact that we are modeling layer 4, where the first transformation of LGN inputs occurs.

Further cortical transformations could add more c-d phase advance, so layer 4 might show

less c-d phase advance than the cortical mean; however, the data on cortical cells were not

broken down by layers.

We make perhaps the simplest assumption: that cortical layer 4 should account for the

mean difference in c-d phase advance between X cells and V1 simple cells. This is based in

part on observations suggesting that X-cells are the physiologically dominant input in V1

(Ferster 1990a,b; Ferster and Jagadeesh 1991). Thus, we assume that layer 4 must account

for roughly 20 degrees of c-d phase advance over 3 octaves of contrast. Note that we do not

include LGN c-d phase advance in our simulations, so the simulations should be compared

only to this difference between experimentally observed LGN and V1 c-d phase advance.

Contrast-Dependent Changes in Temporal Frequency Tuning

In response to an increase in stimulus contrast, cortical temporal-frequency tuning curves

change their shape. Higher-temporal-frequency stimuli that yield small or zero responses at

low contrast yield reasonable responses at higher contrast. One measure of this is given by

comparing the ratios, at each temporal frequency, of the response at high contrast to the

response at low contrast. In data taken from an LGN X cell (Fig. 3, top; replotted from

Sclar (1987)), this ratio is relatively constant across temporal frequencies, though slightly Place

Fig. 3

about here

larger at higher frequencies. This behavior was fairly typical of 27 X cells studied in Sclar

(1987). In two cortical simple cells reported in Albrecht (1995), however (one replotted

in Fig. 3, bottom), this ratio increases sharply with increasing temporal frequency: higher

temporal frequencies give very small responses at low contrast, but reasonable responses at

higher contrast. The cortical data for cats is very sparse: we are aware of only the two cells
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from Albrecht (1995) and one additional cell in Holub and Morton-Gibson (1981) for which

temporal frequency tuning at multiple contrasts is reported; all three cells show this effect.

The effect is also common, though not universal, in monkey V1 cells (M. Hawken, private

communication; Hawken et al. 1992; of 3 published tuning curves, effect is seen in Carandini

et al. 1997, Fig. 6 but not Fig. 9 and not seen in Albrecht 1995, Fig. 11), suggesting that

a relative boosting with contrast of the high-temporal-frequency portion of the temporal

tuning curve may be a common V1 property. However, there is no data as to whether, or

how strongly, this effect is seen in layer 4 neurons. Moreover, LGN Y cells show a more

pronounced c-d boosting of the high-frequency portion of the tuning curve (Sclar 1987) than

do X cells. Just as for c-d phase advance, without knowledge of the relative X and Y cell

input to studied simple cells, it is unclear how much of this boost, if any, is accomplished by

the cortex. We again make the assumption that the cortex must account for the difference

in response between X cells and V1 simple cells. Lastly, these data also suggest, as does one

published cell in monkeys (Carandini et al. 1997, Fig. 6), that increases in contrast might

also shift the peak of the temporal frequency response curve to higher frequencies.

It is important to note that the relative boosting of high-frequency responses by contrast

does not correspond to an increase in contrast gain – the slope of response vs. contrast – at

higher temporal frequencies. Plotting the responses at each temporal frequency vs. contrast

(Fig. 4) makes clear that this slope is not enhanced at higher frequencies and, if anything, is Place

Fig. 4

about here

reduced. Another of the three cells in the literature (Holub and Morton-Gibson 1981) showed

similar contrast gain at high and low temporal frequencies, but an elevated threshold con-

trast for higher-temporal-frequency responses. Thus, the greater relative amplification with

contrast of responses to higher temporal frequencies arises because low-contrast responses

at higher frequencies are very small, due to lower contrast gain and/or to elevated contrast

threshold, and not because high-contrast responses show an elevated contrast gain.
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Saturation of Responses With Increasing Contrast

Simple-cell responses tend to reach a plateau with increasing stimulus contrast (Fig. 4, bot-

tom); this is known as contrast saturation. This cannot be explained by intrinsic saturation

of the cell’s ability to fire. As evidenced, for example, by the contrast-invariance of orien-

tation tuning, saturation does not occur at a fixed response level, but rather at different

response levels for different stimuli (so that orientation tuning curves are similar in shape

at saturating contrasts and at low contrasts). LGN inputs show contrast saturation as well

(Fig. 4, top). If LGN input firing does not change with increasing contrast, neither will

cortical firing. Thus the question arises of whether cortical saturation level is independent

of LGN saturation level.

While the LGN X cell in Fig. 4 indeed saturates at higher contrasts than the cortical

cells in that figure, it is not clear whether this is a general phenomenon. Contrast saturation

can be measured by a parameter C50: the contrast at which response is half of the maximal,

saturating response (determined from a fit of the Naka-Rushton equation, Eq. 1 in Appendix

1, to the contrast-response curve). In Table 2, we show the value of C50 for the cell of Fig. 4 Place

Table 2

about here

and for one additional cortical and 5 additional LGN X cells for which we found contrast

response curves in the literature, along with the mean value reported for over 100 cat cortical

simple cells in Albrecht (1995). From these values, it is not obvious whether cortical cells

saturate earlier than LGN cells. The same uncertainty applies in monkey, where V1 cells

saturate over a range of contrasts similar to the combined saturation ranges of magnocellular

and parvocellular LGN cells (Allison et al. 2000; Sclar et al. 1990).

However, the phenomenon of contrast adaptation (Albrecht et al. 1984; Ohzawa et al.

1985) strongly suggests a cortical role in setting contrast saturation levels. Sustained presen-

tations of low (high) contrast stimuli shift the cortical response functions to lower (higher)

C50’s, without corresponding shifts in the LGN response functions. Both threshold and

saturating contrasts are shifted by adaptation. This indicates that the cortex can set its

saturation level independently of the level at which LGN responses saturate, and motivates

us to explore the effects of our model circuit mechanisms on cortical contrast saturation.
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The strongest components of adaptation operate over time scales longer than that of any

mechanism incorporated in our network (mean time to 2/3 of the total effect is 5.5-6.5 sec-

onds, Ohzawa et al 1985), so we cannot address these effects. However, contrast adaptation

or related phenomena are seen on multiple time scales, including short time scales (Bonds

1991; Geisler and Albrecht 1992; Nelson 1991a,b) that are within the range of mechanisms

studied here (spike-rate adaptation, synaptic depression, recruitment of dominant opponent

inhibition). Here we address the contributions of these mechanisms to contrast saturation,

while noting that other mechanisms might be involved in both saturation and adaptation

over longer time scales.

The data on contrast saturation also suggest an additional point that we will address:

simple cell responses saturate at higher contrasts as temporal frequency increases. This effect

was noted by Albrecht (1995) in discussing the two cells for which temporal frequency tuning

was studied at multiple contrasts, and is shown particularly prominently by the cortical cell

of Fig. 4. Similar findings have been noted in monkeys (Carandini et al. 1997).

Results

Contrast-Dependent Phase Advance

At least three mechanisms can contribute to cortical c-d phase advance beyond that of the

LGN inputs: synaptic depression, spike-rate adaptation, and contrast-dependent increases

in conductance. Synaptic depression is evoked by the presynaptic spiking response to the

grating stimulus, and differentially suppresses the later portions of the input, and thus of

the postsynaptic response, over each stimulus cycle. As illustrated in Fig. 5, this shifts Place

Fig. 5

about here

the response peak forward in time. Because the effect of synaptic depression grows with

presynaptic firing rate, and thus with contrast, this shift increases with stimulus contrast,

yielding a c-d phase advance. Spike-rate adaptation is evoked by postsynaptic rather than

presynaptic spiking response, but otherwise it causes c-d phase advance for the same rea-

sons as synaptic depression. Finally, as emphasized in studies of the normalization model
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(e.g., Carandini et al. 1998; see Discussion), increases in postsynaptic conductance cause a

decrease in membrane time constant, and this decrease in integration time causes the phase

of responses to advance. If conductance grows with stimulus contrast, this also yields a c-d

phase advance.

We first examined the role of synaptic depression. We began by studying the effects of

the depression parameters, f (the loss of synaptic strength after each presynaptic action

potential) and τ (the time constant of depression) (Fig. 6). Parametric variations of f and τ Place

Fig. 6

about here

were carried out only for the geniculocortical synapses: we examined the c-d phase advance

of the total geniculocortical input to simple cells in response to optimally oriented spatial

gratings drifting at three temporal frequencies. Depression at geniculocortical synapses yields

c-d phase advances of 5-10 degrees across a broad range of parameters. We show only rate

model results in Fig. 6, as spiking model results are virtually identical.

The dependence of c-d phase advance on f and τ can be understood as follows. A smaller

f , representing stronger depression, induces stronger c-d phase advance, up to a point. Once

f becomes small enough that the synaptic efficacies are close to zero within the stimulus

cycle at some contrast, further increases in constrast have less and less additional effect, so

too great a reduction in f can decrease the c-d phase advance (Fig. 6a). Smaller τ yields

greater recovery from depression between spikes, hence less depression and less c-d phase

advance. As τ increases, the depression becomes stronger and the phase advance increases,

until τ becomes comparable to the period of the stimulus cycle. At this point, τ is preventing

recovery of synaptic efficacy between response cycles. Further increases in τ have little effect

on c-d phase advance: such increases change the dynamic range over a cycle, lowering the

mean synaptic efficacy and mean response, but do not seem to appreciably alter the time

course of depression and recovery within that dynamic range (of course, as τ → ∞, the

steady-state response level will go to zero, and c-d phase advance will become undefined).

Finally, an increase in temporal frequency is roughly equivalent to moving the graphs down

and to the left: at higher temporal frequency, there is less time in each cycle for depression

to occur, so a larger f is needed to get an equivalent amount of depression; and there is less
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time in each cycle to recover from depression, so a smaller τ gives an equivalent amount of

recovery.

Next, for fixed f and τ (set either according to the “pulse” or “train” parameters, Ta-

ble 1), we examined the relative contributions of synaptic depression at different synaptic

loci in the full model circuit, using the rate model. This model has no spike-rate adap-

tation and has a fixed membrane time constant, so only depression should contribute to

the c-d phase advance. Synaptic depression can be found in any of three locations: in the

geniculocortical synapses (G), in the intracortical excitatory synapses (E), and in the intra-

cortical inhibitory synapses (I). This yields eight possible configurations for the locations

of depressing synapses. Depression in the I synapses had little effect on phase advance, so

we illustrate the c-d phase advance produced by the four configurations not involving I as

well as for the case of depression at all locations (Fig. 7). Matching these data across the Place

Fig. 7

about here

different depression conditions is not trivial; one must ensure that the data are comparable

by matching firing rates, for example, or by using the same set of parameters in all cases.

We chose to show the distribution of results for all model parameter sets that satisfied the

known experimental constraints (see Appendix 1) at a given temporal frequency. Similar

plots in which we include only model parameter sets that fit the constraints at all temporal

frequencies give similar results with less variability, but there are no such parameter sets

within our search range for some cases (both sets of “G” cases, and the train “E” case).

As evidenced by Fig. 7, depression of either geniculocortical or intracortical excitatory

synapses can induce approximately 5 degrees of c-d phase advance, and these advances sum

when depression is present in both locations. In the absence of any depression, there is no

c-d phase advance, as expected. These general results are for the most part similar across

temporal frequency of the input and choice of synaptic depression parameters (“pulse” vs.

“train”), except that the train parameter set tends to produce somewhat larger phase shifts

than the pulse set, as is also evident in Fig. 6.

To consider the additional effects of spike-rate adaptation and of contrast-dependent

changes in membrane time constant, we turn to the spiking model. In this model, depression
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was included only at geniculocortical synapses, for reasons described in Appendix 1. In the

absence of depression (“D”) or adaptation (“A”), a c-d phase shift of 3-4 degrees appears, Place

Fig. 8

about here

increasing slightly with temporal frequency (Fig. 8, “No A, No D”). This is roughly consistent

with the observed contrast-induced decreases in membrane time constant.1 Adding either

adaptation alone (“A, no D”) or geniculocortical depression alone adds roughly another 5

degrees, and the effects of these two mechanisms together are additive.

With all three mechanisms present, the spiking model shows mean c-d phase advance

of 13 − 15◦, relative to LGN, for either set of depression parameters (Fig. 8). Depression

in intracortical excitatory synapses can easily add another 5◦ (Fig. 7). This suggests that

these mechanisms may be sufficient to account for the roughly 20◦ difference between LGN

X-cell and V1 c-d phase advances that have been observed in cats (Fig. 2). However, while

we have found that the effects of geniculocortical depression add with those of intracortical

E depression (Fig. 7) and with those of adaptation (Fig. 8), we have not studied the three

together. We tried modeling adaptation in the rate model, but did not see an effect on

c-d phase advance. In our simple rate model, adaptation was proportional to the rate, and

therefore was active even at low rates. In reality and in our spiking model, the net effect

of adaptation increases faster than linearly with firing rate: the mean adaptation current

increases proportionally to the rate, but the effect of this current on spiking increases with

rate, because at higher rates (smaller inter-spike-intervals), there is less time for the spike-

induced current to decay between spikes. This difference appears to be critical to the c-

d phase advance induced by adaptation. Rather than include a more complicated (and

underconstrained) dependence of adaptation on rate, we elected to study only the effects of

synaptic depression in the rate model, and to study adaptation only in the spiking model.

Conversely, as discussed in Appendix 1, for reasons of computational complexity, we did not

study depression of intracortical synapses in the spiking model.

We also examined the dependence of phase shift on stimulus orientation in the rate model

(data not shown). C-d phase advance remains essentially constant across orientations that

give reasonable response.
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Contrast-Dependent Changes in Temporal Frequency Tuning

We next studied the contrast dependence of temporal frequency tuning. As in our studies

of contrast-dependent phase advance, we wanted to isolate the cortical contribution to tem-

poral frequency tuning – in this case, to understand the cortical response in the absence

of any incoming temporal information beyond the stimulus-driven temporal modulation of

the input rates. Experimentally, the LGN inputs show temporal-frequency dependence in

the amplitude of their rate modulations (their response F1; Fig. 3, top). Thus, we found it

convenient to consider an even simpler model of LGN responses, in which the LGN response

F1 was constant across temporal frequencies at a given contrast, with larger F1’s represent-

ing higher contrast. We refer to such an LGN response profile as “flat”, in distinction to

the experimental tuning of Fig. 3, top, which we refer to as “Sclar” tuning (because the

experimental data is from Sclar (1987)). Using flat LGN tuning, we can examine cortical

contributions to temporal tuning; we can then examine full cortical responses using Sclar

LGN tuning.

Assuming flat LGN tuning, there are at least four cortical factors that contribute to

temporal frequency tuning and its contrast dependence: (1) the cellular time constant and

its decrease with increasing stimulus contrast; (2) the spike-threshold nonlinearity; (3) spike-

rate adaptation; (4) synaptic depression. We consider the effects of each of these in turn.

Cellular (and synaptic) time constants act as low-pass filters, causing the modulation of

the simple cell’s voltage response (the first harmonic or F1 of the voltage response) to decrease

with increasing temporal frequency.2 As we have already noted, the average membrane time

constant of a cortical cell shrinks as the amount of synaptic input to the cell increases, because

increasing synaptic drive increases membrane conductance. As a result, at higher contrasts

the voltage responses to higher temporal frequencies are less attenuated by cellular filtering

than at lower contrasts (Carandini and Heeger 1994). This effect is captured in the spiking

model, but not in the rate model which has a fixed time constant. The effect is modest:

the mean time constant in the spiking model shrinks from 12.5 msec to 8 msec between the

low (F1=30) and high (F1=90) flat input levels (further details in footnote 1). Assuming
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a linear model of voltage response, this yields about an 18% increase in the high-contrast

voltage F1 at 12 Hz relative to that expected from the low-contrast time constant.

However, this modest effect can become significant when combined with the nonlinearity

of a nonzero spiking threshold: the threshold gives rise to an “iceberg” effect. Fig. 9A shows Place

Fig. 9

about here

responses in the spiking model to four levels of flat LGN input, when adaptation but not

depression is present. At 12 Hz input frequency, the response is close to zero for input F1’s

of 15 or 30 spikes per second, but thereafter grows with increasing input F1, suggesting a

threshold effect. This can be confirmed by viewing the corresponding intracellular voltage

traces for a randomly chosen cell with spiking turned off (Fig. 9B); the spike threshold of

-52.5 mV is indicated as a dashed line. The modest attenuation of voltage modulation due

to membrane filtering is, on average, sufficient to keep voltage responses subthreshold at the

lower input levels. Higher input modulation levels, however, yield higher voltage modulations

that consistently cross threshold. This threshold effect depends upon our circuit model, in

which inhibition is dominant so that the mean response to a sinusoidal grating is always

subthreshold and spiking occurs only on voltage modulations (Troyer et al. 1998); in a

model in which the mean input to a preferred stimulus was suprathreshold, the modest

affects of cellular filtering on the voltage modulations would have only modest effects on

spike response.

To examine the effects of the other mechanisms, we examined temporal frequency tuning

curves with and without synaptic depression (Fig. 10: A, no depression, B, pulse depression

parameters) and, for the spiking model, with and without spike-rate adaptation currents

(Fig. 10, spiking model: middle panels, no adaptation, bottom panels, with adaptation).

In all cases, we present data for both flat (dashed lines in Fig. 10) and Sclar (solid lines in

Fig. 10) LGN tuning. The top panels of Fig. 10A,B show the LGN input to simple cells.

LGN cells respond better to high than to low temporal frequencies and show slightly more

contrast-dependent enhancement of both high and low temporal frequencies than of middle

temporal frequencies (Fig. 10A, Sclar inputs). In the absence of depression or adaptation, the

filtering by the cortical cell’s membrane time constant, combined with the spike threshold,
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produces strongly low-pass cortical responses (Fig. 10A, middle panels). Both spike-rate

adaptation (Fig. 10, bottom panels) and synaptic depression (Fig. 10B) suppress responses

to lower-frequency stimuli much more strongly than responses to higher-frequency stimuli,

and can convert low-pass cortical response into a more band-pass response. This property

of synaptic depression also virtually eliminates the difference between flat and Sclar inputs

(Fig. 10B, top panels). Train parameters for synaptic depression produce results similar

to pulse parameters, except that there is less difference between responses to low vs. high

contrasts (not shown).

Both synaptic depression and spike-rate adaptation contribute to the relative enhance-

ment of higher-temporal-frequency responses at high contrast. Each is more strongly acti-

vated by higher-contrast than by lower-contrast stimuli, and each more strongly suppresses

responses to lower-frequency than to higher-frequency stimuli. These contrast-dependent

effects are most clear in the “normed” insets in each panel of Fig. 10, which show the ratio

of high-contrast to low-contrast responses vs. temporal frequency. This ratio strongly in-

creases at higher temporal frequencies for cortical responses in every case except for that of

the rate model without depression (Fig. 10A). That case is the only one that lacks any of

the three mechanisms of contrast-dependent changes in membrane time constant, synaptic

depression, and spike-rate adaptation. Adding depression alone (Fig. 10B, rate model) or

membrane time constant changes alone (Fig. 10A, spiking model, no adaptation) suffices

to give contrast-dependent enhancement of high-frequency responses. Addition of spike-

rate adaptation in the spiking model tends to eliminate any relative enhancement of lower

frequencies while preserving such enhancement at higher frequencies. Synaptic depression

also suppresses the contrast-dependent differences between LGN input conductances, mak-

ing different contrasts appear more alike to the cortical cell. This reduces the strength of

contrast-dependent response enhancement at all temporal frequencies.

We see at best only a weak shift in the peak of the temporal frequency tuning curve

with increasing contrast. At present, there are no experimental data as to whether LGN-

recipient cells in cat layer 4 show such a shift in peak. If they do not, but instead show only
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a relative increase in responses to higher temporal frequencies at higher contrast, this could

be sufficient to induce shifts in the tuning peaks of downstream cells.

Saturation of Responses With Increasing Contrast

Lastly we examined the saturation of cortical responses with increasing contrast (Fig. 11). Place

Fig. 11

about here

Even in the absence of depression or spike-rate adaptation, model cortical responses tend to

saturate somewhat earlier than their LGN inputs, particularly at lower temporal frequencies

(Fig. 11B). If either pulse or train depression is active, saturation occurs significantly earlier

than in either the LGN inputs or the models without depression. (The one exception is

at the highest temporal frequency of the spiking model, for which responses are small and

the measure of saturation probably inaccurate.) Moreover, clearly in the depression cases,

and also somewhat in the examples lacking depression, there is a tendency for responses to

higher temporal frequencies to saturate later than responses to lower temporal frequencies:

for cases with depression, C50 values increase monotonically with temporal frequency if the

lowest temporal frequency is excluded. The same pattern is seen in the V1 cell of Fig. 4,

though the model C50 values are somewhat lower than those measured by Albrecht.

The contrast saturation effects induced by synaptic depression can be readily understood.

As demonstrated by Abbott et al. (1997) and Tsodyks and Markram (1997), in the presence

of depression, as a presynaptic neuron’s firing rate increases to values much larger than 1/τ

(where τ is the time constant of recovery from depression), the overall postsynaptic effect

of its synapses – proportional to rate times efficacy – saturates at a plateau value. The

postsynaptic cell cannot “see” further increases in rate. Thus, as LGN firing rates increase

with contrast, the impact on the cortical cells will plateau earlier than it would without de-

pression. This saturation occurs at higher contrasts for higher temporal frequencies, because

depression more strongly suppresses lower than higher-frequency inputs.

As can be seen in the table, however, cortical responses can saturate at lower contrasts

than LGN even when depression is absent. This results from the inhibition in our circuit

model. Because the cortical response is determined by a thresholded version of the membrane
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voltage, for a sinusoidal input grating the response of the cortex can be largely understood

from the peak membrane voltage. We estimate this peak as the sum of the mean voltage and

the modulation amplitude, or first harmonic, of the voltage. In the absence of inhibition, this

peak voltage closely follows the modulation of the LGN input: tuning curves of peak voltage

and of LGN modulation show very similar C50s under various conditions (data not shown).

However, when inhibition is added, the peak voltage can show C50 values that are lower than

the corresponding LGN values, because the inhibition in the model both decreases the slope

of, and adds a constant negative DC offset to, the curve of peak voltage vs. contrast. The

DC offset originates from the background firing of the LGN, which, because the cortex is

inhibition-dominated, is net inhibitory. By both flattening and shifting the cortical response

curve closer to zero, inhibition effectively causes cortical neurons to saturate sooner than

their inputs.

Discussion

We have established that a simple circuit model of cat layer 4 that achieves contrast-

invariant orientation tuning can also account for three contrast-dependent (c-d) nonlinearities

in simple cell responses to sinusoidal stimuli: c-d phase advance, c-d changes in the shapes

of temporal-frequency tuning curves, and contrast saturation. These response nonlinearities

arise locally – that is, in a circuit in which both excitatory and inhibitory intracortical

connections are primarily between cells of nearby preferred orientations – as a result of

the many nonlinear elements present in the LGN responses and cortical circuitry. The

observed c-d phase advance can be largely or entirely accounted for by the combined effects

of geniculocortical and intracortical synaptic depression, spike-rate adaptation currents in

cortical cells, and c-d changes in cortical cell conductance. The greater ratio of high-contrast

to low-contrast responses for high vs. low temporal frequencies arises from the interaction

of these nonlinearities with the spike threshold, along with the dominance of inhibition in

our model circuit. Finally, the inhibition in our model circuit causes cortical cell responses
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to saturate at slightly lower contrasts than do the LGN inputs, while synaptic depression

causes a much stronger decrease in cortical saturating contrast relative to LGN.

These results were derived in the context of a circuit model that has previously been

shown to account for a wide variety of observations related to orientation tuning in cat layer

4 (Troyer et al. 1998). However, only some of the present results depend on this circuit

model. The circuit model was critical to establishing that the c-d nonlinearities studied here

could coexist with the more linear-like behavior of contrast-invariance of orientation tuning.

In addition, the relationships of inhibition and excitation in the circuit model are critical to

the threshold effect underlying the c-d changes in temporal frequency tuning: it is crucial

that inhibition is dominant so that the mean input is subthreshold, since suprathreshold

mean input would cause small changes in input modulation to have only small effects on

responses; and it is crucial that inhibition is spatially opponent to excitation, so that exci-

tation can periodically drive responses to a preferred-orientation grating despite this overall

dominance of inhibition. The circuit model used is not critical to the mechanisms of c-d

phase advance and contrast saturation explored here, although the inhibition in the model

circuit does contribute to contrast saturation.

Coexistence of Linear and Nonlinear Response Properties

We have emphasized that it is important not simply to explain nonlinear response proper-

ties, but to understand how they can coexist with “linear-like” properties such as contrast-

invariant orientation tuning. In particular, how can the circuit show contrast-invariance in

the tuning for orientation at each temporal frequency, and yet show contrast-dependence in

the tuning for temporal frequency at the preferred orientation?

The answer is that key nonlinearities within the circuit vary with temporal frequency,

but not with orientation. As noted previously, each grating presented to the circuit gives rise

to both a mean voltage and a voltage modulation about that mean. A change in orientation

away from the preferred does not alter the mean input to a cell, but only decreases the input

modulation. The contrast-induced growth in the mean response is converted into inhibition
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that offsets the concomitant growth in the modulations, which is roughly proportional across

orientations, yielding contrast-invariant orientation tuning. The situation is different for

temporal frequency: both the mean and the modulation of the input are altered by a change

in temporal frequency. Synaptic depression strongly suppresses the input mean relative to

the input modulation at low temporal frequencies, but not at higher temporal frequencies

(Krukowski 2000). Furthermore, an increase in stimulus contrast causes greater amplification

of input modulations at higher vs. lower temporal frequencies, because of c-d decreases in

membrane time constant as well as depression and spike-rate adaptation. Finally, LGN

input firing rates show a slightly greater contrast-dependent increase at high than at low

temporal frequencies. Thus, the contrast-invariance of orientation tuning and the contrast

dependence of temporal frequency tuning follow from the frequency- but not orientation-

dependent nature of the circuit nonlinearities.

Limitations of the Present Work

Several of our explanations depend on the existence of sufficient synaptic depression in vivo.

One study reported that cortical depression appears weaker in vivo than in vitro (Sanchez-

Vives et al. 1998), but speculated that this may result simply from the greater baseline

rate of depression in vivo due to background activity, an effect included in our modeling.

Support for a functional depression-like mechanism in vivo was reported by Nelson (1991a,b):

responses in cat V1 were suppressed by repetition of visual stimuli in a manner consistent

with both synaptic depression and a presynaptic origin. We attempted to control for the

uncertainty in the strength of depression by studying two different in vitro parameter sets;

they showed little difference in behavior except that the “train” parameters reduced the

difference between low- and high-contrast response amplitudes.

The model weakly suggests that geniculocortical depression may be less strong than in

either of these parameter sets. Geniculocortical synaptic depression with these parameters,

and particularly with the train parameters, led model cells to saturate too early, relative to

cortical cells (Fig. 11). However, nonlinearities in LGN temporal response profiles beyond
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the simple rectification considered here might alter this result. In particular, LGN responses

tend to occur over significantly less than a half-cycle of a sinusoidal stimulus (e.g., Reich

et al. 1997); this would be likely to affect response saturation similarly to going to a higher

temporal frequency, for which saturation occurs at higher contrasts.

The similarity of results in both the simpler rate model and the more elaborate spiking

model, and the ability to understand their differences in terms of the specific additional

nonlinear mechanisms present in the spiking model, give confidence that the understandings

achieved here of the contribution of each nonlinear mechanism to each nonlinear response

property are fairly robust – i.e., independent of specific implementation. Further mech-

anisms not considered here may also play a role, such as further nonlinearities in LGN

responses, other active membrane conductances beyond spike-rate adaptation (McCormick

1990), nonlinearities of dendritic integration (e.g., Larkum et al. 1999), synaptic facilitation,

which is seen at many excitatory synapses onto inhibitory interneurons (Thomson et al.

1993), or the presence of NMDA receptors, which can alter temporal frequency tuning in our

model (Krukowski 2000). These uncertainties limit our ability to make strong quantitative

predictions. But the present results establish the viability of a local explanation of contrast-

dependent nonlinearities; and they allow qualitative tests, discussed further below.

Applicability of the Model to Other Species

Contrast-dependent nonlinearities have also been studied in monkeys. Data there, though

also limited, seem qualitatively consistent with those in cats (Albrecht 1995; Carandini and

Heeger 1994; Carandini et al. 1997; Hawken et al. 1992). However, response properties in the

LGN-input-recipient portions of monkey layer 4 are quite different from those in cat layer 4:

while cat layer 4 consists very largely of classical simple cells – cells with aligned and oriented,

segregated ON and OFF subregions and strong orientation tuning (Bullier and Henry 1979;

Gilbert 1977) – monkey layer 4C has few such cells (Blasdel and Fitzpatrick 1984; Hawken

and Parker 1984). Thus, our model circuit is unlikely to apply directly to monkeys. As we
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discussed above, many of our explanations of c-d nonlinearities are independent of the circuit

studied. In the cases where the circuit plays a role, the critical elements of the circuit are

the dominance of inhibition and its opponency with excitation. We have conjectured that

these may be general principles of cortical layer 4 circuitry (discussed in Troyer et al. 1998),

and so in particular might also characterize layer 4 of monkey V1.

Experimental Tests of the Model

The present explanations of c-d phase advance can be directly tested by blocking spike-rate

adaptation and/or synaptic depression and determining whether this decreases c-d phase

advance. Spike-rate adaptation can be blocked by several pharmacological agents (Baskys

1992; Nicoll 1988). If applied iontophoretically to individual cells, these should reduce c-d

phase advance (although spike-rate adaptation may not be as strong in vivo as in vitro,

Tang et al. (1997)). Selective intervention against synaptic depression is more difficult (see

discussion in Chance et al. (1998)).

The combined role of LGN response nonlinearities and geniculocortical synaptic depres-

sion in both c-d phase advance and contrast saturation could be assayed in intracellular

recordings from simple cells, by using electrically evoked cortical suppression (Chung and

Ferster 1998) to isolate geniculocortically-driven currents during presentation of sinusoidal

grating stimuli. By comparing c-d response properties of these input currents to those of the

cell’s voltage response with the cortical circuit intact, the degree of involvement of cortical

mechanisms could be assessed. Comparisons to average LGN firing properties might be used

to assay the role of geniculocortical synaptic depression; we would predict that these input

currents would show greater c-d phase advance and earlier contrast saturation than LGN

firing rates.

The explanation of c-d changes in temporal frequency tuning could be tested by mea-

surements of the membrane potential in response to high-temporal-frequency gratings of

increasing contrast. In cells showing a c-d change in the shape of temporal frequency tun-

ing curves favoring higher temporal frequencies, we predict a threshold effect: as contrast
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increases, the spiking response should increase faster than the voltage response.

Other Experimental Work Suggested by the Model

As we emphasized in the section on Experimental Findings Addressed, the data on response

nonlinearities remain quite sparse. None of the data in cats are known to be from layer 4

(though most are from identified simple cells); it will be important to determine the degree

to which layer 4 cells exhibit these nonlinearities. LGN Y cells show stronger response

nonlinearities than X cells, emphasizing the importance of correlating nonlinear cortical

response properties to the proportion of X or Y input received by a cell. LGN and cortical

response nonlinearities have not been studied under the same conditions or in the same

animal, with the exception of one study in monkeys (of contrast saturation, Sclar et al.

(1990)). This is particularly important for temporal response properties, which may be quite

mutable by different types of anesthesia: increases in inhibition, as induced by barbiturates,

can cause a lower temporal frequency cutoff in responses at a given contrast in our circuit

model, while blockade of NMDA receptors, e.g. by ketamine, can have variable effects on

temporal frequency tuning (Krukowski 2000).

Further data on the dependence of c-d phase advance on temporal frequency and stimulus

orientation, particularly in cat layer 4, could limit potential parameters and mechanisms.

Albrecht (1995) reported a weak positive correlation between c-d phase advance and temporal

frequency across cat and monkey simple cells. We do not see such dependence in our average

results, but individual parameter sets can show such dependence (e.g., Fig. 6). Similarly, data

for a few cells in monkey V1 (Carandini et al. 1997) showed little dependence of c-d phase

advance on stimulus orientation. While average phase advance in the rate model showed no

dependence on stimulus orientation for orientations that give appreciable response, we have

not carefully examined the parameter dependence of this result; and orientation dependence

would be expected for components of c-d phase advance due to adaptation or conductance

changes, which were not included in the rate model.
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Comparison to Other Models

The importance of understanding the nonlinearities studied here has been emphasized by

studies of the normalization model (Albrecht and Geisler 1991; Heeger 1992; Carandini et al.

1997, 1998). These studies have strongly influenced the field’s thinking: as a phenomenolog-

ical description of cortical processing, the normalization model integrates a wealth of data

in a simple way.

However, as a mechanistic explanation, this model is problematic. First, it assumes that

simple cells receive input that is scaled linearly by changes in contrast, e.g. the input has

contrast-invariant orientation tuning; it then argues that addition of divisive or “normalizing”

inhibition will explain response nonlinearities without disturbing input tuning for spatial

properties such as orientation. We have instead emphasized that both the LGN input and the

circuit are nonlinear, e.g. key nonlinearities in LGN responses are the c-d growth of the mean,

saturation of the F1, and advance of the response phase. Second, the normalization model’s

explanations of temporal nonlinearities require unrealistically high membrane time constants.

The model proposes that the phase advance and the high-temporal-frequency cutoff F at

a given contrast are determined by the membrane time constant τ . C-d nonlinearities are

explained by decreases in τ with increasing contrast, induced by the increase in membrane

conductance from the normalizing inhibition. However, V1 cells often show low-contrast

(or even high-contrast – Saul and Humphrey (1992)) cutoffs (frequency showing little or no

response) at F = 10−15 Hz (Albrecht 1995; Carandini et al. 1997, Fig. 7). For such a cutoff

to be simply due to τ , one must have τ >1/F , i.e. greater than 66-100 msec (see footnote 2).

Yet time constants of cortical cells in vivo are only 15-24 msec (Hirsch et al. 1998) at rest,

and can only decrease under visual stimulation. Similarly, a 20◦ c-d phase shift in response

to a 2 Hz stimulus – a temporal advance of 28 msec – would require a c-d decrease in τ of

28 msec.3 Such a large decrease between 10% and 80% contrast seems unlikely.

The normalization model also requires divisive inhibition that depends only on contrast,

independent of orientation. This is necessary, for example, to explain contrast saturation

or c-d phase shifts of responses to non-preferred stimuli. Experimental data now show that
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there is a contrast-dependent conductance increase which, at preferred orientations, can be

as high as two- or three-fold, but which is tuned for orientation (Anderson et al. 2000; Borg-

Graham et al. 1998; Hirsch et al. 1998). The corresponding reduction in time constant can

certainly contribute to phase advance (Fig. 8, “no A, no D”) and to the threshold effect

that we argue explains contrast-dependent changes in temporal frequency tuning. However,

any such contribution will have orientation tuning like that of the conductances. Another

significant problem is that the normalization model assumes that shunting inhibition will

give this divisive effect, whereas recent theoretical studies suggest that the effect will be

subtractive rather than divisive (Holt and Koch 1997).

Another model – that of Chance et al. (1998) – independently arrived at some of the

same qualitative ideas that we have developed here (see Chance et al. 1997; Priebe et al.

1997). In particular, they also pointed out that synaptic depression of feedforward synapses

could contribute to c-d phase advance, although they found less than 4 degrees of c-d shift

per 3 octaves of contrast at 2 Hz (their Fig. 2E) and, curiously, did not find any c-d shift for

temporal frequencies of 8 Hz or higher. They did not address the other nonlinear response

properties or mechanisms addressed here, and did not address the coexistence of linear-like

and nonlinear response properties.

Conclusion: Origins of Nonlinear and Linear Response Properties

As the circuit model presented here has emphasized, many aspects of cortical processing are

inherently nonlinear, including spike thresholds, adaptation, synaptic depression, conduc-

tance effects, and the contrast-dependence of the input. On the other hand, many spiking

responses of cat simple cells can be understood roughly in terms of linear filtering of the

stimulus (e.g., DeAngelis et al. 1995; Sclar and Freeman 1982; Skottun et al. 1987, 1991a).

Based on these findings, one theoretical approach is to consider simple cells as a rectified

linear filter, and to seek nonlinear corrections that can give a more complete account of

spiking responses (e.g., Albrecht and Geisler 1991; Carandini et al. 1997, 1998).

While this approach is useful in describing spiking behavior, we suggest that when mech-
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anistic explanations are sought, the problem should be turned on its head. Simple cell

responses must be understood in terms of cortical cells and circuits, which are inherently

nonlinear. The greatest difficulty is explaining why the behavior of the cortical circuit ap-

pears linear in key respects. For example, understanding how orientation tuning comes to be

contrast-invariant has been a key problem for understanding V1 circuitry (Ben-Yishai et al.

1995; Somers et al. 1995; Troyer et al. 1998). As we have seen here, the particulars of the

circuitry that achieve this linear-like behavior for orientation tuning need not generalize to

other response properties, such as temporal frequency tuning. Thus, we suggest that the key

mechanistic question is not why simple-cell properties are nonlinear, but rather how they

come to appear linear. Once the latter has been explained in a circuit model, one can see to

what extent other, nonlinear behavior may emerge naturally from such biological nonlinear-

ities as thresholds, synaptic depression, adaptation, and conductance changes.
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Appendix 1: Details of Computational Methods

Here we present the full details of the methods necessary to replicate our work.

Elements in common to both rate and spiking models

Architecture. Both rate and spiking models are structured as follows. There are geniculocor-

tical (G) synaptic weights connecting the LGN to the cortex, and two types of intracortical

weights, excitatory-to-excitatory (E) and inhibitory-to-excitatory (I) (Fig. 1). The intracor-

tical connections instantiate the cat layer 4 circuit model proposed in (Troyer et al. 1998).

Geniculate responses. Geniculate firing rates in response to drifting sinusoidal stimuli are

modeled, as in Troyer et al. (1998), as linear rate modulations (rectified at 0 Hz) about back-

ground rates of 15 Hz and 10 Hz for ON and OFF cells, respectively. ON cell modulations

were at the stimulus phase, OFF cell modulations lagged by 180o. Pre-rectification mod-

ulation amplitudes were chosen for each contrast and temporal frequency so that the first

harmonic (F1) of the rectified rate modulations matched data from Sclar (1987, Fig. 1),4

except in “flat” simulations, in which these amplitudes were set to four arbitrary values

(15, 30, 60, and 90 Hz) that were held constant across temporal frequencies. To assign

contrast values C to the “flat” amplitudes, we used matlab’s “curvefit” function to fit the

pre-rectification F1 values R at each temporal frequency for ON cells (matched to the Sclar

data) with Naka-Rushton curves (Albrecht 1995):

R(C) = RmaxC
n/(Cn + Cn

50) (1)

From the fit curves we found the corresponding contrasts for each pre-rectification F1 at

each temporal frequency. We then combined the data derived from “flat” inputs with those

from Sclar inputs to generate contrast saturation curves (Fig. 4). Experimental contrast-

saturation data were also fit to Naka-Rushton curves using curvefit.

The pre-rectification F1’s as chosen above were further modified by use of the center-

surround LGN spatial filter (Linsenmeier et al. 1982; Peichl and Wassle 1979) as in Troyer

et al. (1998). All gratings were shown at the preferred spatial frequency of the model cortical
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cells (0.635 deg/cycle, Troyer et al. (1998)), so the pre-rectification modulation amplitude

was reduced by the amount predicted by this filter relative to its value at the preferred

spatial frequency of the LGN cell spatial filter (0.54 cyc/deg).

Cortical receptive fields (RFs). The distribution of LGN synaptic weights to a simple

cell was described by a Gabor function (Jones and Palmer 1987), as in Troyer et al. (1998),

“default” parameters.

Synaptic depression. The equations used to model synaptic depression are described in

Appendix 2. We examined synaptic depression in each of the three types of weights (G,E,I)

in the rate model, but only in the G weights in the spiking model. In both models, weight

values must be changed when depression parameters are changed (to maintain the network

in a stable range, Troyer et al. (1998, Fig. 13)). Exploration of such parameter depen-

dence is computationally expensive in the spiking model, so we did not explore intracortical

depression in that model.

Rate model

In the rate model, the LGN was structured as a 31 × 31, 6.8◦ × 6.8◦ retinotopic grid of

cells, with retinotopic position varying linearly across the grid. ON cells were positioned at

the vertices of the grid, while OFF cells lay at the center of each square within the grid; this

offset is motivated by Wassle et al. (1981). The choice of a 31 × 31 grid in the rate model,

vs. 30× 30 grid in the spiking model, was made simply so that a single ON-cell would lie at

the center of the grid.

We examined 192 model cortical simple cells – 96 excitatory and 96 inhibitory – located

at the single retinotopic position defined by the central LGN ON neuron. Each set of 96 cells

represented each combination of 12 evenly-spaced orientations (at 8o to 173o, to minimize

grid discretization error) and 8 evenly-spaced spatial phases (0o to 315o). Responses were

studied to gratings of optimal spatial frequency and with orientation 38o (again chosen to

minimize discretization effects). Responses for a given parameter set are the average over

responses of all 8 excitatory cells preferring 38o.
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In the rate model geniculocortical weights were set to the value of the Gabor at the

corresponding retinal position, where positive (negative) values of the Gabor correspond to

weights from ON (OFF) inputs. Connections between cortical cells were correlation-based,

as in Troyer et al. (1998) with npow = 5, except that there was no stochasticity: connection

strengths were simply set equal to the connectivity function C(a, b) defined in that reference.

Dynamically, neurons in the rate model obeyed the following equations. Let

r
I/E
k (t) = the firing rate of inhibitory/excitatory cell k at time t

v
I/E
k (t) = the voltage of inhibitory/excitatory cell k at time t

τ I/Em = the time constant of the inhibitory/excitatory cell membrane

Gk(t) = the geniculocortical input to cell k at time t

w
e←i/e
kj (t) = the synaptic efficacy of the connection from inhibitory/excitatory cell j

to excitatory cell k at time t

θI/E = the firing threshold for inhibitory/excitatory cells

floor = a floor on the membrane voltage of the cells (see below)

The firing rate for excitatory or inhibitory cell k is:

rEk (t) =
[
vEk (t)− θE

]+
rIk(t) =

[
vIk(t)− θI

]+
where [x]+ = x, x > 0; = 0, otherwise. The activity update for inhibitory cell k is:

τ Im
dvIk
dt

= −vIk(t) +Gk(t)

The inputs to excitatory cell k from geniculocortical, inhibitory, and intracortical excitatory

sources are:

nk(t) = Gk(t)−
N∑
j=1

we←ikj (t)rIj (t) +
N∑
j=1

we←ekj (t)rEj (t)

where N is the number of excitatory or inhibitory neurons. The activity update for the

excitatory cell k is:

τEm
dvEk
dt

= −vEk (t) + nk(t), v
E
k > floor; (2)

=
[
−vEk (t) + nk(t)

]+
, vEk = floor; (3)
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Outside of the (fixed) f and τ values for depression, the rate model had 8 parameters: the

membrane time constants, the firing thresholds, and the gains of G, I, and E weights, as well

as the voltage floor. The gains were scalars that provided an overall multiplicative scaling

for each type (G, I, E) of weight. The voltage floor was the value below which any neuron’s

membrane potential was not allowed to go; if the membrane potential attempted to drop

below the floor, it was clamped to the floor potential. This was included merely to represent

the lower bound on the membrane voltage imposed in real neurons by the potassium reversal

potential. This floor was somewhat arbitrarily set to -30, but this value was not critical; the

behavior of the model was quantitatively similar for a floor value of -75, and only marginally

different for a very “depolarized” floor value of -5.

Outputs of the model (excitatory cells only) were determined and averaged across the

appropriate cells. The seven parameters other than the floor were then determined by

searches through this seven-parameter space for all parameter combinations that satisfied

the following criteria:

1. τEm > τ Im (McCormick et al. 1985)

2. θE > θI (McCormick et al. 1985)

3. Standard deviation of the orientation tuning curve< 20 degrees at all contrasts (defined

as
√∑

i ri(θi − θ0)2/
∑
i ri, where ri is the response to the ith orientation θi, and θ0 is

the preferred orientation of the cell studied).

4. Invariance of orientation tuning width with contrast (Sclar and Freeman 1982), defined

as a ratio of the standard deviation of a Gaussian fit to the orientation tuning curve

at low (10%) and high (80%) contrast between 4:5 and 5:4.

5. “Amplification ratio” > 1 and < 5 for both 10% and 80% contrast preferred orientation

sinusoidal gratings (defined as ratio of F1 of voltage response with full cortical circuitry

intact to F1 of voltage response induced by geniculocortical inputs alone); these values

are comparable to the limits suggested in (Ferster et al. 1996) for responses to 2Hz,

64% contrast drifting sinusoidal gratings at the preferred orientation.

6. Mean cortical firing rates between 10 and 30 Hz for preferred orientation stimulus at
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80% contrast.

Parameter searches were performed separately for each temporal frequency of stimulation. In

Fig. 7, we show all parameter sets that satisfied these criteria at a given temporal frequency,

without regard for whether the criteria were also satisfied at other temporal frequencies. All

other figures show only those parameter sets that satisfied the criteria across all temporal

frequencies, except that requirements on F1 ratios and mean cortical firing rates at high

contrast were not enforced for temporal frequencies greater than 8 Hz or for the “flat” F1

value of 15 Hz (these exceptions were made because responses at these frequencies and for

these inputs were too small to meet the criteria). For the “no depression” case, the low

bound on mean firing rate at high contrast was also relaxed slightly (to > 9.5 Hz) in order

to allow generation of a contrast saturation curve (Fig. 4).

The range of values of the seven parameters over which we conducted our search was as

follows. For four of these parameters, this range varied with the location(s) of depressing

synapses; for example, the relative strength of inhibition required to prevent cortical runaway

was much less when intracortical excitatory depression (E depression) was present. For cases

in which E depression was present, we searched through all combinations of the following

values for these four parameters:

1. θE = 2, 4, 6

2. G gain = 1.0, 2.0, 4.0, 8.0

3. I → E gain = 0.15, 0.25, 0.35, 0.45

4. E → E gain = 0.06, 0.09, 0.12, 0.15

When E depression was absent, we instead searched through all combinations of the following

values for these four parameters:

1. θE = 3, 6, 9

2. G gain = 0.5, 1.0, 2.0, 4.0

3. I → E gain = 0.25, 0.35, 0.45, 0.55
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4. E → E gain = 0.02, 0.04, 0.06, 0.08

In all cases, we searched through all combinations of the following values for the remaining

three parameters:

5. τEm = 8, 12, 16ms

6. τ Im = τEm/2

7. θI = 1, 2, 3 with θI < θE

The number of combinations searched was 1344 when E depression was present, 1536 when

it was absent. Note that we biased our selection towards smaller membrane time constants

than those reported in vitro (20ms for excitatory, 12ms for inhibitory neurons, McCormick

et al. (1985)), and in vivo in the absence of a stimulus (15-24 msec for excitatory cells, Hirsch

et al. (1998)), to account for the additional conductances opened during stimulation.

The c-d phase advance was found by subtracting the phase of the F1 of the cortical

response to 10% contrast gratings from that to 80% contrast gratings. As most simulations

were of 2s duration, phase analysis was performed on the last 500ms, when the geniculo-

cortical and intracortical excitatory depressing synapses would have reached steady-state.

(Intracortical inhibitory synapses fit to the train data (τ = 1017ms) would not have reached

steady-state, but the influence of the inhibitory depression is weak. We found in several

example cases that examining the last second of 6-second runs caused negligible changes in

results.)

The activity and depression equations were discretized using simple first-order Euler

methods and 2 ms bins. Test runs using 0.25ms resolution demonstrated that this bin size

caused negligible changes in our results.

Spiking model

The spiking model was implemented as in Troyer et al. (1998). All parameters were as in

that reference except for the overall synaptic strengths of geniculocortical and intracortical
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synapses. These values were determined, after sampling and normalizing the synaptic weights

as just described, by multiplying all synaptic weights of a given type (G, E, or I) by a

single constant to set the total strength of such synapses. These values were chosen to

constrain the standard deviation of the orientation tuning curve to be < 20 degrees at all

contrasts, as in the rate model, and to ensure contrast invariance at all temporal frequencies.

Synaptic strength is defined in terms of the integrated current response induced when the

cell is voltage-clamped at Vthresh and all synapses of a given type are activated once (Troyer

et al. 1998). Each excitatory cell received a total inhibitory synaptic strength of -14.726

nA msec, and a total intracortical excitatory synaptic strength of 3.112 nA msec, yielding

mean unitary conductance values of ḡin = 7.59nS and ḡctx
ex = 0.37 nS. We used three separate

values for the total geniculocortical synaptic strength onto each cortical cell, depending upon

the parameters used for geniculocortical depression: “no depression”, 3.112 nA msec, with

mean unitary conductance ḡgc
ex = 0.32 nS; “pulse” parameters, 8.86 nA msec, with a mean

unitary conductance of ḡgc
ex = 0.92 nS; “train” parameters, 26.45 nA msec, with a mean

unitary conductance of ḡgc
ex = 2.7 nS. Note that we held total inhibition fixed, although we

could have reduced this value when depression was present (because depression attenuates

the untuned (DC) component of the geniculocortical input). Since total inhibition is a

free parameter, and reducing (increasing) inhibition broadens (tightens) both orientation

and temporal frequency tuning, we have some freedom to control these tuning widths, yet

remain within the experimental constraints.

The results presented here for the spiking model show model responses to drifting gratings

at 105◦. After a 500 msec “blank stimulus”, during which time the cortical and LGN cells

fired at background rates, a moving grating stimulus was presented for one second. Phase

advances were calculated by first constructing a histogram of responses from 10 repetitions of

the same stimulus condition, and then taking the Fourier transform of the final 500 msec of

these histograms. We compared the difference in the phase of the response to 80% and 10%

contrast gratings on a cell-by-cell basis, for all excitatory neurons with preferred orientation

in the 5◦-wide bin around 105◦ (preferred orientations 102.5◦ through 107.4◦); there were 29
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such excitatory neurons for the orientation map used.

Appendix 2: A Rate Model of Synaptic Depression

We model synaptic depression as in Abbott et al. (1997) (see also Tsodyks and Markram

(1997)): following a spike, the synaptic efficacy is multiplied by the fraction f , where 0 ≤

f ≤ 1, and between spikes the efficacy recovers with time constant τ toward its undepressed

value. It is clear how to model this in a spiking model, but not in a rate model. To determine

this, we first derive an equation that behaves appropriately for the spiking model, and then

derive a rate model equation as an appropriate average of this spiking model equation.

We begin with the spiking model equation. Let w(t) be the efficacy at time t. Let the

presynaptic spike train be denoted by ρ(t) =
∑
i δ(t− ti), where presynaptic spike times are

denoted as ti and δ(x) is the Dirac delta function. Our desired equation is of the form

τ
dw

dt
= −w(t) + wmax − τcρ(t)w(t), . (4)

where c is a to-be-determined constant. In the absence of a presynaptic spike (ρ = 0), w

decays exponentially toward wmax with time constant τ , as desired. The form of the last

term is determined by the fact that the change in efficacy after a spike: (1) is proportional

to the current value of the efficacy, w(t); (2) is proportional to ρ(t) (so that it is zero in the

absence of a spike, and infinite – an infinite value of dw
dt

, and thus a discontinuous change in

w – in the presence of a spike). In addition, (3) the term must have the same dimensions as

w, achieved by multiplying by τ , leaving c as a dimensionless constant.

The value of c is determined as follows. Let the times infinitesimally before and after ti be

denoted t−i and t+i , respectively. Depression is represented by the equation w(t+i ) = fw(t−i ).

To determine the spike-induced change in w, we integrate Eq. 4 from t−i to t+i ; because this is

an infinitesimal interval, only integrands that are infinite during that interval give a nonzero

result. Because w changes discontinuously, dw
dt

is infinite in the interval; so too is the term

involving ρ(t). The other two terms integrate to zero and can be neglected. However, we

cannot simply integrate τ(cρ(t)w(t)), because we don’t know how w(t) itself is changing over
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the interval – e.g. should w(t) be w(t+i ) or w(t−i )? To solve this, we divide Eq. 4 by w(t) and

multiply by dt/τ before integrating, yielding 1

∫ w(t+i )

w(t−i )

dw

w
= −c

∫ t+i

t−i

∑
j

δ(t− tj)dt (5)

or

c = − ln
w(t+i )

w(t−i )
= − ln f (6)

Thus, our equation for synaptic depression is

τ
dw

dt
= −w(t) + wmax + τ(ln f)ρ(t)w(t) (7)

which can be integrated to yield

w(t) = w(0) exp
(
− t
τ

+N(t, 0) ln f
)

+
wmax
τ

∫ t

0
dt1 exp

(
−(t− t1)

τ
+N(t, t1) ln f

)
(8)

where N(t2, t1) ≡
∫ t2
t1
ρ(s)ds is the spike count in the interval (t1, t2).

We now derive an equation for the mean efficacy, w̄(t) = E[w(t)], in terms of the mean

rate, r(t) = E[ρ(t)]. Here E[·] means an expectation over a set of stochastic realizations. We

assume the spike train ρ(t) is a Poisson process with mean rate r(t), so the expectation value

is over Poisson realizations of spike trains. The spike count, N(t2, t1), is Poisson-distributed

with mean
∫ t2
t1
r(s)ds. The equation for w̄(t) is found by taking the expectation value of

both sides of Eq. 8, where non-stochastic quantities can be brought outside the expectation

values:

w̄(t) = w(0) exp
(
− t
τ

)
E [exp (N(t, 0) ln f)]+

wmax
τ

∫ t

0
dt1 exp

(
−(t− t1)

τ

)
E [exp (N(t, t1) ln f)]

(9)

Thus, to compute w̄(t), we must compute expectation values of the form E [exp (cη)],

where η is Poisson-distributed with mean m:

E [exp (cη)] =
∞∑
k=0

P (η = k) exp (ck) =
∞∑
k=0

exp (−m)

(
mk

k!

)
exp (ck) (10)

1Note that these operations yield a term, 1
τ

∫ t+
i

t−
i

wmax
w(t) dt, which could also in principle be nonzero, if

w(t) = 0. However, w(t) can never reach zero for nonzero f and finite τ .
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= exp (−m)
∞∑
k=0

(m exp (c))k

k!
= exp (−m) exp (m exp(c)) (11)

= exp (−m (1− ec)) (12)

Applying this result to Eq. 9 yields

w̄(t) = w(0) exp
(
− t
τ
− (1− f)N̄(t, 0)

)
+
wmax
τ

∫ t

0
dt1 exp

(
−(t− t1)

τ
− (1− f)N̄(t, t1)

)
(13)

where N̄(t2, t1) is the mean number of spikes resulting between times t1 and t2 from a Poisson

process with mean rate r(t).

Finally, the differential equation for dw̄(t)/dt that produces Eq. 13 as a solution is

τ
dw̄

dt
= −w̄(t) + wmax − τ(1− f)r(t)w̄(t) (14)

where we have noted that the mean rate r(t) = E [ρ(t)] is given by r(t) = dN̄(t, 0)/dt.

Note that for f = 1 (i.e. no depression), the depression term disappears, as it should. This

equation (discretized, i.e. dw̄/dt replaced by ∆w/∆t) serves as the update rule in the rate

model.
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Footnotes

1. Conductance varies across a stimulus cycle, but a simple analysis can be obtained by

regarding the conductance and τ as fixed for a given contrast. Then the formula for

contrast-dependent phase advance, in units of time, is [arctan(2πfτ0)− arctan(2πfτ1)] /2πf ,

where τ0 and τ1 are the low-contrast and high-contrast time constants, respectively,

and f is temporal frequency. Including the effects of stimulus-independent background

firing, the conductance in the spiking model is approximately 15 msec in the absence

of a stimulus, 12.5 (DC) ± 1.5 (F1) msec for F1=30 flat LGN inputs, and 8 (DC) ± 2.5

(F1) msec for F1=90 flat LGN inputs. A change of τ from 12.5 to 8 msec or from 14 to

10.5 msec (mean or (mean + F1)) would predict advances of 2.5 or 3 degrees at 2 Hz

and 7 or 10 degrees at 8 Hz. The prediction is worse at higher temporal frequencies,

but the assumptions may also be more problematic since conductance changes more

rapidly at higher frequencies.

2. A linear RC model of a cell with time constant τ produces modulated first harmonic

responses to temporal frequencies f proportional to 1/
√

1 + (2πfτ)2; f = 1/τ dimin-

ishes the maximum response by 84%. Membrane time constants of 8-16 msec, as used

in the rate model, would produce corresponding attenuations of 14%-35% at 16 Hz,

and 22%-46% at 12 Hz, relative to responses at 2 Hz. The time constant in the spiking

model covers a similar range (footnote 1).

3. For 2πfτ � 1, e.g. f � 8Hz for typical cortical resting time constants in vivo of

τ = 20msec (Hirsch et al. 1998), arctan(2πfτ)/2πf ≈ τ , hence the phase advance

(footnote 1) simply becomes τ0 − τ1.

4. Throughout, we normalize the F1 to equal the amplitude of the sinusoidal component

at the frequency of the grating stimulus. If the LGN input has temporal frequency ω,

this normalized F1 is given by the sum of the amplitudes of the ω and −ω frequency

components of the Fourier transform, when that transform is normalized so that the

F0 or DC is the mean rate; this normalization is standard in neurophysiology(Skottun
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et al. 1991b). We have previously (Troyer et al. 1998) incorrectly stated that this

normalization of the F1 requires that the Fourier transform have an extra factor of

two relative to the normalization that makes the F0 equal to the mean rate. This

mistake was due to our neglect of the −ω component, which has equal amplitude to

the ω component; the factor of two is accounted for by including the negative as well

as positive frequency components.
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Depression Parameters

Paired-pulse data Train data

Location f τ , in ms Layer(s) f τ , in ms Layer(s)

G 0.563 A 99 A LGN→IV 0.465 D 371 D LGN→III

E 0.875 B 57 B IV→IV 0.8 E 472 E II/III→II/III

I 0.8 C 179 C IV→IV 0.95 E 1017 E II/III→II/III

A. Stratford et al. (1996, Fig. 1g) cat primary visual cortex

B. Tarczy-Hornoch (1996, Fig. 4.5) cat primary visual cortex

C. Tarczy-Hornoch et al. (1998, Fig. 4 (0.2Hz curve)) cat primary visual cortex

D. Gil et al. (1997, Fig. 3) mouse and rat somatosensory cortex

E. Song et al. (1999) rat primary visual cortex

Table 1: Parameters were derived by simple least-squares fits to data in the figures indicated;

note that the τ value from the figure legend in Gil et al. (1997) refers to their exponential

fit, not to the time constant of a fit to a synaptic depression description. Parameters from

the random stimulus train experiments of Song et al. (1999) were taken directly as reported.

Geniculocortical data divided readily into pulse (Stratford et al. 1996) and train (Gil et al.

1997) parameter sets. The corresponding intracortical data were then chosen, in the case of

the pulse data, from work from the same laboratory (Tarczy-Hornoch 1996; Tarczy-Hornoch

et al. 1998); and in the case of the train data, from other work in the rodent that recorded

both E and I depression curves (Song et al. 1999). Note also that many of the f and τ values

in this table do not describe connections within layer IV, the cortical layer we model in this

paper. Where possible, when compiling this table we selected values determined (1) in layer

IV (2) within primary visual cortex (3) in the cat.
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Experimental C50 Values

Temporal Frequency (Hz)

Cell 1 2/2.5 3/3.3 4/5 6/6.7 8/10 12/12.5 15/16/16.7

LGN (1) > 100 > 100 > 100 35 23.0 21.9 21.8

LGN (2) 12.7

LGN (3) 14.9

LGN (4) 6.7

LGN (5) 8.2

LGN (6) 5.7

V1(1) > 100 30.0 16.7 21.6 18.5 28.9 39.1

V1(2) 7.7 7.4 13.1 16.2 22.7

V1 mean 15.5

Table 2. C50 values from Naka-Rushton curves (Eq. 1) fit to experimental data. LGN (1),

V1(1), V1(2): cells of Fig. 4A,B,C respectively. LGN (2–4): cells from Cheng et al. (1995);

LGN (5): cell from Chino et al. (1994). LGN (6): cell from Kaplan et al. (1987). V1 mean:

mean from over 100 cat simple cells, each at or near its optimal temporal frequency, reported

in Albrecht (1995). LGN (1): temporal frequencies (TF’s) 1, 2, 4, 8, 16 Hz. LGN (2–5): TF

3.1 Hz. LGN (6): TF 4 Hz. V1(1): TF’s 2.5, 3.3, 5, 6.7, 10, 12.5, 16.7 Hz. V1(2): TF’s 1, 3,

6, 10, 15 Hz. For individual cells, we performed least-squares fits of Naka-Rushton curves to

published contrast-response data. Best-fit value greater than 100 indicate that the response

did not show saturation over the measured contrasts.
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Figure Legends

Figure 1

Cartoon of the cortical circuit studied. All neurons receive excitatory geniculocortical

connections from the LGN as determined by Gabor functions (illustrated by modulations

on a gray/uniform background): ON inputs at a given retinal location within the RF are

represented by black, OFF inputs by white. All illustrated RFs are centered at a common

retinotopic position. Neurons with RFs of similar preferred orientation but opposite spa-

tial phase are connected by inhibitory synaptic weights (white, with black outline), while

neurons with similar preferred orientations and similar spatial phases are connected by ex-

citatory synaptic weights (black arrows). A. Response to a full-field sinusoidal grating of

the preferred orientation. When the stimulus maximally overlaps the RFs on the left, the

geniculocortical input to those cells is maximal (large solid-black arrows), while the input

to the RFs of opposite spatial phase (those on the right of A) is minimal (small solid-black

arrows). Neurons of the well-stimulated phase will fire robustly, and the strongly-activated

inhibitory cells send inhibition only to the weakly-stimulated anti-phase excitatory neurons,

which do not fire. As a result, as the grating moves across the neurons’ RFs, the excita-

tory cortical neurons will produce a strongly time-varying response at the same temporal

frequency as that of the input. B. Response to a full-field sinusoidal grating of the null

orientation (orthogonal to the preferred). Because LGN cells respond to all orientations, the

geniculocortical input is still present, but the input to each phase is approximately equal.

Inhibition is equally strong from neurons of each phase to their anti-phase excitatory-cell

partners. Since inhibition is dominant, none of the excitatory cells fire. The actual circuit

studied included cells of many preferred orientations and spatial phases and, for the spiking

model, many retinotopic positions. Connections were based on correlations between RFs.

Cartoon illustrates dominant connections; resulting circuit behavior can be well understood

from this simplified version of the circuit (Troyer et al. 1998).
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Figure 2

Experimentally-determined values for c-d phase advance in three parts of the visual path-

way: retinal ganglion cells (RGC, bottom, in dark gray), lateral geniculate nucleus (LGN,

middle, in gray), and striate cortex (CTX, top, in light gray). All studies are in cats. C-

d phase advance is quantified here as the relative phase difference between responses to

stimuli differing by 3 octaves of contrast. The contrasts below are Michelson contrasts

((Imax − Imin)/2 ∗ Imean). Data represented are mean c-d phase advance (and stdev where

provided) across cells studied, and are as follows: (1) Dean and Tolhurst (1986): responses

to 5% and 25% contrast drifting gratings for 29 V1 simple cells. We linearly extrapolated,

from 2.3 octaves of contrast to 3, the reported mean and standard deviation of c-d phase

advance. (2) Albrecht (1995) (taken from Discussion of that paper): 2 Hz: responses to 5%

and 25% contrast drifting gratings, results linearly extrapolated from 2.3 to 3 octaves. 8Hz:

responses to drifting gratings at 10% and 80% contrast (note, c-d phase advance at 8Hz

between 3.5% and 28.3% contrast, also 3 octaves, was 33% larger). All data for V1 simple

cells; standard deviations and number of cells were not reported. (3) Sclar (1987): mean

and stdev responses to 10% and 80% contrast drifting gratings for 27 X and 51 Y cells. (4)

Saul and Humphrey (1990): responses to drifting gratings of optimal temporal frequencies

for 19 non-lagged X and 8 non-lagged Y cells over a range of contrasts (0.0025% to 96%).

Their linear fits to phases of suprathreshold responses provided slopes with accompanying

standard deviations (both in cycles of phase per octave of contrast), which we multiplied by

3 (converted to degrees) to obtain changes over 3 octaves. (5) Shapley and Victor (1978):

3.5% and 28.3% contrast (2.5% and 20% RMS contrast) for 8 X and 18 Y cells. Responses

to counterphase gratings including 6-8 different temporal frequencies with total contrast as

indicated; phase advance of 8 Hz component was determined. In those papers in which phase

advance was determined for both X and Y cells, the same temporal frequency was used for

each data set; in the figure, this frequency is indicated in the “Y-cell” bar only. We were

guided through this data by the lucid discussion of Albrecht (1995).
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Figure 3

Contrast enhances responses to higher temporal frequencies in V1, but not LGN. Experimentally-

determined F1 responses at different temporal frequencies and contrasts for an LGN X-cell

and a V1 cell. Lighter grays to darker grays, with corresponding symbols: increasing contrast,

with values noted in legend for each figure. To show the relative increase in high-frequency

responses with increasing contrast, we plot normalized data in the insets: each response is

divided by the response at the corresponding frequency and 10% contrast (so that all 10%

responses are normalized to 1). The 5% V1-cell curves are omitted from the normalized data;

we normalize by 10% to better compare to our model curves in Fig. 10 (for which the low

contrast is 10%). Dashed lines within the inset indicate ratios of 1 (lower line) and 5 (upper

line). LGN X cell temporal frequency response; raw data replotted from Sclar (1987). V1

cell temporal frequency response; raw data replotted from Albrecht (1995).

Figure 4

Experimental data for the temporal frequency dependence of contrast saturation. Experimentally-

determined F1 responses at different temporal frequencies and contrasts for an LGN X-cell

and a V1 cell. Figures are replotted from the data shown in Fig. 3, and fitted to Naka-

Rushton curves (see Appendix 1). Lighter grays to darker grays: increasing contrast. LGN

X-cell contrast saturation response; raw data replotted from Sclar (1987). C. V1 cell con-

trast saturation response; raw data replotted from Albrecht (1995). Note that (for the most

part – see text and Table 2) the responses of V1 cells saturate at lower contrasts than do the

LGN responses, and that cortical responses to higher temporal frequency inputs saturate at

higher contrasts.

Figure 5

Geniculocortical synaptic depression induces both an absolute and a relative phase advance.

A, B: Steady-state responses to a drifting sinusoidal grating at a cortical cell’s preferred
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orientation and spatial frequency. Dashed lines show firing rate, noted on the ordinate,

of a single LGN ON-cell input to the cell; dash-dotted lines, instantaeous efficacy of the

synapse from that LGN input to the cortical cell, normalized by the weight’s maximum

value; solid lines, conductance contributed by that LGN ON input to the cortical cell, scaled

by an arbitrary factor for display purposes (but maintaining the relative difference between

low and high contrast conductances across figures). The efficacy decreases as input rate

increases, and recovers after input rate declines. Consequently, the peak of the conductance

curve, the product of the efficacy times the rate, shifts forward in time relative to the input.

This shift in the peak correlates well with the absolute phase advance. The cell’s output,

which in the absence of intracortical connections is just the LGN conductance temporally

filtered by the cell’s time constant (and rectified), will show a phase advance similar to that

of this single conductance. A. Responses to a low contrast (10%) stimulus. B. Responses to

a high contrast (80%) stimulus. C. Comparison of the conductances (now shown unscaled,

and measured in Hz) induced by this particular connection at low and high contrast. The

steeper and stronger synaptic depression at higher contrast leads to an earlier peak of cortical

response in each cycle and thus to a greater phase advance. Depression parameters: f =

0.465, τ = 371 (“train” parameters).

Figure 6

The dependence of contrast-dependent geniculocortical phase advance on f and τ in the rate

model, shown for drifting gratings of (A) 2Hz, (B) 4Hz, and (C) 8Hz temporal frequency.

Black indicates less phase advance, white indicates more phase advance. The experimental

values of the geniculocortical f and τ parameters for the pulse and train data sets (Table

1) are marked by the words “Pulse” and “Train.” Gratings were of optimal orientation

and spatial frequency; mean c-d phase advance across simple cells of multiple spatial phases

is shown. In this figure, response is simply the summed geniculocortical input to simple

cells, ignoring cortical integration; thus results are independent of choices of cortical model

parameters. C-d phase advance is measured for the sum over a cell’s geniculocortical inputs
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of synaptic efficacy times firing rate. Results are extremely similar for geniculocortical input

currents in the spiking model (not shown), with small differences due to the Poisson sampling

of firing rates in the latter model; depression in the rate model should correspond to average

over Poisson samples (see Appendix 2).

Figure 7

Dependence of c-d phase advance on the location of depressing synapses. Graphs show

c-d phase advance ± standard deviation for those rate model parameter sets that produce

constraint-satisfying outputs (see Appendix 1) at a given temporal frequency. The number

of parameter sets contributing to each data point is noted above each error bar. C-d phase

advance is shown for grating inputs with temporal frequencies of 2 Hz, 4 Hz, and 8 Hz,

represented by the light gray, gray, and dark gray bars, respectively. The location of the

depressing synapses, if any, in each of the cases is indicated by the letter(s) on the abscissa

(G = geniculocortical, I = inhibitory, E = excitatory intracortical). The 3 bars above “G + I

+ E”, for example, indicate the c-d phase advance ± standard deviation for 2 Hz, 4 Hz, and

8 Hz grating inputs when the rate model includes depression in all three of the G, I, and E

synapses. A. C-d phase advance for “pulse” depression parameters. B. C-d phase advance

for “train” depression parameters. Note that the rate model is completely deterministic; the

standard deviations arise from the averaging of all constraint-satisfying parameter sets for

the given temporal frequency and location(s) of depressing synapses. When we restricted

ourselves to parameter sets that satisfied constraints across all three temporal frequencies,

results were very similar where such parameters were found (except that standard deviations

were much smaller); but no such sets were found for some locations of depressing synapses

(see text).

Figure 8

C-d phase advance of spiking model in the presence of different temporal nonlinearities for

different temporal frequencies of input. Light gray: input gratings at a temporal frequency
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of 2Hz; gray: input gratings at 4Hz; dark gray: input gratings at 8Hz. Four different types

of simulations were run: from left to right, simulations with neither spike-rate adaptation

nor synaptic depression (“no A, no D”), simulations with only spike-rate adaptation (“A,

no D”), simulations with only synaptic depression (“D, no A”), and simulations with both

mechanisms present (“A and D”). We calculated a c-d phase advance from the peri-stimulus

time histograms for each of the 29 cells examined, then computed the mean and standard

deviation across cells for each condition. Both spike-rate adaptation and geniculocortical

synaptic depression induce a c-d phase advance, and the advance increases when both are

present simultaneously.

Figure 9

The iceberg effect: the appearance of higher temporal frequency responses at higher con-

trasts. A. Temporal frequency tuning curves for “flat” F1 inputs of 15, 30, 60, and 90

Hz (pre-rectification values), color-coded from light gray to black, respectively, for a spiking

model simulation in which adaptation was present, but synaptic depression was not. Error

bars indicate standard deviations of the means across 29 cells. Note that responses to 12 Hz

input gratings are present for input F1’s of 60 and 90 Hz, but essentially absent for input

F1’s of 15 and 30 Hz. Input F1 of 30 Hz corresponds roughly to 10% contrast, 90 Hz roughly

to 80% contrast (see Fig. 10). B. Intracellular voltage traces, for a randomly chosen cortical

cell, in response to a single presentation of a 12 Hz temporal frequency grating at each of

the 4 F1 input levels used in A (corresponding, at 12 Hz, to contrasts of 3.9%, 7.8%, 18.7%,

and 41.2%). Spiking responses in the cell have been turned off; spiking threshold is indicated

by the dotted line. Synaptic conductances for LGN inputs and nonspecific in vivo “back-

ground” inputs (see Appendix 1) were turned on at time 0. A blank stimulus was presented

for the first 0.5 seconds of the trace, after which the grating stimulus appeared. Note that,

for input F1 values of 15 or 30 Hz, the membrane voltage never crossed spike threshold.

For higher input F1 values (60 or 90 Hz), the membrane potential did reach threshold, as

corroborated by the increase in the spiking response indicated in A. Traces were achieved
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as follows: all conductances onto a cell, including spike-rate adaptation conductances, were

recorded during simulations of A. These conductances were then ”played back” to the cell

with spiking turned off.

Figure 10

The contrast dependence of temporal frequency tuning for different outputs of the rate and

spiking models. X-axes: temporal frequency. Y-axes: for top rows, F1 of summed LGN input

to a simple cell – measured in Hertz for the rate model and in nanosiemens for the spiking

model; for all other plots, F1 of excitatory simple cell firing response, measured in spikes

per second. Two types of LGN inputs were used. Model responses to “flat” LGN inputs

are indicated by dashed lines; responses to experimentally measured “Sclar” LGN inputs,

Fig. 3A (Sclar 1987), are indicated by solid lines. Gray lines show responses to 10% contrast

(“Sclar”) or LGN response F1 of 30 (“flat”), while black lines indicate responses to 80%

contrast or F1 of 90. Note that the F1 values of the flat inputs are set before LGN outputs

are calculated – i.e. they are “pre-rectification” values (see Appendix 1). Insets: Responses

at high input level divided, frequency-by-frequency, by low input level responses. For each of

A, B: left column shows rate model, right column spiking model; top row shows LGN input

to simple cell, middle row shows simple-cell firing responses without spike-rate adaptation

currents, bottom row shows simple-cell spiking responses with spike-rate adaptation currents

in excitatory cells (spiking model only). A. No synaptic depression. Top row: Because

depression is absent, conductances very closely follow the temporal frequency dependence of

LGN response amplitudes. Middle row: Because of filtering by the membrane time constant

at higher, but not lower, temporal frequencies (see text), as well as inhibition in the model

circuit, both types of model show low-pass behavior, as well as a relative amplification of high

temporal frequency responses with contrast (insets). Bottom row: Note the band-pass nature

of the response induced by spike-rate adaptation, in addition to the relative amplification

of high temporal frequencies (inset). Note that bottom row, dashed lines of A is the same

data as in Fig. 9 for F1=30 and F1=90. B. “Pulse” depression. Top row: With depression
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present, LGN input conductances no longer closely follow the temporal frequency dependence

of LGN response amplitudes; low frequency responses show a relative attenuation, even for

“flat” inputs. Middle, Bottom rows: Cortical outputs are correspondingly band-pass, and

show relative amplification of high temporal frequencies. Rate model plots include results

only for parameter sets that satisfied experimental constraints (see Appendix 1) at every

temporal frequency. There was 1 parameter set for no depression and 3 for pulse depression

(plots show average over parameter sets). Depression in the rate model was incorporated at

all synapses (G + I + E, Fig. 7). In all cases, spiking model results show averages over 29

cells. All error bars indicate standard deviations.

Figure 11

Model data for the temporal frequency dependence of contrast saturation. A. Model con-

trast saturation curves for spiking model (averages over 29 cells) with spike-rate adaptation,

with no depression and with pulse depression. Light gray to dark gray: increasing temporal

frequency. B. Saturating contrast (C50 in fit of Naka-Rushton curve to contrast saturation

curve) vs. temporal frequency for LGN cell (Sclar 1987) and cortical cell (Albrecht 1995) of

Fig. 4 (dark bars) and for model cells with no depression, pulse depression or train depression

(white, light gray, dark gray) in rate model (solid bars) or spiking model (hatched bars).

Horizontal line shows mean C50 from over 100 cat V1 simple cells, each at or near its optimal

temporal frequency, reported in Albrecht (1995). Results for pulse and train depression are

qualitatively similar. As described in the text, cortical responses tend to saturate at lower

contrasts than do their LGN inputs, and responses to higher temporal frequencies saturate

at higher contrasts. Depression in the rate model was incorporated at all synapses (G + I

+ E, Fig. 7).
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Figure 1:
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