CHAPTER 9

The Development of Ocular Dominance
Columns: Mechanisms and Models

K. D. Miller and M. P. Stryker

Introduction

The function of the visual cortex depends upon the precision with
which its cells are connected to their inputs. Such precise connections
are formed during normal development in large part by the
rearrangement of initial connections whose pattern is much more
diffuse. The cortical network reorganizes itself under the influence of
its own neural activity.

The notion that the visual cortex is a self-organizing biological
systern has prompted much experimental work and theoretical interest
over the past 30 years. One approach toward understanding this self-
organization is to construct mathematical models of the system that
incorporate the microscopic cellular properties that are believed to
exist on experimental grounds. The models may then be followed,
from an initial state of diffuse connectivity through a stage of
refinement to an ultimate stage of precise connectivity, by computer
simulation or with analytic methods. This approach can be used to
determine the range of microscopic properties that can give rise to the
macroscopic organization observed experimentally.

In this chapter we first present some of the experimental
background to studies of the development of ocular dominance
columns, a striking feature of organization of the visual cortex. We
then present a formal model of the system, the elements of which
correspond to identified neural structures whose relevant propertics
may be measured experimentally (and have been measured in adult
animals). We show that several different biologically reasonable
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mechanisms of synaptic plasticity may be described by the same
mathematics. These mechanisms are distinguished by the different
biological features that are summarized in each term of the
mathematical model.

The model develops patterns like those observed in biological
development. Analysis of the model allows prediction of the size of
ocular dominance columns from potential  experimental
measurements. This analysis illuminates the relative importance of
the properties of the cortex and its inputs in determining this size. The
determinants of development in the model are illustrated through
simulation and mathematical analysis. Finally, we outline ways in
which a combination of theoretical and experimental approaches can
be used to further-our understanding of neural development.

Development of Ocular Dominance Columns in Visual Cortex

The primary visual cortex contains a single map of the world as seen
through the two eyes. At a scale of half a millimeter, however, this
map is not continuous. Instead, in adult humans, monkeys, cats, and
many other species, inputs serving the two eyes are largely (or in
some species completely) segregated into alternate patches serving the
left and right eyes.

"Ocular dominance patches" or "columns" are the names given to
these alternate patches or stripes of input serving the two eyes (figure
1). The profound influence of neural activity on their development
and plasticity makes them an excellent model system for studies of the
organization of connections in the central nervous system. This
influence was first noted in the clinic more than 100 years ago (von
Senden, 1960). At that time, it became possible to remove cataracts,
which obscure vision by purely optical means, without any direct
effect on the neurons of the retina. In patients who acquired cataracts
in adulthood, this operation "miraculously" restored sight. In patients
with congenital cataracts in one eye, that had occluded vision from the
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Figure 1: Cartoon showing part of the organization of the mammalian visual system,
The two eyes are illustrated to the left, from which emerge the optic nerves. At the
optic chiasm the fibers from the nasal side of each retina cross to the opposite optic
tract en route to the lateral geniculate nucleus (LGN). The LGN reccives these inputs
from the two eyes in separate layers (cartooned as layers A and Al as in the cat) and
relays this visual information to the visual cortex, also known as striate cortex or arca
17. In the visual cortex, terminations from the lateral geniculate nucleus are found
principally in layers IV and VI, with the major concentration in layer IV, In adult
animals, as illustrated, these terminals are made in eye-specific patches with a repeat
distance (from the middle of one left-eye patch through the right-eye patch back to the
middle of the next left-eye patch) of about a millimeter (850 um in the cat). Above
and below each ocular dominance patch in layer IV, cortical neurons tend to respond
better to the eye that provides input Lo the patch than to the other eye, revealing a
columnar (vertical) organization of ocular dominance throughout all layers of the
cortex; hence the name “ocular dominance columns".

time of birth, the same operation did not restore useful vision to that
eye. This was true even though no serious histological damage was
evident in the retina or in visual structures in the brain.

The changes in the visual system that underly this puzzling
phenomenon of amblyopia ex anopsia (poor vision in one cye
resulting from not seeing through that eye during carly life),
confirmed in further clinical studies, were finally cxplained in the
early 1960s by the work of Hubel and Wiesel. They showed that most
neurons in the cat’s visual cortex ordinarily respond to stimulation
through either eye, although perhaps one quarter of neurons respond
only to a single eye (Hubel and Wiesel, 1962). Such binocular
responses in the visual cortex were unchanged by even years of
unilateral visual deprivation in adult animals; but as little as a few
days or weeks of monocular visual deprivation during a sensitive
period in early life left most cortical neurons unresponsive to the cye
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whose vision had been occluded (Hubel and Wiesel, 1970; Wiesel and
Hubel, 1963a). In these animals, the two eyes were entirely normal,
and neurons in the lateral geniculate nucleus (LGN, see figure 1), the
nucleus that is the major source of input to visual cortex, appeared to
be nearly normal. The geniculate neurons in the layer driven by the
deprived eye responded almost identically to those in the layer driven
by the seeing eye, although they were a bit smaller and stained
somewhat more palely (Wiesel and Hubel, 1963b). Thus, it appeared
that neonatal monocular visual deprivation had produced a change in
the visual cortex, where inputs from the two eyes first had the
opportunity to interact on single neurons, but not in earlier, more
peripheral stages of the visual system. Binocular visual deprivation
(closure of both eyes) in early life produced no ill effects, suggesting
that the changes produced by unilateral visual deprivation were due to
a competitive interaction between the geniculocortical afferents
serving the two eyes, rather than merely to disuse of the occluded
eye’s afferents (Wiesel and Hubel, 1965). This conclusion was
reinforced by failure of monocular deprivation to produce changes
either in the most peripheral portion of the visual field, which is
viewed through only one eye, or in a region of LGN and visual cortex
in which input from the seeing eye was experimentally removed
(Guillery, 1972; Sherman et al., 1974).

The changes of binocular connections in the developing visual
cortex appeared to be due entirely to alterations of the spatial and
temporal patterns of neural discharge in geniculocortical afferents,
rather than to metabolic or surgical complications of the deprivation
procedure. The monocular deprivation effects did not depend on light
deprivation, since similar effects were produced when the image seen
by one eye was merely blurred (Wiesel and Hubel, 1963a). Perhaps
the most striking finding was that when neural activity during early
life was made equal but asynchronous in the two eyes by occlusion of
each eye on alternate days, or by surgically or optically misaligning
images in the two eyes, the partial segregation of visual responses into
ocular dominance columns was made nearly complete (Hubel and
Wiesel, 1965; Van Sluyters and Levitt, 1985). In such a cortex nearly
all cells in each cortical column were driven exclusively by a single
eye, and the eye that dominated alternated from column to column.
This is in contrast to the normal case in which most neurons respond
to stimulation through either eye, although cells in each column tend
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Figure 2: Surface view of ocular dominance patches in a normal cat. This is a
reconstruction made from serial autoradiographically labeled parasagittal sections of
layer IV of visual cortex, photographed in dark field following an injection of ’H}-
amino acid into one eye. Silver grains indicating the presence of geniculocortical
afferent terminals serving the injected eye appear as white dots. This picture shows
what the ocular dominance patches of one eye would look like if one were to flatten
the cortex, remove the superficial layers, and look down on the flattened layer IV from
above the cortical surface. The injected eye was ipsilateral to the cortical hemisphere
shown. Scale bar = 2 mm. From LeVay, Stryker, and Shatz, 1978. Reprinted by
permission of the Journal of Comparative Neurology.

to respond more strongly to stimulation through one eye than through
the other (Hubel and Wiesel, 1965). This complete segregation of
responses appeared not to result from alterations in levels of activity
but merely from alterations in the relative timing of activity in the two
eyes.

The structural basis of ocular dominance columns was revealed
in experiments in which the population of geniculocortical afferent
terminals serving one eye was labelled, either by degeneration
methods or autoradiographically by transneuronal axonal transport of
[PH]-sugars or amino acids injected into the vitreous humor of one eye
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Figure 3: Surface view of ocular dominance patches in a one-year old cat that had
experienced monocular visual occlusion beginning before the time of natural eye
oyening, The eye that had remained open during early life received an injection of
["H]-amino acid. This reconstruction of the cortical hemisphere ipsilateral to the
injected eye was made like that of figure 2, to which it should be compared. In these
deprived animals, white dots of label indicate terminals serving the eye that had
remained open. These open-cye terminals occupy more than 80 percent of layer IV.
Physiological experiments in this and similar animals revealed that input from the
deprived eye was confined to the holes in this sea of label. Unpublished data from
experiments reported in Shatz and Stryker, 1978.

(figure 2; Hubel and Wiesel, 1972; Shatz, Lindstrom, and Wiesel,
1977; Wiesel, Hubel, and Lam, 1974). These methods demonstrated
that the geniculate terminals from each eye in normal adult animals
were segregated into alternate patches in layer 4 of visual cortex.
These methods also revealed that an effect of early monocular
deprivation was to change the relative sizes of the patches of inputs to
visual cortex serving the two eyes, while keeping the repeat distance
the same (figure 3) (Hubel, Wiesel, and LeVay, 1977; Shatz and
Stryker, 1978). But the reason for such a sensitive period in early life,
in which such small alterations in visual experience as closure of one

Figure 4: Progressive changes in the transneuronal labelling pattern of visual cortex
following an injection of [>HJ-amino acid into one eye. Before 15 days of age, label
from each eye is found uniformly throughout layer IV. By 21 days, periodicity in the
labelling is first evident as afferents begin to segregate. The segregation proceeds
rapidly until 5-6 weeks of age and more slowly thereafter, attaining nearly adult levels
by 2 months and fully adult levels by 3 months of age. From LeVay and Stryker,
1979. Reprinted with permission from the Society for Neuroscience.

eye for a few days lead to permanent alterations in connectivity,
remained obscure.

The reason for this early plasticity was clarified only when it was
appreciated that the initial growth of eye-specific inputs into the visual
cortex does not take place in the form of ocular dominance patches.
Instead, geniculocortical relay cells serving the two eyes initially
make connections to the cortex in a uniform, continuous, and
completely overlapping fashion (Hubel, Wiesel, and LeVay, 1977;
LeVay, Wiesel, and Hubel, 1980; LeVay, Stryker, and Shatz, 1978;
Rakic, 1977). Ocular dominance patches then develop by the
progressive segregation of these initially overlapping inputs. This
development was most clearly revealed by the progressive changes in
the transneuronal labelling pattern of visual cortex following an
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Figure 5: Presumed geniculocortical afferent terminal arbors labelled (left) by a Golgi
method in an 8-day-old kitten, before the segregation of ocular dominance patches,
and (right) in a normal adult cat by horseradish peroxidase injected into the optic
radiations below visual cortex. Each picture shows a large afferent arbor ramifying
dorsally in layer IV, presumed to be a Y-type geniculocortical afferent. Note that the
arbor in the young animal is continuous over more than 2 mm, while terminals of the
arbor from the adult animal are largely confined to two dense, half-millimeter patches
separated by a half-millimeter space. Terminal arbors like the one shown from the
young animal are not found in adults, and presumably must be "pruned" (or lost)
during normal development. Left: from LeVay and Stryker, 1979. Reprinted with
permission from the Society for Neuroscience. Right: from Ferster and LeVay, 1978.
Reprinted by permission of the Journal of Comparative Neurology.

injection into one eye of animals at different ages (figure 4).

At least some of the early geniculocortical connections are from
afferents that arborize over more than 2 mm in cortex, a distance large
enough to span two pairs of ocular dominance columns (LeVay and
Stryker, 1979) (figure 5). Beginning prenatally in humans and
monkeys, but postnatally in cats, these afferents reorganize their
terminal arbors so as to partition the cortex into the alternate, half-
millimeter ocular dominance patches. It is only during and slightly
after this period in which geniculocortical connections are normally
reorganizing that they are sensitive to monocular deprivation. Thus,
we may interpret the plasticity produced by monocular deprivation not
as a bizarre pathological response, but as the abnormal outcome,
produced by abnormal patterns of activity, of a normal developmental
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process.

A mechanism similar to that described by Hebb (1949) was
proposed to account for these phenomena produced by visual
deprivation during early life (Changeux and Danchin, 1976; Stent,
1973). The Hebb rule postulates that synapses are strengthened to the
extent that the activities of pre- and postsynaptic neurons are
correlated and that synapses are weakened otherwise. Thus, correlated
patterns of inputs would compete for the ability to activate a
postsynaptic cell: the synapses corresponding to the pattern that best
activated the cell would be strengthened, and other synapses
correspondingly weakened. If afferents representing a single eye are
better correlated with one another than with afferents of the opposite
eye, inputs representing the two eyes would compete with one another
in cortex. The outcome of such competition could be altered by
alteration of the activity patterns of the two eyes. The experiments

Figure 6: Ocular dominance columns in 7-10 week old TTX-treated (I), dark-reared
(c), and control animals (r) labelled autoradiographically as in figures 2-4. Note that
ocular dominance patches are absent in the animal in which all retinal activity had
been blocked with TTX, so that this animal resembles the youngest animal shown in
figure 4. Note also that ocular dominance patches are present in the animals that were
reared in darkness. Although these dark-reared animals lacked visual experience,
spontancous neuronal discharge in the retinae was unblocked. Scale bar = 1 mm.
Unpublished data from experiments reported in Stryker and Harris, 1986.
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described thus far demonstrate that alterations in visual experience
interfere with the normal process of geniculocortical afferent
segregation. They do not, however, reveal whether neural activity is
necessary for normal segregation, as would be the case if the Hebb
mechanism were responsible. To investigate this question, Stryker
and Harris (1986) blocked neural activity in the two eyes by repeated
intraocular injections of the voltage-sensitive sodium channel ligand,
tetrodotoxin (TTX), during the period in which ocular dominance
columns normally develop. In such animals, neural activity was
dramatically reduced in LGN and visual cortex, and geniculocortical
afferents did not form ocular dominance patches; they remained
instead in their infantile state of complete overlap (figure 6). This lack
of segregation was also apparent physiologically in neuronal response
properties. In normal animals, many neurons are driven exclusively
through one eye or the other, as shown in figure 7 (left). In contrast,
in TTX-treated animals nearly all neurons in the cortex were driven
well through both eyes, as shown in figure 7 (right).

These experiments suggested that the normal developmental
rearrangement of geniculocortical synaptic connections to form ocular
dominance columns required neural activity. Since ocular dominance
columns ‘form, to a considerable extent, in utero in the monkey
(DesRosiers et al., 1978; LeVay, Wiesel, and Hubel, 1980; Rakic,
1977), and in cats reared with bilateral lid suture or in total darkness,
it appears that the so-called "spontaneous" or maintained activity of
retinal ganglion cells in darkness is sufficient for segregation and that
visually driven activity is not required.

The maintained activity of retinal ganglion and geniculate cells
in darkness has been investigated in adult cats and in other species.
Neighboring ganglion cells of the same center type tend to fire
together over time periods of a millisecond to a few tens of
milliseconds, and this correlation of activity decreases with increasing
distance across the retina (Mastronarde, 1983a,b). In addition,
correlations over longer time scales of activities within each eye or
each lamina of the LGN are also present (Levick and Williams, 1964;
Rodieck and Smith, 1966). With such correlated activity, a Hebb rule
for the adjustment of geniculocortical synaptic strengths would be
expected to allow the geniculocortical afferents serving each eye to
remain together, while lack of correlation between activity in the two
eyes causes the two eyes’ afferents to segregate from one another.
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Figure 7: Ocular dominance histograms from visually responsive single units in the
visual cortex of 6 normal kittens, 36 to 51 days of age (left) or of four kittens subject
to bilateral retinal activity blockade by injection of T1X (right). Histograms plot
percentage of units in each of 7 ocular dominance groups defined by Hubel and
Wiesel (1962): group 1 (7) for units driven exclusively by contralateral (ipsilateral)
eye; group 2 (6) for units strongly dominated by contralateral (ipsilateral) eye; group 3
(5) for units weakly dominated by contralateral (ipsilateral) eye; and group 4 for units
driven nearly equally through the 2 eyes. Number of units in each bar of histograms is
indicated above bar. Left: Normal kittens. Note that many neurons are driven well by
both eyes but that a large fraction are strongly dominated or exclusively driven by one
eye or the other (groups 1-2 and 6-7). Right: Kittens subject to bilateral retinal
activity blockade. Retinal activity was blockaded beginning at age 14-16 days, and
continuing through age 39-57 days. Kittens were allowed to recover from blockade
for 2-4 days before microelectrode recording. Note the increased percentage of cells
driven well by either eye (groups 3-5). These and the following histograms include
cells from the cortical layers above and below layer IV, as well as from within layer
IV. In normal animals there is a greater degree of binocular mixing in the layers other
than layer IV. Data replotted from experiments reported in Stryker and Harris, 1986.

We have carried out several tests of assumptions implicit in the
Hebb-synapse explanation of ocular dominance column development.
One basic assumption is that the neural activity relevant to plasticity
was the activity in the visual cortex. The experiments described thus
far had all interfered with activity at earlier stages of the visual system
as well. We tested this assumption by infusing TTX into a region of
cortex to block the discharge of cortical cells and their
geniculocortical afferent terminals (Reiter, Waitzman and Stryker,
1986). We then instituted a period of monocular deprivation and
studied whether this deprivation caused a
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Figure 8: Ocular dominance histograms from visually responsive single units in
visual cortex of 38-day old Kittens, after 1 week of monocular deprivation during
cortical infusion of TTX (left, 4 animals) or of vehicle solution (right, 3 animals).
Conventions for histograms as in figure 7. Black dot indicates closed eye, white dot
indicates open eye. Left, results from a cortical region in which all neuronal activity
was blocked by cortical infusion of TTX throughout the period of monocular
deprivation. Ocular dominance distribution was completely normal (compare left of
figure 7), including the normal slight bias in favor of the contralateral eye, although
the contralateral eye was the visually deprived cye in these animals. Right, results
from a cortical region in which vehicle solution was infused throughout the period of
deprivation. Most units were dominated by the open, ipsilateral eye. Data replotted
from experiments reported in Reiter, Waitzman, and Stryker, 1986.

shift in ocular dominance. As expected, and consistent with the
predictions of a Hebb-synapse model, the cortical activity blockade
completely prevented plasticity, as is shown from the comparison of
figures 7 (left) and 8. ‘

A second assumption implicit in the Hebb-synapse explanation
of development is that the statistics of neural activity are sufficient to
account for ocular dominance plasticity. In nearly all of the
experiments above, animals received visual experience. One might
maintain that behaviorally significant visual stimulation, acting via
some high-level perceptual mechanism, is crucial to plasticity in this
system. In support of this notion, there is considerable evidence that
behavioral state and diffuse neuromodulatory systems can influence
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Figure 9: Ocular dominance histograms from visually responsive single units in the
visual cortex of normal kittens (upper right) and of kittens subject to three different -
regimes by which the contralateral eye had decreased activity compared to the
ipsilateral eye. Conventions for histograms as in figure 7. Black dot indicates
relatively deprived eye, white dot indicates relatively more active eye. Upper left:
results from six normal kittens, 36-51 days of age. Upper right: results from five
kittens, 37-44 days of age, in which all retinal activity in the contralateral eye was
blocked by injection of TTX, while the ipsilateral eye remained in total darkness.
Lower left: results from six kittens, 36-40 days of age, in which all retinal activity in
the contralateral eye was blocked by injection of TTX, and the ipsilateral eye was lid
sutured. Lower right: results from four kittens, 29-34 days of age, subject to normal
monocular deprivation by lid suture of the contralateral eye. Ocular dominance
plasticity, resulting in a bias in favor of the ipsilateral eye, is seen in all deprivation
regimes, although that at upper right and lower left included no behaviorally
meaningful visual stimulation. Data replotted from experiments reported in Chapman
et al., 1986.

plasticity in the visual system. These findings have led to Singer’s
"gating hypothesis" that plasticity occurs only when some
combination of adrenergic, cholinergic, or glutamatergic "gates" are
opened in visual cortex by the activity of various diffuse projection
systems (Singer, 1985). To test this assumption, we attempted to
produce ocular dominance plasticity in a situation in which neither
eye received behaviorally significant visual stimulation (Chapman et
al,, 1986). Activity in one eye was blocked with TTX, while
maintained but not visual activity was present in the other eye, which
either remained in total darkness or received diffuse-light stimulation.
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The maintained activity of the occluded eye, without any meaningful
visual input, was sufficient to cause ocular dominance plasticity, as
shown in figure 9. We conclude that at least much of the plasticity
that takes place in the development of ocular dominance columns does
not require meaningful visual input, so that it is reasonable to attempt
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Figure 10: Ocular dominance histograms from visually responsive single units in the
visual cortex of kittens after a period in which all retinal activity was blocked by
injection of TTX, and the optic nerves were stimulated electrically. Conventions for
histograms as in figure 7. Left: results from kittens in which the two optic nerves
were stimulated simultaneously. Note that most neurons were binocularly driven.
Right: results from kittens in which each optic nerve received the same pattern of
stimulation as in the kittens in the left figure, but in which the relative timing of the
pattern between the two eyes was such that the two eyes were stimulated alternately
rather than simultaneously. Note that most neurons were driven monocularly.
Unpublished data from experiments described in Stryker, 1986.

to understand its dependence on the statistics of neural discharge, as

our model does.
A third assumption of the Hebb-synapse model of ocular
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dominance column development is that ocular dominance segregation
is governed by the relative timing of neural activity, the greater
correlation in the patterns of neural discharge within each eyes’
afferents than between the afferents of the two eyes. This assumption
is only weakly supported by experiments showing that complete
retinal activity blockade prevents ocular dominance column formation
(Stryker and Harris, 1986). It is supported more strongly, but still
indirectly, by the experiments showing that ocular dominance
columns form more rapidly and more nearly completely when animals
are reared with experimental strabismus. A direct test of the role of
correlated activity was carried out by eliminating the natural
maintained retinal discharge and introducing controlled patterns of
activity into the two optic nerves by electrical stimulation (Stryker,
1986). These experiments showed that ocular dominance columns did
not form when the the two optic nerves were stimulated
simultaneously, but that an equal amount of activity delivered
alternately to the two nerves did allow ocular dominance segregation.
Figure 10 shows that most neurons were binocularly driven in the
former case but monocularly driven in the latter.

A final assumption of the Hebb-synapse model is that not only
are patterns of activity in the synaptic inputs important, but so arc the
responses of postsynaptic cortical cells. In numerous -earlier
experiments in which the responses of cortical cells were perturbed by
substances infused into the cortex, ocular dominance plasticity was
disrupted to a greater or lesser extent, but the presynaptic effects of
these substances on afferent terminals were not known. We tested this
assumption by infusing into visual cortex muscimol, a substance that
powerfully inhibited cortical cells but appeared (and is thought to
have) no effect on activation of or synaptic relcase from afferent
terminals (Reiter and Stryker, 1988). In the region of cortex in which
cortical discharge was completely inhibited, inputs from the less-
active, occluded eye came to dominate over those from the more
active, non-deprived eye, as shown in figure 11. This is a form of
synaptic plasticity in the reverse direction from normal, but it is
exactly what would be predicted by the Hebb-synapse model. In this
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Figure 11: Ocular dominance histograms from visually responsive single units in the
visual cortex of 8 Kittens, 35-43 days of age, after 5-7 days of monocular deprivation
during cortical infusion of muscimol. Left, results from regions in which all cortical
cell neuronal activity was blocked by muscimol infusion. Right, results from the
same kittens in cortical regions outside the muscimol-induced blocked. Conventions
for histograms as in figure 7. Black dot indicates closed eye, white dot indicates open
eye. In the muscimol-treated region (left), the less active, closed eye came to
dominate cortical cell responses. In untreated regions, the normal domination by the
more active, open eye was seen. Data replotted from experiments reported in Reiter
and Stryker, 1988.

case, the activity of the less-active, occluded eye is better correlated
with that of the inhibited postsynaptic cortical cells than is the activity
of the more-active open eye. This finding confirmed the crucial role
of the postsynaptic cells, as postulated in the Hebb model.
Furthermore, it suggested that a process coupled to postsynaptic
membrane voltage or conductance controls the direction of synaptic
plasticity, which favors more-active inputs when the postsynaptic cell
can be depolarized by them but less-active inputs when the
postsynaptic cell is inhibited. Finally, it demonstrates that, at least for
this form of plasticity, postsynaptic discharge is not essential, since
the reverse plasticity took place while spikes were blocked in the
cortical cells.

These experiments reveal a minimal set of features that must be
incorporated in a model of ocular dominance column development in
mammalian visual cortex. First, the afferents in such a model should
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initially make widespread overlapping connections, some of which
become ineffective or are removed in development. Second, the
correlation of activity among afferents serving one eye, and the lack of
correlation between the eyes, clearly plays a role. Third, postsynaptic
activity in the cortex is also crucial, and, therefore, intracortical
synaptic connections by which cortical cells influence one another’s
activity will play a role.

The model described below incorporates these three features,
together with a Hebbian or other rule to govern changes in synaptic
strength. These features may all be measured accurately by feasible
experiments; in fact, measurements in the literature allow us to make
estimates of the values of the parameters describing each. Thus, a
model incorporating these features may make genuine predictions
about normal development and the outcomes of experiments.

A Model of Ocular Dominance Segregation

We have developed a simple model of the segregation of
geniculocortical afferents into ocular dominance columns (Miller,
Keller, and Stryker, 1986, 1989). This model summarizes the
properties of the initial geniculocortical anatomy and physiology and
of proposed plasticity rules in three functions that describe the three
features just discussed:

« An arbor function, telling the strength of the initial connection
— the number of synapses — between an afferent and a cortical
cell, as a function of the retinotopic distance between their
receptive field centers;

e A set of afferent correlation functions, summarizing the
correlations in firing between afferents as a function of the
distance between their receptive field centers and of their eyes
of origin;

e A cortical interaction function, telling the influence that two
simultaneously active synapses have upon one another’s
growth, as a function of the distance between them across
cortex.
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This model can be used to analyze a number of proposed
mechanisms of synaptic plasticity, including a Hebbian mechanism.
The features that distinguish one proposed mechanism from another
will be found in the different forms given by each mechanism to the
three functions that summarize the initial anatomy and physiology and
the plasticity rule: afferent correlations, arbor/retinotopy, and cortical
interactions.

The cortical interaction function is particularly dependent upon
the proposed biological mechanism of plasticity. In the case Qf a
Hebbian synapse mechanism, the growth of a synapse is promoted if it
is active simultaneously with its postsynaptic cell. A synapse, by
being active, increases the chance that its postsynaptic cell will be
simultaneously active. Consider two simultaneously active synapses
onto two cortical cells. If the two cortical cells excite one another,
then the two simultaneously active synapses tend to aid one another’s
growth by increasing the probability of simultaneous excitation of one
another’s cortical cell. If the two cortical cells inhibit one another, the
two synapses tend to suppress one another’s growth. Hence for a
Hebb synapse, the cortical interaction function, which describes the
influence of two simultaneously active synapses upon one another’s
growth, is determined by the spread of intracortical synaptic
influences. For a mechanism involving release of a diffusible
modification factor, the function involves the lateral spread of
influences by diffusion as well.

A number of simplifying assumptions are embodied in this
model. We assume that, in some averaged sense, it makes sense to
talk about afferent cormrelations and about geniculocortical and
corticocortical connectivity as simple functions of the distance
between two cells. Afferents actually comprise several classes: on-
and off-center cells, and X and Y or parvo and magno cells. Afferent
correlations and arbor sizes depend upon the type of afferent. The
cortex has many attributes besides position: a cortical location in layer
4 may have associated with it a specificity for orientation or other
properties, and there are a variety of cortical cell types.
Geniculocortical and corticocortical connections are likely to have
specificity with respect to these attributes, even in the young animal
before ocular dominance segregation occurs (Lund, 1988; Martin,
1988). By ignoring these details, we reduce the system to the elements
that seem essential to columnar development. We similarly assume
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that every synapse from a given afferent to a given cortical location
experiences and exerts identical influences, ignoring neuronal
microstructure. We also assume that the process controlling synaptic
plasticity can be well approximated by instantaneous interactions
rather than by following the detailed temporal structure of neuronal
activations. We hypothesize that the tendency of two inputs to have
correlated activity on a time scale determined by the plasticity
mechanism is the key feature to be abstracted, and that the finer details
of activity pattermns can be ignored!. It is also assumed that the time
scale associated with the activity-dependent mechanism is much
smaller than the time scale over which synapses are appreciably
changing their strengths; this allows averaging of the equations over
all afferent activity patterns. Finally, the three functions are
considered static during the initial development of a pattern of ocular
dominance segregation. This simplification is potentially most
problematic for the cortical interaction function, since if cortical
interactions are themselves changing by an activity-dependent
mechanism, their development would be coupled to the development
of the geniculocortical projection.

The model need not depend on other features that might be
thought critical. The measure of post-synaptic activity for purposes of
plasticity may be action potentials or, as suggested by a number of
recent studies (Katz and Constantine-Paton, 1988; Reiter and Stryker,
1988), local membrane depolarization. In principle, it is not even
critical that the post-synaptic activity be involved at all. What is
critical is that modification depend upon paired activities, either paired
presynaptic activities or paired pre- and post-synaptic activities (the
latter can be reduced to paired presynaptic activities via an equation
like equation 4 below).

1. The time within which inputs must be correlated in order to influence one
another’s growth appears to be on the order of 107! second (Altmann et al., 1987;
Blasdel and Pettigrew, 1979; see also references re LTP in hippocampus:
Gustafsson et al., 1987; Larson and Lynch, 1986; Rose and Dunwiddie, 1986)

while membrane times and interspike correlation times are of order 1072 or 1073
seconds.
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Biological Characterization of the Three Functions Measurements
made in cats allow estimation of the three functions that characterize
the cortex in the model. As shown in figure 5, Y-cell afferents in
visual cortex of young kittens appear to be capable of arborizing over
an area more than 2 mm in diameter, or 1 mm in radius. This result,
based on the study of putative afferents (LeVay and Stryker, 1979), is
consistent with the final extent of patchy Y-cell arborizations seen in
adults (Humphrey et al., 1985a,b). X-cell afferents have not been
filled in kittens before columns develop, but based on the extent of
patchy arborizations in adults (Humphrey et al., 1985a,b), it appears
that X-cells might initially arborize over a region 0.5-0.75 mm in
radius.

The ocular dominance patches of adult cats have a periodicity of
about 850 pum (width of right-eye plus left-eye patches) (Anderson,
Olavarria, and Van Sluyters, 1988; LeVay, Stryker, and Shatz, 1978;
Shatz, Lindstrom, and Wiesel, 1977; Swindale, 1988). This period
appears to be smaller than, or perhaps about the same size as, the
diameter of initial X-cell afferent arborizations and seems clearly
smaller than the diameter of initial Y-cell afferent arborizations.

Measurements of maintained activity of retinal ganglion cells in
darkness in adult cats demonstrate that nearby ganglion cells have
correlated activities, due to their common inputs (Mastronarde,
1983a,b). No indications of anticorrelations at further distances were
seen®. Converting the retinotopic distance between correlated ganglion
cells to a retinotopic distance across cortex (Tusa, Palmer, and
Rosenquist, 1978), it appears that incoming afferents representing a
single eye are correlated across cortical distances of from 172 (X-cells)
to 372 (Y-cells) of a geniculocortical arbor radius. As previously
noted, there may also be more widespread correlations within each
eye on longer time scales (Levick and Williams, 1964; Rodieck and
Smith, 1966). These estimates are very crude, as they are based upon

2. ON-cells are correlated with ON-cells, and OFF-cells with OFF cells. ON-cells
are anticorrelated with OFF-cells over similar distances; no indication of
correlation with increasing distance is seen in this case. Some possible
implications of the anticorrelations between ON and OFF cells are briefly
discussed later in this chapter.
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measurements in the retina rather than the LGN and in adults rather
than kittens. Further measurements are needed.

Horizontal intracortical synaptic interactions are the feature in
the model that is least well characterized experimentally. In adult cat,
these connections are likely to be excitatory at short range, and appear
to be inhibitory to distances of perhaps 400-500 pm (Hata, et al,,
1988; Hess, Negishi and Creutzfeldt, 1975; Toyama, Kimura, and
Tanaka, 1981a,b; Worgotter and Eysel, 1989). Long-range synaptic
interactions exist over distances of 1 mm or more (Gilbert and Wiesel,
1983). These long-range interactions connect only discrete patches of
cortex and so may quantitatively have less impact than the shorter-
range interactions. In the adult, the long-range connections may
connect cells of similar orientation specificity by excitatory
connections, and may also make inhibitory contributions to direction-
selectivity (Tso, Gilbert, and Wiesel, 1986; Worgotter and Eysel,
1989). In the kitten, even before patch development but after the
development of orientation selectivity, the long-range connections
appear to connect patches with a periodicity consistent with that of
orientation columns, as well as with that of the subsequent ocular
dominance columns (Luhmann, Martinez Millan and Singer, 1986).

In summary, knowledge of the three functions involved in the
model is still rudimentary, but better measurements can and will be
made. In the adult, incoming afferents from a single eye appear
correlated over 1/2-3/2 of an afferent arbor radius, while
anticorrelations between more distant inputs thus far have not been
seen. The ocular dominance patches themselves appear to have a
period less than, or perhaps equal to, an afferent arbor diameter.
Intracortical synaptic interactions appear to be excitatory at short
distances and inhibitory at greater horizontal distances in the adult,
over distances that are within an arbor radius. In addition, there may
be longer range connections with a definite periodicity. We will
return to these points after examination of the model and its behavior.

In general, the model and its behavior will first be described
intuitively, with a minimum of mathematics. Then more
mathematical detail may be presented, keyed by a section heading or
lead sentence referring to "mathematical" results. The reader with
little mathematical interest may wish to skim or skip these sections;
results in other sections do not depend upon them.
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General Formulation of the Model We model the cortex as a 2-
dimensional lamina, representing layer 4, and the LGN as two 2-
dimensional laminae, one representing each eye. Let Roman letters
such as x designate a 2-dimensional position on the cortex, and Greek
letters such as a designate a 2-dimensional retinotopic position in the
LGN. We assume retinotopic location can be directly interconverted
with cortical location, via the retinotopic map onto cortex?.

Let st(x,a.t), SR(x,0,t) represent total synaptic strength at time t
of the afferents of left or right eye, respectively, from o — x. Since an
afferent may make many synapses onto a cortical cell, S may represent
a sum of strength over many synapses. The number of such synapses
is defined by the arbor function, A(x—a). Let sk(x,a,t) represent the
strength of the j* individual synapse of the left-eye from « to x. Then

A(x—,
S* is defined by s“(x,a,t)= (2 )s}“(x.a,l). We take A to be a single
=1
“static function for all cells, while s and S vary in time.

The afferent correlation and cortical interaction functions are
defined as follows (figure 12). The correlation functions C-(a~f) and
C'R(a—PB) describe the correlation in firing between the left-eye
afferent with retinotopic position «, and the left- or right-eye afferent,
respectively, with retinotopic position f. C*:(0—B) and C*®(a-B) are
defined similarly. The cortical interaction function I(x—y) describes
the influence of simultaneously active synapses at x and y upon one
another’s growth.

Our model equation for cortical synaptic plasticity is

dst(x,a,t)

" =AAE-0) TIx-y)[C(0—P)S"(y,B.O) + 1

yB
C'R(a-B)SR(v.B.nH]-DECA YL (x,0,1)

3. The retinotopic map onto cortex is linear in a local region of cortex. We assume it
to be isotropic, ignoring differences in magnification with direction across cortex
or LGN. Hence it is assumed to be a simple identity map between the cortical and
geniculate grids.
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Figure 12: Notation. Afferents from left-eye (white) and right-cye (black) layers of
the LGN innervate layer 4 of the visual cortex. The LGN is modeled as consisting of
two layers, one serving each eye. Each layer is two-dimensional, though only one
dimension is illustrated. The cortex is modeled as a single, two-dimensional layer. In
the figure, O and @ label two-dimensional positions in the LGN, and X and x” label
the retinotopically corresponding points in the cortex; y labels an additional position
in the cortex. The afferent correlation functions CI&* (correlation in activity between
two left-eye afferents) and C'R (correlation in activity between a left-eye and a right-
eye afferent) are functions of separation across the LGN. The arbor function A
measures anatomical connectivity (number of synapses) from a geniculate point to a
cortical point, as a function of the retinotopic distance between them. The cortical
interaction function I depends on a distance across cortex. The left-eye and right-eye
synaptic strengths, St and SR, from a geniculate location to a cortical location,
depend upon both locations. S™ and S® change during development in the model,
while the arbor function A is held fixed; the assumption is made that anatomical
changes occur late in development, after a pattern of physiological synaptic strengths

is established. From Miller, Keller, And Stryker, 1989. Copyright 1989 by the
AAAS.

where DECAY™ (x,at,1) =y S™(x,0,1) + eA(x—a) for some constants y and
e. The equation for S® is identical with interchange of L and R
everywhere. The DECAY term involves changes in each synapse
independent of all other synapses, while the non-DECAY termn
describes changes due to interactions between synapses.

The synaptic interaction term can be expressed in words as
follows. First, the change in time of any synapse’s strength is a sum
of the influences exerted on it by all other synapses, so that the
equation is linear in the variables s and thus in S. Sccond, the
influence of any one synapse upon another is a product of the
correlation between their activities, which gives a measure of the
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likelihood that the two synapses fire together; the strength of the
influencing synapse, which tells the amount of influence exerted by
that synapse when it is active; and the strength of the intracortical
interaction between them, which tells the attenuation or change in sign
with cortical distance of the influence exerted. Third, the change in the
total synaptic strength S between an afferent and a cortical cell is
given by multiplying the total influence on one such synapse by the
number of synapses from the afferent to the cortical cell. That number
is given by the arbor function. This multiplication occurs because
each such synapse receives identical influences.

In studying this equation we will ignore boundary effects. Stripe
width is at least an order of magnitude smaller than the overall width
of striate cortex. We assume that the three functions C,A, and I are
relatively local, and hence most stripes develop without any direct
influence of the boundaries. Thus, the boundaries should not influence
the occurrence and width of periodic segregation, and it is on these
features that our analysis will focus. The boundaries may influence
the overall form or layout of the stripes, which we will not attempt to
analyze®. Thus, we do away with the boundaries, either by using
periodic boundary conditions (in simulations) or by assuming an
infinitely wide cortex.

Equation 1 for S* and the corresponding equation for SR
constitute our basic mathematical model of synaptic strength
development. The data used in the model are the arbor function
A(x—a), the cortical interaction function I(x—y), and the correlation
functions such as C'¥(0—B). When the initial values of St and S® are
given at time t=0, the equations determine S* and S® at any later time t.

Geniculocortical ~ synapses are  exclusively  excitatory.
Furthermore, synapses are limited in strength. Therefore, this basic
model must be modified to prevent synaptic strength from becoming
negative or from becoming too large. Nonlinearities must be included

4. The occurrence and width of segregation are detcrmined by simple linear
interactions, as will be described, and hence are robust features determined by
very general features of a model. In contrast, the overall form of the pattern is
determined by nonlinear interactions.
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in the equation to enforce these conditions.

In addition, the total synaptic strength supported by a cortical cell
or afferent may be limited beyond the extent implicit in the limits on
the strengths of individual synapses. There is no direct evidence for
such limits, but the phenomena associated with ocular dominance
plasticity are suggestive of a competition for finite resources between
afferents serving the two eyes. Such limits may also be suggested by
biological evidence for limits to the total number of synapses
supported by a cell. In the goldfish optic tectum, if presynaptic cells
are forced to innervate only half of a normal tectum, the number of
synapses formed per postsynaptic cell remains the same as in the
normal case, so that on average each input forms only half its normal
number of synapses (Hayes and Meyer, 1988b; Murray, Sharma, and
Edwards, 1982). This suggests that the presynaptic inputs may be
competing for a fixed number of postsynaptic sites. Similarly, if only
a fraction of the normal presynaptic cells are allowed to innervate the
tectum, the number of synapses formed per postsynaptic cell is
smaller than in the normal case, suggesting intrinsic limits to the
number of synapses that each presynaptic cell can make (Hayes and
Mayer, 1988a). Presynaptic limits have also been observed in other
systems (Fladby and Jansen, 1987; Brown, Jansen and Van Essen,
1976; Schneider, 1973). We refer to such limits as constraints on the
total synaptic strength supported by a postsynaptic or presynaptic cell.
The use of such constraints in modeling was first suggested by von der
Malsburg (1973). To test the possible role of constraints in
development, the model can be modified to limit the total synaptic
strength supported by a cortical or afferent cell. Terms must be added
to the equations to enforce such limits,

Mathematical Derivation of the Model Equation From a Hebbian
Mechanism Equation 1 can be simply derived from a linear Hebb
synapse mechanism. The Hebb synapse rule can be expressed, for
individual synapses, as

ds (x,a,1)

" =A[POST(x)PRE"(a1)] — decay (2a)

where POST(x) is some function of postsynaptic activity at x, PRE™(a)
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is some function of presynaptic activity from « in the left eye, and A is
a constant. Let c(x,t) be the activity of the cortical cell at position x at
time t, and similarly let a“(a,t),a%(a,t) represent the activity of left-
and right-eye afferents. Taking post to be a linear function of ¢ (see
the Appendix for the nonlinear case), this is

ds}(x,0,1)

m =Ae(x, 0 ~c, Ify 2@, 0] -y sf(x, a0, ) — € (2b)

where c, is a constant, f; is a function that may incorporate threshold
or saturation effects, and y and ¢ are intrinsic decay (or growth)
factors. Summing over j on both sides, this can be reexpressed as

dst(x,a,t)

p = -0 [c(x, D) -c, I, [a (o, )] - (3)

ySh(x,a,t) —e’A(x—a)

The cortical activities in this equation can be replaced by a
function of afferent activities and synaptic strengths. Define the net
geniculate input to a cortical cell by

NETLGN<x)sz{sL<x,a,t)leaL(a,wsR(x,a.t)fz [aR(a,l)]}

f, incorporates thresholds and saturations, like f, in equation 2. If
cortical activity is a linear function of NET; gy (again, the nonlinear
case is considered in the Appendix), then

c(x,t) =3 I(x—y)NET gn(y) +Ca. 4
y

I(x-y) describes the total influence on cortical point x of geniculate

excitation of the cortical point at y, including direct excitation (when -

y=x), as well as indirect effects via intfacortical synaptic connections
by which the activity® of the cortical cell at y influences activity at x.
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¢, represents intrinsic activity of cortical cells in the absence of
geniculate input. Substituting equation 4 for c(x,1) into equation 3,
and averaging over input activity patterns®, we obtain the model
equation, equation 1. Let < > denote the average. Then’

ClL (0-B) =< f, [a%(a,DIR [a“(B.0] >, CR(o-P) =< T, [a“(,)]E &% (B, 01>
and

e=€—hcy —¢, 1< f[a%(, 01>

Which Mechanisms Can Be Studied Within This Framework? We
have shown elsewhere (Miller, Keller, and Stryker, 1989) that
equation 1 may be derived from a number of proposed biological
plasticity mechanisms. These include mechanisms involving
activity-dependent release by either cortical cells or afferents of a
diffusible modification factor, combined with activity-dependent

5. The nature of I can be further understood if we postulate, instead of eq 4,
c(x,) =NET gn(X) + 2. B(X-y)c(y,t) +C’ where B(x—y) summarizes the

effects of cortico—conigal synaptic interconnections, and ¢’ is intrinsic activity of
the cortical cell in the absence of all input. Assume that cortical activity is
determined by afferent activity, so that the matrix (1-B) is invertible (where 1 is
the identity matrix). Then equation 4 follows, with, as matrix equations,
I=(1-B) '=1+B+B%+ - and¢; =1c".

6. We have continued to usc the notation S for <S> after averaging. Averaging
produces an infinite series of terms, of which we keep only the first. Higher order
terms involve the tendency of three or more afferents to be active conjointly
beyond the extent predicted by pairwise correlations. These terms are small cither
for small fluctuations or for small A,y,e. Averaging is done by the smoothing
procedure, described in Keller (1977) and in Miller (1989¢).

7. As  a—Boeo, CU o (a-P)<filal(a,nl> <f[a’(B,0}>.  Hence if
<f,[al>#0 and <f,[a]>#0, the various C’s converge to a constant at large
distances. This constant is the constant —k; of Linsker (1986a-c). Because it
disappears from CP and hence from the equation for SP, described later in this
chapter, it has no influence on the initial development of ocular dominance
segregation.
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of chemospecific adhesion such that retinotopically matched afferents
and cortical cells adhere best to one another.

The mechanisms that lead to equation 1 have three points in common,
They all include some arboreal and/or retinotopic factor A(x-a), and
some lateral interconnection, either synaptic or via chemical diffusion
or transport, between points in cortex. They also depend for
modification upon paired activity which, via equation 4, reduces to
dependence on paired afferent activities. The mathematical model
common to these mechanisms, excluding the decay terms, can be
summed up by the following heuristic for the interactions between
synapses:

dsh(x,a,t) _
dt

Y Y(influence Felt by S“(x,a,t)](Influence Exerted by SE(y,B,0)]
E=LRyf8

Here the influence felt by SU(x,a,1) is f,[a" (o, )]A(x — @), that is, some
measure of the presynaptic activity of the synapse, multiplied by the
number of synapses from o innervating x (perhaps scaled by the
retinotopic affinity of synapses from a for x). The influence exerted
by SE(y.B.t) is f,[a®(B,0ISE(y,B,I(x-y), that is, some measure of the
presynaptic activity of these synapses, multiplied by the total synaptic
strength of such synapses, times a factor indicating the influence felt
at a distance across cortex from the influencing synapse.

The mechanisms have one additional point in common.
Synapses causing modification act in proportion to their total strength,
St or SR, while synapses being modified respond independently of
their strength, but in proportion to their total number A. Biologically,
the first feature seems natural, but the second is arbitrary given our
current biological knowledge. Choosing to let synapses exert
influence in proportion to A results in a trivial theory. With this
choice, synaptic strengths do not interact. Instead, all synapses simply
decay or grow uniformly. Thus, the only interesting alternative choice
is to let both influence exerted and influence felt be proportional to S.
In this case, the lowest-order term embracing synaptic interactions is
intrinsically nonlinear. However, in certain limits this case, also,
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approaches equations like those we study®.

Because several different biologically reasonable mechanisms of
synaptic plasticity are described by the same mathematical formalism,
agreement between the predictions from a particular mechanism and
the biological reality can not by itself be taken as strong evidence in
favor of the mechanism. Such agreement appears at first sight only to
distinguish among very large classes of mechanisms, where the
members of a class make similar predictions. Therefore, one is led to
question the extent to which such models can be informative to
biologists. It is important to note, however, that different mechanisms
are distinguished by the different biological features that are
summarized in the three functions characterizing the mathematical
model. That is, these functions will have different biological
interpretations under different mechanisms. Furthermore, as we will
show, measurements of these functions can allow prediction of
whether ocular dominance segregation should occur, and the

8. Let SS=SL+SR, SP=8L—SR  Assume equivalence of the two eyes, and
ignore decay. Then for this case, before averaging over input activity patterns,

ﬁn—(c’l‘l'“—") =185 (x, 0,0}, I(x—y) CP (0= B.,1) SP (3, B, 1) N1y
yp
-+ %8P (x,0, 0 I(x—-y) CS(a— B,t) S5(y,B.0)
y.B

Here,

C¥a~B.u=f{a"(c, t)]{ fla"(B.0]+f[a" (B,l)]}.

CP(a-B.0=f, [aL(a,l)]{ bl B.01-f [aR(B.l)]}-

Note that <C5>=CM 4+ CMR, <CP>=CM — C®. Suppose there are constraints
on the sum S* such that receptive fields are relatively uniform across the cortex,
except for ocular dominance. Then S”(x,Q,t1)=f(x —a,t) for some function f.
Suppose that S5 and SP can be taken to be statistically independent. Then, after
averaging, the first term in equation N1 becomes the non-decay term in equation
5, with f playing the role of an arbor function. The second term in equation N1
contributes to the decay term in cquation S.
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periodicity of such segregation if it does occur. Therefore,
experimental measurements of the biological features that define the
functions under the assumption that one or another mechanism is
active, can serve to distinguish among the mechanisms of synaptic
plasticity.

Studying the Model Through Simulations

Simulations of Development and Deprivation We have studied the
behavior of the model through computer simulation of development,
by carrying equation 1 forward in time from an initial state in which
synapses of the two eyes have nearly equal strengths. For this
purpose, we model cortex and the left- and right-eye layers of the
LGN as three 25x25 layers of neurons. To eliminate boundary effects,
we use periodic boundary conditions, so that the leftmost and
rightmost columns of each grid are adjacent, as are the bottom and top
rows. Each geniculate cell is connected to a 7x7 square of cortical
cells, centered about the retinotopically corresponding cell in the
cortical grid.

Initially, we consider the following choice of functions. The
arbor function is equal to 1 over the 7 x 7 set of connections and 0
outside. The correlation function includes positive correlation within
each eye, falling to zero over about an arbor radius; there is neither
correlation nor anticorrelation between the eyes ("same-eye
correlations", gaussian parameter 0.3, in figure 13).

The cortical interaction function is excitatory among nearest
neighbors on the grid, and weakly inhibitory more peripherally for
several gridpoints (Mexican hat cortical interaction in figure 13).
Other choices of functions will be examined subsequently. Each of
the 2x7x7x25x25=61,250 synapses is assigned an initial weight
randomly drawn from a distribution uniform between 0.8 and 1.2.
Synaptic weights grow or decay according to the model equation until
they reach 8.0 or 0, at which point no further change is allowed.
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Figure 13: Functions used for simulations of full geniculocortical innervation.
Function value, vertical axis, versus distance in grid intervals, horizontal axis. All
functions are circularly symmetric in two dimensions. Top: Correlation functions
C(0at). These summarize the correlation in activity between two afferents separated by
the retinotopic distance .. We assume CY(ct)=CR R), C]‘R(a)=CRL((1). The
correlation functions in the left column (same-eye corre]gtionsz) are positive within
each eye, and zero between the two eyes: Cu‘((l)=e—“ /&Y \yhere D=7 is the
arbor diameter and k=0.4, 0.3 or 0.2 for the top, middle, or bottom row respectively,
and C'*=0. The positive correlations within each eye are shown. The correlation
functions in the middle column (+ opposite-eye anticorrelations) are positive within
each eye as in the left column, as shown by the curves above the horizontal axes; but
in addition there are weaker, more broadly ranging negative corrclations between the
two eyes, shown by the curves b&;]ow l}znc horizontal axes. These negative correlations
are given by C*®(00) =~1/9¢ ™ /C*P)" The correlation functions in the right row (+
same-eye anticorrelations) have these same negative correlations added to the positive
correlations within each eye, and have zero correlation between the two eyes. This
creates a "Mexican hat" function within each eye, so that inputs are correlated at
shorter distances and anticorrelated at longer distances, as illustrated. Bottom:
Cortical interaction functions I(x). Left, Mexican hat function, given by gaussians as
for the rightmost correlation functions but with €K=0.1333. Right, a purely excitatory
cortical interaction function, given by the excitatory gaussian of the Mexican hat
function. From Miller, 1989a.

Constraints are added, fixing the total synaptic strength on a cortical
cell and fixing or limiting the total synaptic strength coming from
each afferent. We will subsequently discuss the effect of these
constraints.
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Figure 14: Development of ocular dominance of cortex in the model. Cortex is

shown at nine times, from time O to the 80th iteration. Each pixel represents a single

cortical cell. The greyscale represents ocular dominance D of each cell, the

difference between the total strength of right-eye and of left-eye geniculate inputs to

the cell: D(x) EZ[SR (x,0)—-S™(x,00)]. The greyscale runs lincarly from monocular
[

for the right eye (white) to monocular for the left eye (black). Final (timestep 200)
cortex is the lower right of figure 15. This development used the following functions
(figure 13): - The correlation functions have same-eye correlations only, with
parameter 0.3. The intracortical interaction function is Mexican hat. The arbor
function is taken to be 1 over a 7X7 arbor, 0 elsewhere. Constraints were used to
conserve total synaptic strength over each cortical cell and over each afferent arbor
(Miller, 1989c; Miller, Keller, and Stryker, 1989). Convention for all simulations:
Ilustrations of cortex show 40x40 grids, although the model cortex is 25x25.
Periodic boundary conditions were used, so this display shows continuity of the
pattern across what would otherwise appear to be a boundary. Thus, the top 15 and
bottom 15 rows within each square are identical, as are the left 15 and right 15
columns. From Miller, 1989c.

The randomly assigned synaptic strengths result in an initially
nearly uniform innervation by the two eyes, much like that seen by
autoradiography in the young kitten before segregation of left-eye
from right-eye afferents. Segregation and development of an overall
pattern of ocular dominance in the model cortex occurs even while the
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Figure 15: Cortex, timestep 200, resulting from nine different random initial
conditions. Cortical interaction, arbor, and correlation functions and conventions as in
figure 14. Results are qualititatively and quantitatively similar for all initial
conditions that have been tried; that is, the 2-dimensional Fourier transforms yield
similar power spectra. From Miller, 1989c¢.

amplitude of the pattern is still quite small, perhaps smaller than could
be detected experimentally. This is illustrated in figure 14. In this
figure, each pixel represents the ocular dominance of a single cortical
cell. Black or white represent dominance by left or right eyes,
respectively, while intermediate greys represents equality or varying
degrees of dominance of the two eyes. The pattern continues to
develop as it grows nearly to saturation, so that most cortical cells
eventually become fully monocular, completely dominated by one eye
or the other. The resulting development and final pattern of ocular
dominance closely resembles the patterns of periodic segregation seen
in cat or monkey, although cat layer 4 has more binocular cells than
this model cortex. This development is completely robust across
randomly generated initial conditions: every initial condition leads,
given this same choice of functions, to a qualitatively similar, though
distinct, final outcome. Figure 15 illustrates the final cortices resulting
from nine different sets of initial synaptic strengths.
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Figure 16: Receptive fields (ignoring the contribution of corticocortical connections)
of eight cortical cells at timesteps 0, 30, 60, 200. Each vertical L,R pair of large
squares shows strengths of the 7X7 left-eye and 7X7 right-eye synapses onto a
cortical cell at one time. Synaptic strengths onto eight adjacent cortical cells are
shown. Cortical cells shown are the eight lefunost cells in the bottom row of the
cortices of figure 14. The greyscale varies linearly in synaptic strength from 0 (black)
to the maximum strength present at the given timestep (white). These maximum
strengths are: timestep 0, 1.2; timestep 30, 3.3; timesteps 60 and 200, 8.0. Receptive
fields first refine in size, concentrating their strength centrally. They then become
monocular with synaptic strength confined to left- or right-eye inputs. Adjacent
groups of cells tend to become dominated by the same eye, providing the basis for
ocular dominance segregation across the cortex as a whole. From Miller, 1989¢c.

The pictures of cortex just presented collapse information about
the 98 synapses onto each cortical cell into a single pixel representing
net ocular dominance. More can be learned by examining in detail the
development of each individual synapse onto a given cortical cell.
The geniculate synapses onto the cortical cell represent the cell’s
receptive field, discounting the effects of cortico-cortical synaptic
connections. We illustrate (figure 16) the development of these
receptive fields for 8 cortical cells. These are the 8 leftmost cortical
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Figure 17: Physiological receptive fields at timesteps 0, 30, 60, 200, for the six
leftmost cortical cells of the 8 shown in figure 16. Each vertical L R pair shows
physiological input to the cortical cell from 15x15 left-eye or right-eye geniculate
positions. Physiological input from a geniculate cell is defined as the lincar sum of
the cell’s direct synaptic input onto the cortical cell, and its synaptic input onto other
cortical cells weighted by the synaptic influence of those cortical cells on the cortical
cell observed. Thus, physiological input to a cortical cell at X from the left-cye
geniculate position O is defined by PL(x,a)=ZI(x—y)SL(y,a). Input may be
y

excitatory (grey, strength 0, to white, maximum excitatory strength present at a
timestep) or inhibitory (grey, strength 0, to black, maximum inhibitory strength
present at a timestep). Maximum excitatory strengths at the four times, respectively,
are 1.4, 4.1, 13.6, 14.4, maximum inhibitory strengths are -0.6, -0.9, -2.5, -2.9. At
time 0, the 7X7 arbor of direct synaptic connections provides excitatory input, while
surrounding geniculate positions give inhibition. Development of physiological
receptive fields parallels the development of the direct geniculocortical input shown in
figure 16, but in addition the development of sidebands of inhibitory input from the
dominant eye and of inhibitory input from the nondominant eye can be observed.
From Miller, 1989c.
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cells in the bottom row of the cortices of figure 14. Each vertical pair
of 7x7 "L" and "R" squares displays the strengths of the 49 left-eye
and 49 right-eye synapses onto one cortical cell at one developmental
time. The receptive fields first refine in size, while developing only
weak biases of ocular dominance. Subsequently, the receptive fields
become monocular as they continue to refine in size.

Intracortical synaptic interconnections modify cortical receptive
fields. Assuming local excitation and more distant inhibition between
cortical cells as given by the excitatory/inhibitory cortical interaction
function, and using a simple linear model of cortical activation®, we
can compute the resulting receptive fields. This is illustrated in figure
17, for the six leftmost cells of the eight illustrated in figure 16. Two
features are added to cortical receptive fields by intracortical
connectivity. First, the nondominant eye gains input to the cortical
cell, but it is inhibitory input, as occurs physiologically in some cases
(Bishop, Henry, and Smith, 1971; Kato, Bishop, and Orban, 1981;
Ohzawa and Freeman, 1986). Second, though the receptive fields
initially develop a circularly symmetric structure as they refine, this
circular symmetry of individual receptive fields is broken as each
eye’s inputs become segregated into its eye-specific stripes. While
this is reminiscent of the development of orientation selectivity in
cortical cells, it cannot explain that phenomenon, because orientation
selectivity develops biologically even in regions of cortex where there
is innervation by only a single eye.

Just as we can study the receptive fields of individual cortical
cells, we can study the terminal arbors — the projection onto cortex —
of individual geniculate afferents. These arbors are illustrated in the
same format used for the receptive fields in the absence of
intracortical connectivity (figure 18). Vertical pairs of "L" and "R"

9. Our crude, linear model of cortical activation can be sufficient to study the
periodic segregation of ocular dominance, as we will discuss, but it lacks the detail
to make precise predictions about the effects of intracortical synapses on
physiological receptive field structure. Thus, results with this linear model are
only intended to be suggestive of some of the additional features that intracortical
connectivity might add to receptive fields; results might be altered considerably by
nonlinearities.
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Figure 18: Afferent arbors at timesteps 0, 30, 60, 200. Conventions as in figure 16,
except that here the strengths of the synaptic arbors projected by eight adjacent left-
eye and eight adjacent right-eye LGN afferents onto cortex are pictured, whereas in
figure 16 the strengths of the left-eye and right-eye synapses received by 8 cortical
cells were pictured. The afferents shown are the eight leftmost cells in the bottom row
of the respective geniculate grids. Thus, each vertical L, R pair illustrates the arbors
of a left- and a right-eye geniculate cell from identical geniculate grid positions at one
time. Greyscale shows synaptic strength of connection to each of the 7 by 7 cortical
cells contacted by the arbor. Arbors first concentrate their strength centrally, then

break up into patches confined to complementary cortical ocular dominance patches.
From Miller, 1989c.

7x7 squares here display the strengths of the synapses projected to
cortex by the left-eye and right-eye afferents representing a single
receptive field location. The arbors initially refine in size much like
the receptive fields, but then segregate into complementary cortical
regions as each eye’s input becomes confined to the appropriate eye’s
patches. This is reminiscent of the terminal arbors in the cat (figure
5). Thus, many features of normal biological development emerge in
the model. These include periodic ocular dominance segregation
across cortex, refinement and development of monocularity in
individual cortical receptive fields, and refinement and confinement to
patches of afferent arbors.

Using the same choice of functions and the same initial
conditions as in the simulation just presented, we now proceed to
study the effects of visual deprivation.
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Monocular visual deprivation is modelled as a decrease in the
amount of activity within one eye, and hence, as a decrease in the
amplitude of the correlation function within that eye. Possible
disruption of the correlational structure within the deprived eye, which
would only increase the effects of deprivation, is ignored. We
consider the effects on the final cortex of initiating monocular
deprivation at increasingly later times in development (figure 19).
With early initiation of deprivation, the "open" eye takes over much
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Figure 19: Cortical patterns of ocular dominance resulting from sustained monocular
deprivation initiated at various times. Results of initiating the deprivation at iteration
0, 20, 40, 60, 80, or 100 are shown. All parameters, functions, and initial conditions
are identical to those used in figure 14, except that (1) the deprived eye’s correlation
function was multiplied by 0.7 during the deprivation, and (2) Only partial constraints
on afferent arbors were used, so that afferent arbors were able to vary their total
synaptic strength by £50 percent from the original value. Final cortices (T=200) are
shown for each case. Synaptic strengths were frozen upon reaching the limiting
values of 0 or 8; this makes very little difference in final results for these functions
(Miller, 1989¢). From Miller, 1989¢.

more than its normal share of cortex. As in biological development,
there is a critical period for this phenomenon in the model: the later in
development deprivation is initiated, the less effect deprivation has,
and with sufficiently late initiation there is no effect. The precise
degree of ocular dominance shift produced by deprivation initiated at

Chapter 9: DEVELOPMENT OF OCULAR DOMINANCE COLUMNS 293

a particular time in development depends upon model parameters.
These include the amount by which activity in the deprived eye is
reduced and the degree of change allowed in the total synaptic
strength supported by an afferent arbor'®. It is very robust, however,
that early onset of deprivation leads to strong ocular dominance shifts,
and that initiation of deprivation progressively later in development
leads to progressively smaller effects.

This critical period occurs in the model for two reasons. First,
there is a strictly dynamical or organizational component. As ocular
dominance segregation proceeds, each eye attains dominance in
synaptic strength within its stripes. Since the influence of synapses
involves a product of the presynaptic activity times the synaptic
strength, this dominance in synaptic strength can more than
compensate for the decrease in activity caused by deprivation and
allow the deprived eye to maintain dominance within its stripes.
Second, there is a component due to "stabilization" of synapses: once
synapses are fully saturated (strength 8.0 or 0), they may be frozen, so
that they are no longer allowed to change in strength. If stabilization
of synapses is used, no changes in ocular dominance can occur once
most synapses have been saturated.

With correlation functions like that used here, or more broadly
ranging, layer 4 normally becomes fully monocular (as will be
discussed). Then dynamical or organizational factors are sufficient to
entirely account for a critical period. In this case, the critical period is
unchanged by the presence or absence of stabilization: it emerges
entirely from the fact that a sufficient degree of ocular dominance
organization becomes dynamically irreversible. When correlation
functions are narrower, the final layer 4 normally includes a greater

10. In the simulation shown, we have used constraints allowing progressively less
change in the total synaptic strength over an afferent arbor as that total approaches
450 percent of its initial value. Afferents are not allowed to gain or lose more
than SO percent of their total strength, although they continue to redistribute
strength between their synapses even after the 50 percent limit is reached.
Deprivation initiated at time 0 leads deprived-eye arbors to shrink to the maximum
degree allowable, and to disappear completely if that is allowed. Later initiation
of deprivation leads to smaller effects, irrespective of the precise constraint used.
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number of binocular cells. Such an outcome may also result if the
development of vision tends to correlate the activity of the two eyes
and if these changes occur while segregation is incomplete. Binocular
cells remain dynamically susceptible to an ocular dominance shift at
any stage of development. Hence, if the final layer 4 includes a
significant percentage of binocular cells, as in the cat, a complete
explanation of a critical period requires stabilization of saturated
synapses. In this case, however, dynamical factors will still contribute
to the critical period by ensuring that regions sufficiently dominated
by one eye will no longer be subject to an ocular dominance shift.
The biological critical period may, of course, involve other factors
such as molecular changes that switch off the possibility of plasticity,
in addition to the factors discussed here.

Functional Dependence of the Simulation Results The results above
resulted from simulation using a particular choice of the correlation,
cortical interaction, and arbor functions. The shapes of these
functions are not well known in developing animals and, furthermore,
it will be of experimental interest in the future to perturb these
functions to study the effect upon development. Hence, to connect the
model to biology, the dependence of developmental results on the
choice of the correlation, cortical interaction, and arbor functions must
be understood.

To determine this dependence, we have systematically varied
each function. In the results that follow, one function at a time is
varied, while the other two functions are left identical to those used in
the simulation illustrated in figs. 16 and 18-20. The random initial
conditions in all cases are identical to those used for that simulation,
to facilitate comparison of results. This does not allow a complete
exploration of the parameter space, but in combination with our
analytical results, discussed subsequently, yields an understanding of
the role played by each function in ocular dominance segregation.

We first consider the effects of varying the correlation functions.
Figure 13 illustrates a series of correlation functions obtained by
broadening or narrowing a gaussian correlation function within each
eye ("same-eye correlations')., To such gaussian correlations within
each eye, weak, more broadly ranging gaussian anticorrelations may
be added either between the two eyes ("+ opposite-eye
anticorrelations"™), or within each eye ("'+ same-cye anticorrelations').
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Opposite-eye anticorrelations can be considered a model of strabismus
or of alternating monocular deprivation; but such anticorrelations
might also be present during normal development as a result of
inhibitory interactions within the LGN. Same-eye anticorrelations are
of interest both because of their use in other models (Linsker, Chapter
10), and because it is possible that they too might be introduced in the
LGN or by the statistics of retinal response to visual input.

SAME-EYE + OPPOSITE-EYE + SAME-EYE
CORRELATIONS ANTI-CORRELATIONS ANTICORRELATIONS

04

Figure 20: Development of ocular dominance using the nine afferent correlation
functions illustrated in figure 13. Initial conditions, conventions, and all functions
(cortical interaction, arbor) save the correlation function are as in figure 14. Cortex is
shown in its final state (timestep 200). Broader correlations, or opposite-eye
anticorrelations, lead to increased monocularity of the final cortex without changing
the basic periodicity. Same-eye anticorrelations lead to decreased monoculanty. If
present within an arbor radius (0.2), same-eye anticorrelations lead to a largely
binocular cortex with a weak and irregular pattern of ocular dominance segregation.
The periodicity of this pattern is fundamentally altered from the others and is quite
noisy (distributed over many wavelengths).

Results of simulations using each of these correlation functions
are shown in figure 20. Broader cormrelations within each eye or
addition of opposite-eye anticorrelations leads to a more completely
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monocular cortex. This agrees with experimental findings in which
artificially induced strabismus or alternating monocular deprivation,
which induce anticorrelations or reduce correlations between the eyes,
lead to an increase in monocularity throughout the cortex (Hubel and
Wiesel 1965). Narrower correlations within each eye lead to more
binocular cells at the borders between eye stripes without otherwise
altering the pattern of stripes. Same-eye anticorrelations also lead to
more binocular cells at the borders between eye stripes and, if
significant within an arbor radius ("'same-eye anticorrelations 0.2"),
tend to destroy monocularity and to destroy the regular cortical
organization of ocular dominance. In this case, afferents from a single
eye giving input to different halves of a single cortical cell’s receptive
field are anticorrelated with one another. Then development of one
eye’s strength in one part of the cell’s receptive field discourages
development of that same eye’s strength elsewhere in the same field,
leading to binocularity.

The above results on narrowing of the correlation function
suggest that even nearest neighbor correlations might be sufficient to
yield ocular dominance segregation. To test this, a gaussian
correlation function within each eye ("same-eye correlations 0.4") was
set equal to zero outside squares of various sizes (Miller, 1989C).
Correlation only between afferents within one square ring of one
another!! is sufficient to yield monocular cells and a normal periodic
pattern of segregation. Correlation over an arbor radius (3 square
rings) seems both necessary and sufficient to yield a completely
monocular layer 4. Similar conclusions result from the study of
correlation functions that are constant over some distance, and equal
to zero outside (Miller, 1989C)'2. An increase in the amplitude of the
correlations can largely, but not completely, compensate for a
decrease in spatial extent. In all of these cases, when segregation
occurs, it appears to occur with an invariant period.

Next, we consider the effects of varying the cortical interaction

11. @ and B are within N square rings of each other if o=, |<N and o=, | <N.

12. The correlation functions used were C(0)=1; C(a—P)=c for 0#f, a and f within
N square rings of one another; C(0—P)=0 otherwise.
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function. Results using a purely excitatory cortical interaction
function, without the more peripheral inhibition present in the
Mexican hat function studied previously (figure 13), depend critically
on the presence of constraints conserving the sum of synaptic strength
over an afferent arbor. In contrast, results obtained with the Mexican
hat function depended little on such constraints. Figure 21 shows the
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Vu

—-=0OXxm

xmzZ

->» X

"ST

Figure 21: Cortical patterns of ocular dominance resulting from development with
the excitatory cortical interaction function of figure 13, with and without constraints
fixing the total synaptic strength over each afferent arbor. For comparison, results
using the Mexican hat cortical interaction function of figure 13, with identical
constraints, are shown below. The final cortex (T=200) is shown in each case.
Functions, initial conditions, and conventions otherwise as in figure 14. Constraints
on the total synaptic strength over a cortical cell are as in figure 14; only the constraint
on total strength over an afferent is being varied. In the absence of constraints, the
excitatory function leads to an arbitrarily large scale of ocular dominance segregation;
constraints lead to segregation with width of left-cye plus right-eye stripes equal to
about an arbor diameter. Much greater monocularity of segregation is seen if a
slightly broader correlation function ("same-eye correlations 0.4") is used (Miller,
1989a; Miller, Keller, and Stryker, 1989). The Mexican hat function selects a width
of segregation smaller than an arbor diameter, and results are unaffected by the
constraints. From Miller, 1989c¢.

periodic pattern of ocular dominance resulting from the purely
excitatory cortical interaction function, and from the Mexican hat
cortical interaction function, in the presence or absence of such
constraints. In the absence of constraints, a purely excitatory cortical
interaction leads one eye to take over large regions of cortex, while
the opposite eye loses all input to these regions. Constraints force
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afferents to redistribute strength, rather than to uniformly gain or lose
strength, and thus force the two eyes to retain equal cortical
innervation. This leads a periodic pattern of ocular dominance
segregation to develop even when the cortical interaction function is
entirely excitatory. Close examination reveals that the average width
of the periodicity in this case is somewhat greater than with the
Mexican hat cortical interaction function. The width of right-eye plus
left-eye bands is now about an arbor diameter, as will be explained

RING: C1=0.8 DIAMOND C1=08 DIAMOND: C1=0.4

g
5

o AR,

Figure 22: Cortices resulting from development with varying cortical interaction
functions. These functions were zero outside of N=5 or 3 square rings. Functions
were equal to €_1 (0.8 or 0.4) over either one square ring ("RING") or over the
diamond of four nearest neighbors on the grid ("DIAMOND"), and equal to a constant
negative value elsewhere, adjusted so that the function sums to zero. The correlation
function used was "same-eye correlations 0.4". Arbor function and initial conditions
as in figure 14. Cortices shown at T=100; runs were only carried out to that time.
From Miller, 1989c¢.

below.

We have studied a variety of other forms of mixed
excitatory/inhibitory cortical interaction functions. The resulting
cortices, shown in figure 22, illustrate that the same initial conditions
can lead to broader or narrower ocular dominance patches as the
intracortical interactions are varied.

Finally, the effect of using an arbor function that tapers over the
7 x 7 region in which the arbor function is nonzero has been studied.
Normal periodic segregation occurs, but if there are constraints fixing
the total synaptic strength over an arbor, then the width of the

Chapter 9: DEVELOPMENT OF OCULAR DOMINANCE COLUMNS 299

periodicity is decreased (Miller, 1989c). The effect is like that of using
a smaller arbor.

To summarize, the model robustly reproduces periodic ocular
dominance segregation like that seen experimentally, beginning from
an essentially uniform initial innervation by the two eyes. Individual
cortical receptive fields refine in size and grow monocular;
physiological fields develop inhibition from the nondominant eye.
Afferent arbors refine in size and restrict their innervation to the
appropriate eye’s patches. The effects of monocular deprivation are
reproduced, and a critical period is seen. Broader correlations within
each eye, or anticorrelations between the eyes as in strabismus,
enhance monocularity, while narrower correlations or anti-correlations
within an eye reduce monocularity. Changes in the correlation
function do not obviously modify the width of periodic segregation,
provided that segregation occurs. A purely excitatory cortical
interaction function is sufficient to yield ocular dominance patches,
provided arbors are constrained to conserve their total synaptic
strength. The width of the periodic pattern can be altered by varying
the cortical interaction or arbor functions.

We now seek to understand more generally what is responsible
for periodic segregation. Can we predict the forms of the correlation,
cortical interaction, and arbor function that will lead to segregation,
and can we predict the width of the stripes that will result when
segregation does occur?

Analysis of the Model

To analyze the model, we assume equality of the two eyes (ignoring
the case of monocular deprivation, and relatively small asymmetries
in normal development). This means CW=CRR=CSmelse
CR=CRL=COB We analyze the development of the difference
between the two eyes’ synaptic strengths,
SP(x,a,t)=S"(x,a,t) ~ SR(x,a,t). The equation for S is

dsP(x,a,t)

S =M 0TIy - BSPh.B.0 - 1SP e  (5)

yB
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where CP(a—B)=CS=EBv¢(q—B)—CO®PE*(0—B). CP represents the
degree to which an afferent is more correlated with another afferent
from its own eye than with an afferent from the opposite eye, at a
fixed retinotopic separation.

Initially the innervations representing the two eyes are nearly
equal. Hence SP is very nearly zero everywhere. If this difference
were initially exactly zero everywhere, it would stay so forever. Each
eye’s synapses would experience exactly the same environment at
each moment in time, and we have assumed that the two eyes obey
identical rules. Given the small perturbation in the difference,
however, one can imagine two outcomes: either the small
perturbation might decay to a state of complete equality; or it might
grow, developing into some large pattern of differences between the
two eyes. We will analyze whether the condition of equality is stable
to small perturbations. If it is unstable, we will determine the pattern
that will grow out of the instability,’

This analysis, as to the existence and nature of a possible
pattern-forming instability, depends only upon the behavior of the
model very near the condition of complete equality. In this region, sP
is very small, hence nonlinear terms are negligibly small. Therefore,
only the linear terms in S° play a role in this region. Thus, even quite
complicated, nonlinear models can be reduced, near the condition of
equality, to a linear equation. If the linear equation we use for sP
approximates the linear equation resulting from a nonlinear model,
our results will describe the pattern formation expected in such a fully
nonlinear model.

To conduct this analysis, we determine the pattemns of ocular
dominance that grow or decay exponentially and independently, each
at its own rate, in the linear regime. We call these the characteristic
patterns of ocular dominance. Each choice of functions yields a
distinct set of characteristic patterns and growth rates. If some of the
patterns have a positive growth rate for a given choice of functions, so
that they will grow in time rather than decay, then the condition of
equality will be unstable to small perturbations for that choice of
functions. In this case, we determine the characteristic patterns of
ocular dominance that grow most quickly. These patterns are spatially
periodic. Their wavelength determines the width of the final periodic
pattern of ocular dominance across cortex that will result for that
choice of functions. This is the width of a complete cycle of right-eye
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plus left-eye ocular dominance patches or stripes. This width is
determined by the wavelengths of the fastest-growing pattemns,
because in the linear regime these patterns quickly dominate. The
form that this periodic pattem takes — blobs, patches, stripes, hexagons
- depends on the nonlinearities, and cannot be predicted from such a
simple analysis.

This discussion can be expressed mathematically. Write
dsP(x,a, 1)
dt
operator on the right side of equation 5. Suppose we can find
eigenfunctions of the operator L, that is, a set of functions SP(x,a)
such that LSP(x,0) =;SP(x,a) for constants w;, where i is an index
enumerating the eigenfunctions. The constants w; are the eigenvalues
of the operator L. Suppose further that these eigenfunctions are
complete in the sense that any initial condition S§(x,0)=SP(x,a,t=0)
can be expressed as a linear sum of these -eigenfunctions:
SE(x,a)=2iciS?(x,a) for some constants ¢;'>. Then the solution to

equation 5 as =LSP(x,a,t) where L stands for the linear

equation 5 is S°(x,0,0=3 c;e™sP(x,a). If the real equation has

nonlinearities, this solution only holds near the initial condition,
where the c; are small and the equation remains effectively linear.
From this mathematical solution we can conclude several things
about development of SP near the initial condition. First, in this
region the eigenfunctions each grow independently of one another,
with the rate of growth of each determined by its eigenvalue w;. The
eigenfunctions are thus the characteristic patterns of ocular
dominance, defined above; while the eigenvalues (or, in the case of
complex eigenvalues, the real parts of the eigenvalues) are the growth
rates of the characteristic patterns. Second, if any of the growth rates
are positive, the corresponiding characteristic patterns will grow rather
than decay from the initial condition (this assumes that, in the
perturbation representing the initial condition, none of the ¢; are
exactly zero). Hence, the condition for a pattern-forming instability is

D
13.1f 1(x)=I(-x) and CP(x)=CP(-x), the substitution SP(x,q,t)=>bY
X—a
transforms L into a symmetric operator; hence in this case L will have a complete

set of eigenfunctions, with real eigenvalues.
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the presence of at least one positive growth rate. Third, if there is
such an instability, the exponential growth in time of each pattern
ensures that the fastest growing pattemns will quickly outgrow the
others and dominate the final solution. This is the basis for the
statement that the fastest-growing pattern in the linear regime sets the
wavelength, even in the final fully non-linear conditions.'* If there are
a variety of fastest-growing patterns, for example, ones involving
parallel ocular dominance stripes of a fixed wavelength but each with
stripes oriented in a different direction across cortex, then the final
form of the overall pattern will depend on the initial conditions and
upon dynamical interactions among these individual oriented patterns.
Such interactions are exclusively nonlinear; hence, the form but not
the wavelength of the final pattern is determined by the nonlinearities
in the process.

The Characteristic Patterns of Ocular Dominance

The characteristic pattemns of ocular dominance are the patterns of S°
that grow independently and exponentially, each at its own rate, from
an initial condition of near equality of the two eyes. Each
characteristic pattern of ocular dominance consists of a characteristic
receptive field of ocular dominance, and an oscillation of ocular
dominance across cortex. Figure 23 shows the fastest growing such
pattern for the functions used in the simulation of figure 14. The
characteristic receptive field is the pattern of differences between left-
and right-eye synaptic strengths in the input to a cortical cell. Where
it is positive one eye is dominant, and where it is negative the opposite

14.1t is possible for the initial pattern that develops out of an instability to be only
metastable, so that eventually it may reorganize into a pattern with a different
period determined by nonlinearities. This scems unlikely in the ocular dominance
system, as studies of development of ocular dominance columns (LeVay, Stryker,
and Shatz, 1978) show no obvious change in periodicity between its earliest
detection and the final adult pattern. With the use of voltage sensitive dyes
(Blasdel and Salama, 1986), it may be possible to test this by following
development of the columns within a single animal.
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eye is dominant. A monocular characteristic receptive field, like that
of figure 23, is one dominated by a single eye throughout, so that the

CHARACTERISTIC RECEPTIVE FIELDS

SR

CHARACTERISTIC ARBORS

Figure 23: A monocular characteristic pattern of ocular dominance. The
characteristic receptive field, and associated characteristic arbor, are illustrated at
three cortical locations. The sinusoid illustrates the oscillation of ocular dominance
across cortex associated with the characteristic pattern, correctly scaled to the arbor
and receptive field sizes. Greyscale codes SP, the difference between the synaptic
strengths of the two eyes, varying from dominance by one eye to dominance by the
other. The pattern shown here is one of the set (identical except for rotations of the
direction of the oscillation) of fastest-growing characteristic patterns for functions
used in the simulation of figure 14. The characteristic receptive field illustrates the
retinotopic positions from which a cortical cell at a given position in cortex receives
stronger left-eye or right-eye geniculate input. The characteristic arbor illustrates the
cortical positions to which the left cye or right eye geniculate afferents representing a
given retinotopic position project more strongly. At the cortical point corresponding
to the leftmost receptive field, cortical cell inputs are dominated by the right cye
everywhere within the receptive ficld. Afferents with the corresponding retinotopic
position therefore project arbors such that the right eye afferents preferentially project
to the central patch of the arbor (cortical right-eye stripe) and the left-eye afferents
preferentially project to the peripheral patches in the cortex (cortical left-eye stripe).
Similarly, the central receptive ficld is at the border between left-eye and right-cye
stripes, where the two eyes have equal innervation, and the rightmost receptive field is
in the center of a left-eye stripe. The oscillation projects in a direction perpendicular
to the stripes across the arbors, rather than horizontally as depicted.

characteristic receptive field can be taken positive cverywhere.
Characteristic receptive fields need not be monocular: they may be
binocular, showing division of the receptive ficld into domains
dominated by opposite eyes. The characteristic receptive field will be
positive in the domains dominated by one eye, and negative in the
domains dominated by the opposite eye.
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The characteristic receptive field represents the pattern of ocular
dominance within a cortical receptive field. The characteristic pattern
of ocular dominance also includes an oscillation in the degree of
dominance of receptive fields across the cortex. This is an oscillation
of ocular dominance between receptive fields across the cortex. In
figure 23, the leftmost receptive field occurs at a cortical point where
the right eye is dominant. The central receptive field occurs at a point
that differs by 1/4 cycle of the cortical oscillation, so the two eyes are
equal. The rightmost receptive field occurs at a point that differs by
1/2 cycle of oscillation, so the left eye is dominant. At points a
distance across the cortex comesponding to an integral number of full
cycles of oscillation, the right eye is again dominant. In the case of
monocular characteristic fields, it is this oscillation, between ocular
dominance by one eye and by the other, that causes organization of
monocular cortical cells into ocular dominance patches. We refer to
the spatial period or wavelength of this oscillation as the wavelength
of the characteristic pattern. This wavelength corresponds to the
width of left-eye patch plus right-eye patch, which we refer to simply
as the patch width.

As figure 23 indicates, the characteristic receptive fields have
associated with them characteristic afferent arbors, given by
multiplying the receptive field by the oscillation in ocular dominance.
In other words, when characteristic receptive fields are monocular, so
that ocular dominance patches arise, the afferent arbors will only
innervate the patches from the relevant eye. Thus, characteristic
arbors show patches with a periodicity equal to that of the cortical
oscillation, as is seen both in the simulations and in actual biological
development.

Different characteristic patterns, then, are distinguished by (1)
The nature of their characteristic receptive field; (2) The wavelength
of the oscillation of ocular dominance across cortex. The
characteristic receptive field may be monocular, corresponding to
development of ocular dominance segregation, or binocular,
corresponding to a cortex in which every cell receives input from both
eyes. If it is monocular, the wavelength of the cortical oscillation will
determine the patch width of ocular dominance organization
associated with the pattern. Many patterns will compete from the
initial condition of near equality of the two eyes; those that grow
fastest will win out. If the fastest-growing patterns are all monocular
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and all have a similar wavelength, the cortex will develop ocular
dominance organization with that wavelength.

To express these results mathematically, transform variables in
equation 5 from cortex and LGN (x,a) to cortex and receptive field
(x,1r), where r=x—a. The resulting equation is a simple convolution in
the cortical variable x. By fourier transform, such a convolution has
eigenfunctions of the form ng(x,a):em"Rw-(r)ls, where m is a two-
dimensional real vector, the wavevector of cortical oscillation, and j is
an additional index of the eigenfunctions for a given m. R is a
characteristic receptive field, because it represents the dependence of
the eigenfunction upon r for a fixed cortical position x. We can also
write this as Spj(x,a)=e™“B;(r) where By (M=e¢™"R,(). B
represents the dependence of the eigenfunction upon r for a fixed
afferent position a, and hence is a characteristic arbor,

These eigenfunctions are complex. If Ix)=I(-x) and
CP(@)=CP(~0), the real part and imaginary part of a complex
eigenfunction are both real eigenfunctions, with the same eigenvalue.
These real eigenfunctions can be chosen of the form
coskx R*(r) +sink'x R%(r), where R® has zero net ocular dominance
(IR(M=0) and R* may have net ocular dominance. For the

¥
eigenfunction illustrated in figure 23, R%=0; the nonmathematical
discussion was simplified by neglect of the possibility that R® may be
nonzero'®,

15. We are assuming here, and subsequently, either an infinite grid or a continuum.
On the finite grid,with periodic boundary conditions of the simulations, we would
instead obtain ¢ © Rpy; (1) where the finite grid is of length L and m is a two-
vector of integers.

16. To construct real cigenfunctions, note that, if the operator L can be made
symumetric (see note 12), the complex conjugate of an eigenfunction is also an
e%enﬁmcﬁan with identical (real) eigenvalue. Hence, given any eigenfunction
Sy, its real part Sf;; and its imaginary part S}ni are both real eigenfunctions with
the same eigenvalue, Let RR and R be the real and imaginary parts, respectively,
of R. Then these real eigenfunctions are

Shi(x.a) _ | cosmx —sin mx]|| Rz;(®)
Se(x,)f | sinmx cosmx || RL(r)

Thus real eigenfunctions involve a sinusoidal mixing, across cortex, between RR
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In summary, if the fastest-growing characteristic pattern of ocular
dominance is monocular — that is, if its characteristic receptive field is
monocular — it will yield segregation across cortex into ocular
dominance patches. The width of a cycle of these patches will be
given by the wavelength of the pattern’s associated cortical

and R!. Note that SR and §' are identical except for a cortical phase shift of 90°.

A more convenient representation can be found by shifting phase so that one of
the two basis receptive fields has zero dominance. The subscript [mj] will be
assumed where not explicitly indicated. Define the (unnormalized) dominance of
an eigenfunction by D=|XR(|, and define the angle 8 by Y R(r)=De®®. Define

4 - - ~
new complex eigenfunctions by SP=e7°SP =¢**R where R=e“§R. The imaginary
part of R has zero dominance, YR (r) =0, while the real part of R has the maximum

d.ominancc for any cortical phase of receptive fields associated with that
eigenfunction, ZRR(r)=D. The new real eigenfunctions are given by
T

§:,j(x.a) B [ cosBy; sin ij] [S,‘},j(x,a)]

L§:,,‘-(x,ot) ~sin By cos 8] | SEi(x,00)
Define R* E}in, R® slil. Then
( 1

Smime)| _ [cosmx ~sin mx] [R:,jm]

sinmx ¢os mx R?nj(r)

§L;(X.a)

,

Hence the eigenfunctions can be described as a sinusoidal mixing, across cortex,
between a maximum-dominance (for that eigenfunction) receptive ficld, and a
zero-dominance receptive field. Figures 23-25 illustrate R* and R® for each
eigenfunction.

In the general case, the operator L is not assumed symmetrizable. The fact that L
is real ensures that S,P and its complex conjugate Sjn' are both eigenfunctions, with
complex conjugate eigenvalues. If the leading eigenvalues are not real, the result
will be temporal oscillations of ocular dominance. These will combine with the
spatial oscillations to yield traveling waves of ocular dominance. This is discussed
in more detail in Miller, 1989c. One expects that such an effect should be
suppressed in any reasonable theory, so that the leading eigenvalues will always be

real, although empirically it is not impossible that such waves could exist early in
development.
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oscillation. Afferent arbors will become confined to those periodic
patches. To understand the development of ocular dominance
segregation within the model, then, it is sufficient to answer two
questions: (1) Under what circumstances will the fastest growing
pattern be monocular? (2) When it is monocular, what will determine
the wavelength of its cortical oscillation?

Monocularity and Wavelength of the Fastest Growing Patterns

The results of both analysis and computation lead to the following
conclusion: The fastest growing patterns are monocular whenever the
correlation function CP is positive at least between nearest neighbors,
and not significantly negative within an arbor radius. In this case, the
wavelength of cortical oscillation is the wavelength corresponding to
the maximum of the fourier transform of the cortical interaction
function.

Intuitively, this can be understood as follows. By a correlation-
based mechanism, an individual cortical cell develops two features.
First, its receptive field comes to consist of inputs whose activities are
mutually correlated. To the extent to which, in the local area sampled
by the cortical cell, this represents inputs from a single eye, the
cortical cell will become monocular. Alternatively, when there are
same-eye anticorrelations within an arbor radius, the most correlated
inputs are obtained if one part of the receptive field represents one
eye, and an adjacent part of the receptive field represents the opposite
eye. This yields a binocular field. Second, due to cortical interactions,
a cortical cell’s receptive field becomes both maximally correlated
with the receptive fields of neighboring cortical cells at distances over
which the cortical interactions are excitatory, and minimally
correlated (or maximally anti-correlated) with the receptive fields of
neighboring cortical cells at distances over which cortical interactions
are inhibitory. For a monocular cell, this is best achieved when
nearby cells within the region of excitatory cortical interactions are
monocular cells that represent the same eye; while more distantly
neighboring cells, within the region of inhibitory cortical interaction,
are monocular cells from the opposite eye. This cannot be achieved
simultaneously for all cells; but it is most nearly achieved, over all
cells, by matching the cortical oscillation of the ocular dominance



308 Part IV: THE VISUAL SYSTEM

b

RF«

JLILI Z E’; H

NI]E&EAHN[IH
ww[[l’fgmzngmm

e b ij
wwﬁﬂlﬁll’l!’”ﬂl
< ATALAIETNTAIEIE

Figure 24: The 16 fastest-growing characteristic patterns of ocular dominance for the
functions used in the time development of figure 14. Each vertical set of four squares
shows, from top to bottom, the maximum dominance receptive field, the minimum
dominance receptive field, the arbor corresponding to the maximum dominance
position, and the arbor corresponding to the minimum dominance position. These
correspond, respectively, to the leftmost receptive field, central receptive field,
leftmost arbor, and central arbor in figure 23. The 16 patterns are arranged in
decreasing order of growth rate, so that the fastest growing is at upper left and most
slowly growing of the 16 at lower right. For each pattern, additional patterns with
identical growthrates exist, differing only by rotations or reflection of the pictured
pattern. All the leading patterns have highly monocular receptive fields. They differ
significantly only in the precise width and orientation of their cortical oscillations,
which is visible as the oscillation across the arbors. From Miller, 1989¢.

pattem to the dominant wavelength in the coztical interaction.

We will illustrate these results both through direct computations
of the characteristic patterns for varying parameters, and by analytic
solutions to the equations in various limiting cases.

Computation of the Characteristic Patterns We can directly compute
the characteristic patterns for the model when it is placed on a grid as
in the simulations of time development. For the choice of functions
used in the time development displayed in figure 14, for which CP
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Figure 25: The sixteen fastest-growing patterns for the correlation function "+ same-
eye anticorrelations 0.2", with functions otherwise as in figure 24. The fastest-
growing pattems are binocular. Conventions as in figure 24. From Miller, 1989c.

satisfied the above criteria for emergence of monocularity, the fastest
growing characteristic patterns are indeed monocular (figure 24).
There are 625 oscillation frequencies on the 25x25 grid, and for each
such frequency there are 49 characteristic patterns due to the 7x7
arbor. Among the 49 characteristic patterns with a single oscillation
frequency, for the same choice of functions, only a single pattern — the
fastest growing one for that frequency — is monocular (Miller, 1989¢).
Thus, monocular patterns are rare among all possible patterns, yet they
are selected as the fastest-growing for this choice of functions. In
contrast, with a different choice of correlation function that includes
prominent anticorrelations within an arbor radius ("'+ same-eye
anticorrelations 0.2"), the fastest growing patterns across all
frequencies are binocular (figure 25). For this correlation function,
only weak and irregular ocular dominance segregation developed in
simulations (figure 20).

Results across all frequencies and for varying correlation
functions are shown in figure 26. This figure illustrates the results of
computation of the characteristic patterns for each of the nine sets of
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functions, identical except for varying correlation functions, whose
developmental outcome was illustrated in figure 20. The graphs show
the growth rate (vertical axis) of the characteristic patterns versus their
inverse wavelength (horizontal axis). The graph’s grey scale
represents the monocularity of patterns: the shading at a point
corresponds to the degree of monocularity seen for patterns with the
given wavelength and growth rate, from lightest for fully monocular,
to black for fully binocular. The curves show analytic predictions for
the growth rates as a function of wavelength, derived in limiting cases
that will be discussed. In particular, the lower thin lines show the
fourier transform of the cortical interaction function, whose peak
accurately predicts the wavelength of the fastest-growing patterns.
Increasing the breadth over which the correlation function C® is
positive increases the monocularity of the fastest-growing patterns and
increases the dominance in growth rate of monocular patterns over
binocular patterns. The breadth of CP is increased either by
broadening of within-eye correlations, or by the addition of more
broadly-ranging opposite-eye anticorrelations!’”. The monocularity
and the growth rate of monocular patterns is enhanced at wavelengths
equal to the peak of the fourier transform of the cortical interaction
function. Introduction of anticorrelations within each eye can cause
nonmonocular modes to grow fastest; but even in this case, the
fastest-growing monocular modes and the most strongly monocular
modes are found at the dominant wavelength of the cortical
interaction function. Thus, the correlation function CP provides the
precondition for the ascendency of monocular cells. The cortical
interaction function selects the wavelength of monocular cells that
will grow the fastest, enhancing the growth rate and increasing the
monocularity of those fastest-growing monocular patterns.

17. Opposite-eye anticorrelations also enhance the development of monocularity even
if they do not extend more broadly than within-eye correlations. This is because
their presence increases the rate of growth of SP relative to the rate of growth of
$S=St+SR. This allows the development of ocular dominance segregation to
proceed faster relative to the rate of topographic refinement of receptive fields and
to the rate of approach of synapses to saturation.
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Analysis of Limiting Cases These results can also be derived
analytically through solutions of the equations in limiting cases. One
simple limit is the case in which the correlation function CP is
constant over at least an arbor diameter plus the maximum distance x
for which I(x)20. In this limit the influence between synapses depends
only upon their eyes of origin and their cortical locations, and not
upon their retinotopic locations. Then there can be no retinotopic
refinement within each receptive field, since all synapses from a given
eye onto a given cortical cell grow or decay identically. Hence, the
only dynamical variable for each cortical cell is its ocular dominance.
The equation can be reduced in this limit to a simpler equation
studied previously by Swindale (1980), by performing ¥ on both

sides of equation 5 to obtain

dD(x,t)

G = Z,Wx=y)D(y,0 D). (6)

D(x,t)=Y, SP(x,a,t) is the ocular dominance of the cortical cell at x,
a

\v(x-y)aXCDNI(x—y) tells the influence between ocular dominance
development at two different cortical locations, and NEZuA((X) is the

number of synapses in an arbor. Swindale called w(x-y) an "effective
interaction", but its biological nature was not clear. In this limit, we
may express his effective interaction in terms of correlations, arbors
and intracortical interactions. Swindale’s equation can be easily
solved. It is a convolution. Hence, periodic modes of ocular
dominance, D,,(x)=¢™%, grow with a rate ®, determined by the
fourier transform w(m) of w(x), w, =w(m)—y=ACNI(m)-y. The full
eigenfunctions of our original equation can also be found in this limit:
for each m, there is one monocular mode, S (x,®)=¢e™*A(x-a), with
growth rate w, as just given. The Swindale equation describes the
growth of this tnode. All other modes decay with growth rate ~y. Thus
in this limit, the non-decaying eigenfunctions are completely
monocular and the fastest growing mode is selected by the
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Figure 26: Computed growth rate (vertical axes) of characteristic patterns of ocular
dominance, as a function of inverse wavelength of the pattern (horizontal axes).
Results are presented for the nine correlation functions of figures 13 and 20, with
Mexican hat cortical interaction function and flat arbor function as in those figures.
Greyscale indicates the dominance of characteristic patterns: Dominance is a measure
of the degree of monocularity of the pattern’s characteristic receptive fields, on a scale
from 0 for complete binocularity (black) to 1 for complete monocularity (light).
Graphs for functions for which monocular patterns are the fastest growing (all but
lower right) were constructed by painting lower dominance growthrates on top of
higher dominance growthrates, so that the greyscale at any point reflects the lowest
dominance patterns with wavelength corresponding to the point and growthrate at
least as large as that corresponding to the point. For the case of "+ same-eye
anticorrelations 0.2" (lower right), this scheme was reversed: Higher dominance
growthrates were painted on top of lower dominance growthrates. Mixed black/white
lines show the analytic predictions for growth rate as a function of inverse wavelength
derived in limiting cases. Lower thin lines show the fourier transform of the cortical
interaction function, which is the prediction in the limit of constant correlations; thick
lines show the prediction of the broad correlations limit. These two predictions have
been normalized to the maximum growth rate of patterns with dominance 20.5. The
upper thin lines show the prediction of the limit of full connectivity, normalized to the
maximum growth rate of any pattern. Number beside the vertical axis indicates the
maximum growth rate of any pattemn. The horizontal axis represents wave number,
the wavelength in units of grid intervals is 25 divided by the wave number. The first
bin on the horizontal axis represents wave numbers 0-0.23; subsequent bins represent
increments of 0.4 in wave number, so that the second bin represents wave numbers
0.23 t0 0.63, and so forth. From Miller, 1989c.
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peak of I(m). This limit is shown as the lower thin lines in figure 26.
It accurately predicts the wavelength of the fastest growing monocular
pattern, even far from the conditions in which the limit was derived.
In a limit of broad but not constant correlations, we approximate
the correlation of one afferent with any afferent synapse onto a
cortical cell, by the average correlation of that afferent with all
afferent synapses onto that cortical cell. Thus, in equation 5, we set

CP@-8)AG-Y)
Z5A(8 -y)

In this limit, the influence between synapses depends on the

retinotopic location of the influenced synapse, but not of the

influencing synapse. This limit also yields a Swindale equation after

performing o on both sides, but now
13

CP(a-B)SPB.y) = SPB.y).

w(x—y)=AA*C*A(x—-y)l(x—-y)/N. The ‘¥’ indicates convolution,
X*¥Y(2)= EKX(Z k)Y(k), and N= 2 A(e). The growth rates of cortical
ocular dominance in this case are mm—(X/N)ZkI(m—k)A (k)C(k) Y.
Because C is assumed positive over a broad range, and because
biologically A and C are likely to extend without oscillation over a
much broader range than I, fourier transforms of A and C will be much
narrower than that of I. This expression for w, then implies that the
peak growth rate is found at or very near the m that maximizes I(m),
but the growth rates do not fall to zero as sharply as I(m). This
prediction is shown as the thick lines in figure 26. It accurately
predicts the growth of monocular patterns of all wavelengths, even far
from the limiting conditions in which it was derived.

A third relevant limit is the limit of complete geniculocortical
connectivity, A(x—a)=1, in which every geniculate cell is connected
to every cortical cell. In this limit the eigenfunctions are
SRy (x,)= glarea = gimx "‘“("_“), with m=k, +k,. The resulting
growth rates are mhku—kl(k )C” (k) y. The correlation function
drives an oscillation across the recethve field with wavenumber k,
and growth rate proportional to & (kg). For the fastest growing mode
to be monocular, the peak of C® must be at frequency 0. The cortical
interaction function drives an oscillation across an arbor with
wavenumber k, and growth rate proportional to I(k,). The resulting
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cortical oscillation wavenumber, m, is the sum of k, and k,. In the
event of monocular modes, k=0, the arbor and cortical oscillations
are identical. Therefore the peak of I selects the fastest growing
cortical wavelength of monocular modes. In general, the intuitive
picture found in this limit, that correlations drive oscillations across a
receptive field, intracortical interactions drive oscillations across an
arbor, and the cortical oscillation is the sum of these two oscillations,
is a useful one for understanding a wide variety of cases.

In this limit, the fastest growth rate for a pattern with a given
wavenumber m is proportional to the maximum over all k, of
I(m—ku)CD (kq). The resulting predictions for fastest growth rate versus
wavenumber m are shown as the upper thin lines in figure 26. When
the peak of CP is at frequency zero, this limit accurately predicts the
growth rates of monocular patterns of each frequency. Otherwise, if
the peak of CP is at a wavelength less than about an arbor diameter,
binocular patterns become dominant. Then this limit appears
qualitatively to predict some aspects of the shape of the curve of
fastest growth rates vs. wavelength for these binocular patterns.

We can summarize the results found by computation, and
suggested by these limiting cases and other analytical methods, as
follows. When same-eye correlations are locally greater than
opposite-eye correlations, and not significantly less within an arbor
radius, then CP is locally positive, and nonnegative within an arbor
radius. Under these conditions, monocular cells will tend to form.
The width of dominance patches will then be determined by the
dominant wavelength in the cortical interaction function, which is the
peak of its fourier transform. A broader CP leads to an increased
dominance in growth rate of monocular over binocular patterns and
thus an increase in the tendency to monocularity. Oscillations within
CP cause a tendency to oscillation of ocular dominance within
individual receptive fields, and if present significantly within an arbor
radius is inconsistent with monocular segregation.

The Role of Constraints There is one important addition to the above
conclusions. For monocular patterns with wavelength longer than an
arbor diameter to grow, entire arbors centered within ocular
dominance patches must either grow or shrink. If this were the case,
some regions of the visual field in each eye would come not to be
represented at all in the cortex. Hence, one might expect that the
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growth of such patterns is somehow prevented in biological systems.
This could occur dynamically, if biological parameters select patterns
with wavelengths shorter than an arbor diameter. Alternatively, these
patterns might otherwise tend to grow, but be suppressed by additional
limitations on development. For example, a presynaptic cell whose
terminal arbor has a smaller total synaptic strength may compete more
effectively for its remaining synapses, while one with more total
synaptic strength may become less competitive or reach limits to its
ability to support further synaptic strength. This would yield a
constraint on the total synaptic strength supported by a presynaptic
cell.

Such a constraint can be modelled by fixing the total synaptic
strength over a presynaptic arbor. The effect, as suggested, is to
prevent the growth of monocular patterns longer than an arbor

NO CONSTRAINTS CONSTRAINTS
z2.6

Dominance
091

Figure 27: Computed growth rate (vertical axes) of characteristic patterns of ocular
dominance, as a function of inverse wavelength of the’pattern (horizontal axes), for
the two cortical interactions and the two choices of constraints on afferent arbors of
figure 21. Mixed black/white lines indicate predictions of the broad correlations limit,
described in the text. Conventions otherwise as in figure 26. The constraints suppress
the growth of monocular patterns with wavelength longer than an arbor diameter.
This has a profound effect on the outcome when the excitatory cortical interaction
function is used, selecting a wavelength of about an arbor diameter. There is little
effect when the mixed excitatory/inhibitory interaction function is used, because that
function normally selects a wavelength shorter than an arbor diameter. Maximum
growth rates are at wavelengths of 7.3-8.3 grid intervals (excitatory function, with
constraints) or 5.4-5.9 grid intervals (Mexican hat function). From Miller, 1989¢.



316 Part IV: THE VISUAL SYSTEM

diameter (figure 27). If the cortical interactions select a pattern with a
wavelength shorter than an arbor diameter, the constraints have
essentially no effect on the overall pattern that develops. However, if
the cortical interactions select a pattern with longer wavelength, as in
the case of purely excitatory cortical interactions, the effect is
dramatic: the constraints force selection of a wavelength of about an
arbor diameter. This was demonstrated in simulations in figure 21.
Mathematically, the constraint on presynaptic cells is modelled
dsP(x,a,t)
dt
and let y=0. Now  replace this equation  with

sD
—d—(dxl’ﬂ—LSD(x o, KA(X @) 2 LSP(y,a,t) where N=3, A(x—0),

with 0<k<1. Setting k=0 glves the original equation. Setting k=1
dsP(x,a.t)

dt
would be the case if total synaptic strength over afferent arbors were

fixed. In the constant correlations limit, the result of this extra term is
to multiply the m-dependent part of the growth rate for monocular

as follows. Write equation 5 as =LSP(x,a,t) as previously,

yields a fully constrained equation for which Y, =0, as

modes by 1- xﬁ?:z— This suppresses monocular modes whose

oscillation frequency m contributes significantly to A, that is, modes
whose wavelengths are longer than an arbor diameter. In the broad
correlations limit, a similar result is obtained: the monocular growth
rates become

(7

0a=(/N)F, Im-k) Az(k)é(k)[ Adm) A(k”m)]

A(O) A(k)

Similar results are obtained by modeling the constraint as subtraction
of a term —«’ EXSD(x,(x), or as combinations of the two terms. Other

methods of analysis of these equations also support this conclusion:
that constraints serve to suppress the growth of monocular modes
whose wavelengths are longer than an arbor width, or more
specifically, long enough to contribute significantly to A.

Constraints on the total synaptic strength supported by a
postsynaptic cell may also play an important role. Biologically, one
expects neither that all geniculate synapses onto a cortical cell will
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decay in strength, resulting in a loss of all visual input, nor that all
geniculate synapses onto a cortical cell will grow in strength, leading
to hyperresponsiveness and loss of selectivity. Rather, one expects
that there will be a competition, by which some patterns of input grow
in synaptic strength at the expense of other pattens. Such
competition may occur dynamically, or it may be imposed through
conditions that limit the total synaptic strength over a cortical cell.
Such postsynaptic constraints can be imposed on the equation for the
sum of the two eyes’ synaptic strengths, S%=S"+S¥, without effect
upon the equation for SP. Hence, such constraints can be imposed
without effect on the development of ocular dominance periodicity.

In summary, given a correlation function that encourages
monocularity, the width of a cycle of right-eye plus left-eye ocular
dominance patches is determined by the dominant wavelength in the
cortical interaction function, up to a limit set by the arbor width and
by constraints on total afferent strength. If the cortical interaction
function would drive a longer wavelength, constraints on presynaptic
cells can select a wavelength set by the arbor diameter.

Comparison of Predictions to Simulated Results We can test the
analytical understanding of the model by comparing the period of
ocular dominance segregation that emerges in simulations with the
predictions made by analysis. To measure the period in the simulated
cortex, we examine the relative contributions of each wavelength to
the cortical patterns of ocular dominance by measuring the power
spectrum of these pattemsm. Figure 28 shows the time development
of the power (vertical axis) at each inverse wavelength (horizontal
axis) in the development of a cortical pattern of ocular dominance
from a random initial condition. These are the power spectra of the
cortical patterns of ocular dominance shown in figure 14. The
prediction of growth rate versus inverse wavelength in the broad
correlations limit is presented as the grey background to each graph.

18. We compute the 2-dimensional fourier spectrum of the pattern of ocular
dominance in the simulated cortex. We then determine the average power in small
annuli in 2-D fourier space, representing small increments of wavelength.
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Early in development, when the equations are linear, the fastest-
growing wavelength is predicted perfectly by the broad correlations
limit. The nonlinearities can result in small shifts in the final
wavelength, in this case by allowing a fast-growing wavelength that
dominated the random initial condition to remain dominant.
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Figure 28: Development of the power (vertical axis) at each inverse wavelength
(horizontal axis) in the cortical patterns of ocular dominance that develop in
simulations. Power is black, compared to the analytical prediction of the limit of
broad comrelations, grey. These are the spectra of the cortices shown in figure 14.
The number along the vertical axis shows the maximum power present in any
wavelength bin at the given time, on a scale which is arbitrary but consistent across
the various spectra presented. The binning of the horizontal axis is as described in
figure 26. Note that each bin has a width of 0.4 grid intervals in Fourier space, 0O a
difference of two bins represents a difference of less than one Fourier grid interval.
From Miller, 1989c.

The power spectra of the final cortices that result from varying
the correlation, cortical interaction, and arbor functions yield similar
results (Miller, 1989c). The dominant wavelength in each final cortex
is well predicted by the analysis, except when anticorrelations within
each eye disrupt the overall monocularity.

Though the power spectra resulting from simulations are like
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those predicted, the precision is not sufficient to closely predict a
wavelength. The wavelengths representing peak power are generally
found within *1 grid interval in Fourier space of the predicted peak,
while almost all of the power in the final pattern is found within 1.8
grid intervals in Fourier space of the predicted peak'®. Using the
Mexican hat cortical interaction function and the flat arbor function,
these spans of inverse wavelength in Fourier space correspond-in real
space to wavelengths of 5.4+1.1 grid intervals and 6.05+2.25 grid
intervals, respectively. This lack of precision may be related to the
coarseness of the grid: wavelengths represent only a small number of
grid intervals, so that uncertainty of only a few grid intervals
corresponds to a significant variation of wavelength. One can guess
that the precision of prediction may be greater when there are many
grid intervals to a wavelength. Assuming a horizontal spacing of
roughly 20 um between cortical cells in layer 4, there are perhaps
30-40 cortical cells across one wavelength of right-eye plus left-eye
patches in the cat or monkey visual cortex.

On What Do the Model Results Depend? Development of a periodic
pattern of ocular dominance is an extremely robust phenomena,
dependent only upon the three basic functions of the model, and
perhaps on constraints on afferent arbors. However, the full
expression of these tendencies depends upon the implementation of
the model: on the limits on synaptic strengths, both of individual
synapses and of total strengths over an afferent or over a cortical cell;
and also on additional nonlinearities.

The analysis of periodicity examined only the development of the
difference between the two eyes’ synaptic strengths. However, the
details of receptive field and afferent arbor structure depend also upon
the development of the sum of the two eyes’ synapfic strengths. For
example, if the sum is growing everywhere, so that each eye’s strength

19. The histograms showing power versus inverse wavelength are binned so that +2
bins about the peak bin corresponds to a span of 1 grid intervals in wavenumber,
while +4 bins about the peak bin corresponds to a span of of +1.8 grid intervals in
wavenumber. Details of the binning are found in the legend to figure 26.
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is growing everywhere, then although a periodic .difference in the
strength of the two eyes may develop, this periodic pattern does not
result in segregation. If this occured, individual receptive fields could
show dominance, but they would not be monocular; similarly,
individual afferent arbors could show periodicity, but they would not
be confined to periodic patches. It is possible that there would be no
final periodicity at all. For example, if all synapses tended to grow,
and there were no constraints limiting total synaptic strength either
over afferents or cortical cells, all synapses from both eyes would
grow to saturation. Then periodicity would be manifest only during
development, in the differing rates of reaching saturation. By using
constraints that conserve total synaptic strength over each cortical cell,
we avoid such problems without affecting the development of a
periodic pattern in ocular dominance.

Similarly, receptive fields tend to focus their strength centrally in
the model, provided that correlations are positive within each eye and
diminish over less than an arbor width. The reason is that central
synapses in the receptive field then have a larger number of correlated
neighbors than do peripheral synapses, and hence tend to grow more
quickly. Without a constraint on the total synaptic strength over a
cortical cell, however, this refinement might in the end disappear as
the fastest-growing synapses saturate and the slower-growing, more
peripheral synapses catch up.

Biologically, there must be some limits on synaptic strengths, but
very little is known about what they are or how they are implemented.
Many means of achieving such limits have been used in previous
models. Two broad classes can be distinguished (Miller, in
preparation): multiplicative (von der Malsburg, 1973; Oja, 1982), and
subtractive (Bienenstock, Cooper, and Munro, 1982; Linsker, 1986a-
c; Miller, Keller, and Stryker, 1989; Sejnowski, 1977). In
multiplicative methods, total synaptic strengrh over a cell is limited or
conserved by multiplying each synapse on the cell by a constant
determined after each iteration. In subtractive methods, each synapse
on the cell has a constant subtracted from it, the constant determined
after each iteration. There are important differences between these
two methods. In multiplicative methods, ocular dominance
segregation cannot occur in the absence of anticorrelations between
the eyes?’. This seems overly restrictive for study of the ocular
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dominance system. With subtractive methods, such as the one we use,
there is no such requirement. With multiplicative methods, final
synaptic strengths tend to be proportional to a synapse’s average
activity when the cortical cell is active, so that for example
topographic refinement will manifest in a gradual decrease in synaptic
strengths from the center to the periphery of a receptive field. With
subtractive methods, final synaptic strengths tend to all be saturated at
the maximum or minimum allowed values. In this respect,
multiplicative methods might make easier the modeling of systems
such as the somatosensory cortex which remain subject to activity-
dependent plasticity throughout adulthood.

The robust features of the model are those involving relative rates
of growth: the tendency of one eye’s synapses to grow faster than
another’s on a cell, or of central synapses on a cell to grow faster than
peripheral ones. These robust features result from interactions among
synapses, and the correlations between them. The less robust features
of the model involve absolute rates of growth. These are determined
by the constraints, and do not depend on specific interactions between
synapses. Biologically, robust tendencies to the development of
monocularity, the organization of a periodic pattern of ocular
dominance, and the refinement of receptive fields do exist, and it
appears that sufficient constraints exist to ensure that these tendencies
are fully expressed. Except for the differences outlined between
subtractive and multiplicative methods, the results of development do
not appear to depend greatly upon the method of limiting synaptic
strengths. Hence, in the absence of experimental knowledge, we
prefer to use the simplest possible model of constraints.

20. Multiplicative conservation of the sum of synaptic strengths over a cortical cell
reduces that sum at each iteration by an amount proportional to its growth rate.
chc;, if the growth rate of the difference of synaptic strengths between the two
eyes is smaller than the growth rate of the sum of synaptic strengths in the absence
of constraints, the difference of synaptic strengths between the two eyes will end
up shrinking after application of multiplicative constraints. The growth of the
difference is driven by the correlation function CD=§““‘°E’°—C%PPE-V°, while
the growth of the sum is driven by CS =CS%®Ese . COPPEYe  Therefore. in order
for' the difference to grow faster than the sum, there must be opposite-eye
anticorrelations.
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Discussion

Biological Implications of the Model Results We have shown that
many phenomena associated with ocular dominance segregation are
implicit in a Hebbian synapse mechanism and in other mechanisms
involving synaptic reward via correlated activity. These phenomena
emerge provided that afferents from a single eye are locally correlated
in their activities, and that there are interactions across cortex by
which synapses may influence one another’s growth. This simple
framework can account for the development of monocular cells and
their organization into periodic patches or columns, the topographic
refinement of receptive fields, and the confinement of afferent arbors
to patches. Correlations of inputs over about '% of an afferent arbor
radius, as may be the case for X-cells in the cat (based upon
measurements in adult cat: Humphrey et al., 1985a,b; Mastronarde,
1983a,b; Tusa, Palmer, and Rosenquist, 1978), can lead to a layer 4
with many binocular cells at the borders between patches, as observed
in the cat (LeVay, Stryker, and Shatz, 1978). Broader correlations can
lead to a virtually completely monocular layer 4, as is seen in the
monkey (Hubel, Wiesel, and LeVay, 1977). The effects of
experimental manipulations of activity, including monocular
deprivation (Hubel and Wiesel, 1970; Wiesel and Hubel, 1965),
strabismus or alternating monocular deprivation (Hubel and Wiesel,
1965), and cortical infusion of muscimol (Reiter and Stryker, 1988),
all follow naturally from the model, and a critical period for these
effects emerges. ‘

The model can also account quantitatively for the width of the
ocular dominance organization that develops. The observed period of
this organization (width of right-eye plus left-eye patch) in the cat is
850 um (Anderson, Olavarria, and Van Sluyters, 1988; LeVay,
Stryker, and Shatz, 1978; Shatz, Lindstrom, and Wiesel, 1977,
Swindale, 1988). To understand how a simple intracortical interaction
might yield this wavelength as the peak of its fourier transform, it is
helpful to keep two thoughts in mind. First, if a function is excitatory
over a radius of about 200 um, and strongly inhibitory more distantly,
it can have this desired 850 um peak. For example, a cosine wave
with wavelength 850 um is positive for 212 um from 0, then equally
inhibitory over the same distance more peripherally. Second, a
function can be excitatory over a much smaller region, and retain the

Chapter 9: DEVELOPMENT OF OCULAR DOMINANCE COLUMNS 323

same fourier peak, if the inhibition is made correspondingly weaker.
For example, if there is no inhibition at all, the peak wavelength of an
excitatory region of any size is at an infinitely long wavelength.
Hence, functions excitatory over radii of 50 or 100 um, with weak
inhibition more peripherally, can also yield the desired wavelength.

As previously observed, we do not know enough about the nature
of the intracortical interaction in general, and in particular at the time
of ocular dominance segregation, to compare it to the 850 pm period
in a precise way. We can only say that the distances over which
excitation and inhibition are seen in the adult seem consistent with
this period (Hata, et al., 1988; Hess, Negishi and Creutzfeldt, 1975;
Toyama, Kimura, and Tanaka, 1981a,b; Worgotter and Eysel, 1989).
If in addition there are longer-range interactions with a preexisting
period on the order of 850 pum (Gilbert and Wiesel, 1983; Luhmann,
Martinez Millan and Singer, 1986; Tso, Gilbert, and Wiesel, 1986;
Worgotter and Eysel, 1989), this could create, or add to, a peak in the
fourier transform at this wavelength.

If the intracortical interaction is purely excitatory, or otherwise
selects a wavelength longer than an initial afferent arbor diameter,
constraints can lead to wavelength selection by the arbor function. An
850 pm period can be selected by an arbor function that either is
uniform over a diameter of 850 um, or tapers over a somewhat larger
diameter. Hence, it seems possible that X-cell afferent arbors could
by this limiting mechanism be responsible for the wavelength of
ocular dominance (based on maximum extent of patchy adult arbors:
Humphreys et al., 1985a,b). However, Y-cell afferent arbors are
likely to be be too large to play such a role (Humphreys et al,
1985a,b; LeVay and Stryker, 1979). It is interesting in this context
that several experiments suggest that the X-cell projection develops
earlier than that of the Y-cells (Sherman and Spear, 1982), and so
might play a dominant role at the time of ocular dominance
segregation.

The most obvious experiment suggested by the model is to better
characterize the nature of the three functions at the onset of ocular
dominance segregation. Measurement of initial correlation, cortical
interaction, and arbor functions in various brain regions or species can
test whether a proposed developmental mechanism is consistent with
the periodicity that emerges in each case. Comparisons across such
regions or species can enhance insight. For example, ocular
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dominance patches in area 18 of the cat are more than 1.5 times wider
than those in area 17; arbors, and perhaps correlations, are also more
widespread (Anderson, Olavarria, and Van Sluyters, 1988; Humphrey
et al, 1985a,b; Lowel and Singer, 1987; Shatz, Lindstrom, and
Wiesel, 1977; Swindale, 1988). If a Hebb mechanism is responsible
for ocular dominance segregation in these two areas, two possibilities
arise. First, intracortical connectivities in kittens may be sufficiently
different between the two regions to account for the difference in
patch width. Alternatively, both regions in kittens might have
predominantly excitatory intracortical connections, resulting in arbor-
limited patch widths. If measurement were to establish that neither of
these possibilities is the case, one would conclude that the patch width
is not likely to be determined by a Hebbian mechanism.

Sustained perturbation of the three functions in an experimental
preparation beginning before the normal onset of segregation, and
comparison of the resulting periodicity to the unperturbed case, can
also test mechanisms. Under the hypothesis that a Hebb mechanism
underlies ocular dominance development, periodic segregation is
driven by intracortical synaptic connections. Local infusion of
muscimol, an agonist of GABA, receptors which inhibits postsynaptic
cells, will eliminate activation of such connections. We therefore
would predict that no pattern of ocular dominance organization would
be seen in a cortical regions into which muscimol was infused,
although individual cells might become monocular. Alternatively,
intracortical inhibitory connections may be blocked by local infusion
of bicuculline, an antagonist of GABA receptors. A resulting increase
in patch period would be consistent with the hypothesis that the
underlying mechanism is Hebbian and that the patch width is
determined by the intracortical interactions. If patch period were
unchanged by bicuculline, one would conclude either that the period
was normally arbor-limited (which could be tested by measuring
whether intracortical interactions were predominantly excitatory
during initial column development) or that a non-Hebbian mechanism
was involved.

The model predicts that broader correlations within each eye
would increase monocularity of layer 4 for mechanisms of the type we
study. This could be tested by inducing broader correlations through
pharmacological interventions in the retinas. One could also measure
whether retinal correlations are broadened in animals deprived of

Chapter 9: DEVELOPMENT OF OCULAR DOMINANCE COLUMNS 325

pattern vision. Such animals have increased numbers of monocular
cortical neurons (Sherman and Spear, 1982). Finally, one could
measure whether geniculate correlations are broader, relative to a
geniculocortical arbor radius, in developing monkeys than in kittens,
since layer 4 is fully monocular in adult monkeys (Hubel, Wiesel, and
LeVay, 1977) but not in cats (LeVay, Stryker, and Shatz, 1978).

In sum, the model suggests that much of the known phenomena
of ocular dominance segregation follow from simple dynamics
common to a number of proposed mechanims. It does not allow us to
specifically distinguish one mechanism from another on the basis of
existing experiments. It does, however, provide a framework for
experiments capable of making such distinctions. In particular, it
seems feasible to distinguish between mechanisms that would
determine the period of segregation on the basis of intracortical
synaptic connectivity, and mechanisms that determine a period on the

- basis of either afferent arbor diameter or intracortical interactions that

involve diffusion rather than synaptic connections.

Implications for Other Models of Cortical Development and Plasticity
The present work extends previous theoretical studies of ocular
dominance column development. Von der Malsburg and Willshaw, in
a series of papers in the 1970’s, demonstrated through computer
simulation that mechanisms like those discussed here were sufficient
to yield stripes as well as topographic maps (von der Malsburg, 1979;
von der Malsburg and Willshaw, 1976, 1977, Willshaw and von der
Malsburg, 1976, 1979). Bienenstock, Cooper and Munro (1982)
focused on the development of monocularity in isolated cortical cells,
as well as on dynamical means of limiting synaptic strengths, but did
not study cortical organization.?! Legendy (1978) studied a Hebb-like
model, and concluded that intracortical synaptic interactions will
determine the distances over which cortical cells are similar in their
response properties. Swindale (1980) formulated a model in terms of
an effective interaction between right-eye and left-eye synapses,

21. The relationship of the present model to the model of Bienenstock, Cooper, and
Munro is discussed in detail in Miller, 1989a,c.
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which produced stripes like those obtained here. This interaction was
not related to measurable biological quantities. In the limit in which
correlations among afferents vary slowly over an arbor radius, our
model can be reduced to his, allowing us to express his effective
interaction in terms of arbors, cortical interactions and afferent
correlations.

Two models of cortical development discussed elsewhere in this
volume may be compared to the model presented here. These are the
models of Linsker (1986a-c, and Chapter 10)% and of Pearson, Finkel,
and Edelman (1987, and Chapter 7). We will discuss these models in
some depth, with the intents both of clarifying the similarities and
differences between the models, and of illustrating how our methods
can yield insight into the behavior and meaning of these models.

Linsker’s Model of Development of Orientation Selectivity
Linsker (1986a-c, and Chapter 10) developed a model of plasticity
very much like ours. He used it to study the development of
orientation selectivity in visual cortex. He initially studied the
development of a single, isolated postsynaptic cell, and considered
inputs from only a single eye. He assumed a gaussian arbor function,
but one can formulate his model in terms of a general arbor function.
Let o represent the location of the presynaptic cell, relative to a
postsynaptic cell at x=0. Then Linsker’s equation, after explicit
inclusion of the arbor function, can be written

dS((I t) A(a){z _—_&S(ﬁ t) k2[S(t) STARGE’I‘]}

- 2 Sy o
where N=% A(a), S(t)=T—, Starcer=k,/k, in Linsker’s

notation, and k, and k, are constants that Linsker defines?. S(a,t) is

22. We will be concemed here only with Linsker’s work on the development of
orientation selectivity in visual cortex (Linsker, 1986a-c), and not with the later
work on information theory, which comprises much of his chapter in this volume.

23. We have changed the sign of k, compared to Linsker’s equation so that the
negative sign in front of ky can be seen explicitly. Linsker uses a positive sign,
but a k, that is negative.
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allowed to range between —0.5A () and 0.5A(x).

Linsker’s model differs from ours in several important respects.
First, in his model modifiable synapses S may have either positive or
negative strength, whereas we require input synapses to have positive
strengths. Note that in our model, the variable SP, the ocular
dominance or difference between the two eye’s strength, may become
either positive or negative. Hence, we can mathematically use our
analysis of SP to understand Linsker’s S.

Linsker offers two possible interpretations of the positive and
negative synapses. In one interpretation, each individual synapse may
become positive or negative. In contrast, biological synapses are
either exclusively excitatory or exclusively inhibitory. In the
alternative interpretation, there are equal numbers of excitatory and
inhibitory synapses, with identical spatial distributions and
connectivities, and with indistinguishable statistics of activation so
that an excitatory input is equally correlated to either an excitatory or
an inhibitory input at a fixed distance. Furthermore the excitatory and
inhibitory populations obey mirror-image plasticity rules, so that
excitatory synapses are strengthened by correlation between
postsynaptic and presynaptic activity and weakened by
anticorrelation, while negative synapses are equally weakened (made
less negative) by correlation and strengthened by anticorrelation.
These conditions together mean that the "excitatory" and "inhibitory"
populations are just positive and negative halves of a single statistical
population. The geniculocortical projection is exclusively excitatory,
so this second interpretation is also ruled out for that projection. The
projection in monkeys from the unoriented cells of layer 4C to the
oriented cells of the upper cortical layers includes both excitatory and
inhibitory inputs, but it is likely that the two populations are distinct
in crucial ways. For example, inhibitory cells are often interneurons
which, when active, inhibit nearby excitatory cells, so that the
inhibitory and excitatory populations would be expected to have
statistically distinct firing patterns. Similarly, while there is extensive
evidence that excitatory synapses can be modified in a Hebbian
manner (Nicoll, Kauer, and Malenka, 1988), current evidence suggests
that there may be little modification of inhibitory synapses under the
same stimulus paradigms (Abraham, Gustafsson, and Wigstrom, 1987,
Griffith, Brown and Johnston, 1986).

We have offered a third alternative intepretation of the negative



328 Part IV: THE VISUAL SYSTEM

synapses (Miller, 1989b). ON- and OFF-cells are known, in adults, to
be anticorrelated with one another over distances similar to those over
which each individual cell type is correlated (Mastronarde, 1983a,b).
Consider populations of ON-center and OFF-center cells making
strictly positive synapses onto cortex and having identical spatial
distributions (which is at least approximately biologically correct).
Suppose they are exactly anticorrelated with one another, so that
CON:ON() = COFF:OFF (1) = _ COFFON((r).  Then the mathematics of
Linsker’s model of an "excitatory" and "inhibitory" population is
identical to the mathematics of these ON- and OFF-cells, except for
the important distinction that different constraints are needed®®. One
can relax the requirement of anticorrelations being exactly equal and
opposite to the correlations without substantially altering the results.
Second, Linsker’s model differs from ours in using constraints
that ultimately fix both the summed excitatory and the summed
inhibitory input to a cortical cell. In our model, the summed
excitatory input is fixed, and the inhibitory input is fixed at zero.
However SP, the variable in our model that can be either positive or
negative and hence is mathematically analagous to Linsker’s, is
unconstrained in its total onto a cortical cell; instead we consider the
effect of constraints on the total that comes from each geniculate
location. Linsker’s constraints emerge as follows: the effect of the

second term in %, for sufficiently large k,, is to constrain S so that

S(t)=Starcer- If one begins in a condition in which the constraint is
not satisfied, and if k, is sufficiently large (as Linsker’s k, is), the

second term in %f— dominates the term involving correlations. Then

24. See description of Linsker’s constraints in next paragraph in text. ON- and OFF-
center geniculate cells appear to be entirely identical histologically, and are
distinguished only by their inputs and their patterns of neural activity. Therefore,
the postsynaptic cell could not separately limit the synaptic strength of each type
of input. Thus, it is not appropriate to fix the total ON-synaptic strength and the
total OFF-synaptic strength onto each cortical cell, which would be equivalent to
Linsker’s constraints. If one assumes that each geniculate afferent maintains a
fixed amount of synaptic strength, one would then constrain the total ON-synaptic
strength and the total OFF-synaptic strength coming from each geniculate
location. This is the type of constraint we used for SP,
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either all synapses increase in strength, or all synapses decrease in
strength, until the constraint is satisfied. Furthermore Linsker shows
that development will continue on a single cell until all, or all but one,
synapses are at their maximum or minimum allowed value, +0.5A().
Hence in the final state 2, |5 =0.5N, while Y. S(@) = NStargEr-

From this, one can conclude that in the final state
% s extony SO 7 5 OSSTaRGED: Z iy SO =5 O5-Srancen).
Linsker’s model thus separately fixes the final total excitatory and
total inhibitory synaptic strengths.

Our eigenfunction analysis of S® can provide insight into his
results. Linsker starts with a layer of cells whose activities are
uncorrelated. He sets Sparger > 0.5, which causes each synapse to grow
independently until it reaches its maximum positive strength, The
resulting postsynaptic cell is thus an "all-excitatory" cell. In a layer of
such cells whose inputs have overlapping gaussian arbors, neighboring
cells will receive common excitatory inputs and thus be correlated in
their activity. The degree of correlation between two cells will be
proportional to the degree of overlap of their inputs and, hence, will
decrease with the distance between the two cells in a gaussian manner.
Next, a layer of such cells sends inputs to a subsequent layer, and
Starcer 1S set somewhat less than 0.5 so that a significant number of
synapses are forced to become negative. In this case, "center-
surround" cells develop. This can be understood simply from the fact
that the fastest-growing eigenfunctions for SP, for a gaussian
correlation function (i.e., "same-eye correlations"), have receptive
fields that concentrate their strength centrally. When combined with
constraints that, for example, force 35 percent of final synaptic
strength to be negative (Starger=0.15), this can lead to a center of
positive synapses with a surround of negative synapses®. Hence,
formation of these "center-surround” cells depends critically on the
negative synapses and the constraints. The robust feature is that
central synapses grow faster than peripheral ones.

25. A thorough analysis of this process will be found in D.J.M. MacKay and K.D.

Miller, in preparation.
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A layer of such center-surround cells, if all cells have identical
phase (positive centers, negative surrounds), has a '"Mexican hat"
correlation function: nearby cells have correlated patterns of activity,
while more distantly spaced cells in the layer are anticorrelated with
one another. Nearby cells are correlated because they receive
common excitatory inputs. More distantly spaced cells have overlap
between one’s excitatory center and the other’s inhibitory surround,
and thus anticorrelated firing. The development of anticorrelations in
the afferent correlation function thus depends upon the development
of "center-surround" cells, which in turn depends upon both the
negative synapses and the constraints,

Linsker uses repeated layers with similar values of Spapger t0
obtain repeated layers of cells that are "center-surround" in terms of
the previous layers, and that have identical phase. This strengthens
the anticorrelations between more distant cells in each subsequent
layer, and introduces further oscillations in sign of the correlation
function with increasing distance between cells. Retinal ganglion
cells and cells in the LGN and, in monkeys, layer 4C of cortex have
center-surround receptive fields in terms of the visual field. However,
Linsker’s mechanism for strengthening of anticorrelations requires
that geniculate cells have center-surround receptive fields in terms of
retinal ganglion cells, so that the center responses of geniculate cells
originate from the center responses of one set of retinal ganglion cells,
and the surround responses of geniculate cells originate from the
center responses of surrounding retinal ganglion cells; or similarly,
that monkey 4C cells have center-surround receptive fields in terms of
geniculate cells. There is as yet little evidence on whether either of
these is the case.

Given an afferent correlation function with strong
anticorrelations, and a sufficiently broad arbor function so that inputs
in the center of the receptive field "see" a substantial number of
anticorrelated inputs, oriented cells develop. Linsker found that
multibanded oriented cells will develop, that is cells with a central
band of synapses flanked by one or more side bands of alternating
sign. Development of such multilobed structures appears to depend
upon both multiple oscillations of sign in the correlation function, and
on very fine tuning of the constraints (unpublished observations).
However, we have seen that if a Mexican hat correlation function is
sufficiently narrow with respect to the arbor function, the fastest-
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growing receptive field pattern has a positive stripe adjacent to a
negative stripe. Hence, development of an oriented cell consisting of
two bands, one excitatory and one inhibitory, can occur simply with
anticorrelations and in the absence of constraints, When multiple cells
are connected into a cortical layer, an alternation of two-banded and
three-banded structures can result, due to the oscillation in phase
across cortex of the eigenfunctions of S (Miller, 1989b).

There are again several difficulties with interpreting these results
biologically. First, it is not clear that orientated cells can be achieved
either without negative synapses or without unrealistic assumptions
about the statistics of activity of the positive and negative synapsesZ.
If synapses are solely positive and the arbor function does not
decrease with distance sufficiently quickly, central synapses grow
more slowly than peripheral synapses in the presence of a Mexican hat
correlation function, leading to bizarre receptive fields with synaptic
strength confined to peripheral clumps. This occurs because central
synapses then have more anticorrelated neighbors than peripheral
ones. If the arbor function tapers with distance sufficiently quickly,
central synapses will grow more quickly than peripheral ones, but the
synapses tend to remain confined within the correlated central region
in a circularly symmetric manner (Miller, 1989a,c). However, in
some conditions it appears possible to obtain oriented cells by this
mechanism with strictly positive synapses (Linsker, personal
communication; Miller, 1989a,c)*’. Second, when two eyes are
present, anticorrelations among afferents within each eye will destroy
monocularity (figure 26). A combination of same-eye and opposite-
eye anticorrelations can eliminate anticorrelations from CP, while

26. If our interpretation in terms of ON- and OFF-cells is utilized, this problem is
avoided. However, it is replaced by another problem. Linsker’s result requires
ON-ON and OFF-OFF correlations to be positive among near neighbors and
negative among more distant neighbors, while OFF-ON correlations are negative
among near neighbors and positive among more distant neighbors. The changes
of sign with distance have thus far not been observed.

27.1f total synaptic strength is conserved by multiplication of each synapse by a
constant, rather than subtraction from each synapse of a constant, after each
iteration, at least weakly orientated cells can emerge (Miller, 1989a,c).



332 Part IV: THE VISUAL SYSTEM

causing deep anticorrelations in the correlation function that drives
development of the sum of the synaptic strengths of the two eyes,
CS=CL +C'®, Again, at least under special circumstances this can
yield cells that are monocular and at least weakly oriented (Miller,
1989a,c).

Finally, returning to synapses that can be either negative or
positive, suppose that a layer of such oriented cells develops in the
presence of weak but long-distance excitatory connections between
cells within the layer. Then Linsker has proposed an analysis showing
that oriented cells will organize into a global arrangement of
orientations that in certain respects closely resembles biological
results found subsequently (Blasdel and Salama, 1986)%. He assumes
that the excitatory connections are weak enough not to disturb the
receptive field structure that develops in isolated cells, but strong
enough to nonetheless organize these cells with respect to one another
during development. The eigenfunction analysis presented here for sP
shows that, in the absence of constraints, even weak cortical
interactions cause patterns to develop that oscillate in phase across
cortex. That s, if one part of cortex has oriented receptive fields with
an excitatory central band and inhibitory side bands, nearby parts of
cortex would have receptive fields with an inhibitory central band and
excitatory side bands. For this reason, Linsker’s assumption that
receptive field structure is not disturbed is not valid in the absence of
his constraints. His constraints cause this oscillation to be suppressed
by causing a pattern with infinite wavelength — no oscillation — to
grow faster than other patterns. Hence, the cortical organization he
finds also depends critically on his constraints (to be discussed in
Miller and MacKay, in preparation). Such constraints are not present
when the model is interpreted in terms of ON and OFF cells, so such
an interpretation leads to different cortical organization of orientation
than that proposed by Linsker (Miller, 1989b).

28. One point of discrepency is that Linsker’s mechanisms leads groups of vertically
oriented cells to be extended across cortex in the retinotopically vertical direction,
and similarly for all other orientations. No such arrangement has been seen in
several studies (Blasdel and Salama, 1986; Swindale, Matsubara, and Cynader,
1987).
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In sum, Linsker’s work has been of great importance in pointing
out in general how significant organization of individual receptive
fields, as well as of cortex as a whole, can arise from simple Hebbian
mechanisms. In particular, Linsker pointed out that symmetry-
breaking could occur, so that oriented receptive fields could arise from
circularly symmetric arbors and correlations. It is important to
understand the elements of the model that are responsible for each
element of the results. This allows one to understand the specific
results that might be biologically realistic. The development of
center-surround organization and of anticorrelations in Linsker’s
model seems nonbiological, because of their dependence upon the
negative synapses and the constraints. However, anticorrelations may
arise by other means, and in particular, an interpretation in terms of
ON and OFF-cells may provide a biological interpretation for some of
the results on the development of oriented cells.

Pearson, Finkel, and Edelman’s Model of Somatosensory
Development Pearson, Finkel, and Edelman (1987; Chapter 7)
developed a similar, but more complex, model to study somatosensory
development and plasticity. We will discuss the model as presented in
the 1987 paper. It is a "real-time" model, in that postsynaptic voltages
develop and decay over time. Thus individual synaptic changes are
followed, whereas our model only follows synaptic changes averaged
over the ensemble of input patterns. The plasticity rule used by
Pearson and colleages assumes that synapses are modifiable only
during postsynaptic depolarization. Modifiable synapses tend to be
converted from a weak to a strong form if sufficient "modifying
substance," released by presynaptic activity, has accumulated,
otherwise, they tend to be converted from the strong form to the weak
form. Thus, synaptic plasticity occurs only with sufficient
postsynaptic depolarization, and the sign of plasticity is then
determined by the amount of presynaptic activity. The essence of the
plasticity model can thus be expressed

dS(x,a,t)

= [iPOSTILPRE()]

where POST is postsynaptic depolarization, PRE is presynaptic
activity (both may have to be integrated over some relevant time), f, is
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a function that is zero at or below resting potential and becomes
positive with depolarization, and f, is a function that is negative for
low presynaptic activities and positive for large presynaptic activities.
In this form, it is easy to see that the model of plasticity is a particular
form of a Hebbian rule. The most significant variation in this version
is that the function of postsynaptic activity can never be negative.
Such a variation was proposed by Stent (1973) but would seem to be
contradicted in visual cortex by experiments that infuse muscimol to
hyperpolarize postsynaptic cells, leading to an ocular dominance shift
in favor of the less active eye (Reiter and Stryker, 1988), as was
discussed previously.

The model has nearly 30 parameters, complicating analysis and
rendering difficult the determination of the parameter regimes of
which simulation results are representative. By considering the
averaged changes to be expected in terms of the effective arbor
function, correlation function and cortical interaction function, the
present analysis can shed light on their results. The arbor functions
used are identical: input cells connect to a 7x7 square arbor of
excitatory cortical cells, with uniform connectivity within the arbor.
The model of Pearson and colleagues uses two identical input grids,
one representing glabrous and one representing dorsal input. These
can equally be considered "right eye" and "left eye". The inputs are
activated with 3x3 square stimuli, from which the average correlation
in input can be easily calculated: within glabrous or dorsal, it is a
function that is strictly positive and is nonzero over a square of +2

gridpoints; between glabrous and dorsal, it is zero?,

29. Glabrous and dorsal grids are actually connected on one side, so along this border
therc is some glabrous/dorsal correlation. Otherwise, with the sequential
presentation of stimuli used in the model, the description given here of the
correlation function is only strictly true in the limit of a large number of cells. Let
correlations be defined as

Estimuli [a(a)a(ﬂ)] ——
#stimuli

1

C@Py= 7=, () ~Bla(B)-a1=

where a(Q) is the activity of the input from Q, and @ is the mean activity
(averaged over all stimuli) of each input. Let a(at) be ! for stimuli in which the
input at @ is stimulated and zero otherwise. If two cells are simultaneously
activated by stimuli centered at n cells, and individually activated by stimuli
centered at 9 cells, out of N total cells stimulated, then this expression is
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The cortical interaction function must be estimated more roughly
as there are many parameters underlying it®*. Cortical cells are either
excitatory (e) or inhibitory (i) cells. There are two excitatory and one
inhibitory cortical cells at each point in the cortical grid. Input cells
contact only e cells, and only the responses of e cells are studied.
There are assumed to be e—e, i—e, and e—i intracortical
connections. The e —e connections are themselves assumed to be
modifiable by the same plasticity rule as the input synapses.
Connectivity is established in terms of "square rings" of grid points
around each point. At distances of 0—1 square rings, intracortical
connections are strongly excitatory (that is, e —»e connections are
strongly dominant over [e—i—e] connections); at a distance of 2
square rings, connections are more weakly excitatory; and at greater
distances (3 to 6 square rings), connections are exclusively inhibitory
and extremely strong.

C(a,B)y=n/N- (9/N)2. When the number of cells N is large compared to 9, so
that each cell’s mean activity 9/N approaches zero, the description given in the
text becomes accurate; since there were 1024 input cells, this is a very good
approximation. The description of the correlation function in the text would also
be true if stimuli were presented in parallel, with random times of activation at
each site based on the mean activity of each.

In the model of Pearson and colleagues, significant synaptic changes occur over
times short compared to the times in which all input patterns are activated. That
is, a stimulus consisted of a prolonged set of activations (3 cycles of 6 steps on, 4
steps off) of a single 3-grid by 3-grid square. In one "pass" over the hand, a
complete set of non-overlapping squares was sequentially given one such stimulus
each. There were 4 passes. The 3X3 stimulus squares overlapped one another
between passes, but not within passes. The result is that a local pattern could be
formed during the prolonged stimulation of a single square, and during a pass in
which only nonoverlapping squares are stimulated, rather than through an average
over all stimuli. Because the size of such a local pattern is determined by the
number of cortical cells activated by stimulation of a square, and this in turn
should be determined by the intracortical interactions with the stimuli used, we
have ignored this fact in our discussion.

30. i cells are set to have much lower and much sharper thresholds then e cells. i cells
produce shunting inhibition, so that a sufficient level of i-cell activation onto a
cortical cell will prevent it from firing. ¢ — ¢ synapses are made 4.5 times more
effective than e — 1 synapses or input synapses, and there are twice as many e
cells as i cells.
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The correlation function is essentially a "same-eye correlation”
function nonzero over slightly less than an arbor radius. Therefore,
one expects a largely or fully "monocular” cortex. That is, most cells
should be largely or exclusively driven by either glabrous or dorsal
inputs. This is found: 94 percent of nonboundary cells in the
simulation presented are "monocular" (boundary cells form a special
case in their model). From the intracortical interaction and the fact
that there are no constraints on arbors, one predicts that glabrous and
dorsal bands of approximately 5 grid intervals each (2 grid intervals
about a central point) will become established®'. This appears to be
approximately consistent with the results seen’?. In particular,
because e —e connections are modifiable, squarish clumps of cells
develop that are densely connected to one another by e —e synapses,
but only weakly connected to other cortical cells by e —e synapses.
Each clump is "monocular," responding to glabrous or to dorsal but
not to both. Approximately 3 x 5 clumps form on the 12 x 28 non-
boundary region of cortex, suggesting a linear clump size of between
4 and 5.5 grid intervals.

These clumps are termed "groups" by the authors, in part because
each cell in a clump has an essentially identical receptive field. The
authors argue that the formation of groups is the cause of the cortical
organization observed in the model. We would argue, instead, that
cortical organization develops in the model due to correlated inputs,
intracortical interactions and a Hebbian type of leamning rule. The
groups are a possible result of such cortical organization that may be
induced for particular choices of model parameters. One factor
contributing to formation of groups may be that e »e synapses are
assumed to be strongly dominant over thalamic inputs: e — e synapses
are assigned 4.5 times the effectiveness of thalamic synapses for an
equal synaptic strength. This may cause intracortical connections to

31. Note that the large periodicity, compared to the arbor size, suggests that some
glabrous and dorsal sites may lose much of their input to cortex.

32. In examining pictures of the simulation, it is important to note that there are two
excitatory cells at each grid position, but each is presented as though at a separate
grid position. Thus pictures are presented with half the scale in one dimension as
in the other dimension.
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strongly dominate thalamic inputs in determining a cell’s responses
and cause a "clump" of strongly connected cells, developed by the
Hebbian interactions, to become a "group" of identically responding
cells.

Given an understanding of the sources of the model’s behavior, a
comparison to biology can be made. Two scales emerge from the
model that can be compared with biology. One is the linear extent of
the groups, which represents the scale of topographic disorder. On
this scale, receptive fields appear to remain invariant across cortex,
then to jump suddenly to a new location, so that the topographic map
appears disorderly and discontinuous (see figure 8 of Pearson, Finkel
and Edelman, 1987). The second scale is the linear extent of glabrous
or dorsal patches. Our analysis demonstrates that these two scales
must be roughly the same in the model, since both are determined
identically by the intracortical interactions. This is true independently
of the many details of the model and its implementation.

Somatosensory receptive fields are known to vary continuously
and smoothly with distance across cortex over all distances larger than
50-100 microns (compare figure 3 of Stryker, Jenkins, and Merzenich,
1987 with figure 8 of Pearson, Finkel, and Edelman, 1987; also see
Merzenich et al, 1987). Hence, the scale of topographic disorder
represented by groups must be smaller than 100 microns. Yet dorsal
patches typically are several or many 100’s of microns in extent
(Merzenich et al., 1987; Stryker, Jenkins, and Merzenich, 1987). The
prediction, inherent in the process of group formation in the model,
that topography should be disordered on the scale of dorsal patches as
well as on the scale of the intracortical interactions®®, appears
inconsistent with the biology.

33. A periodic scale determined by the intracortical interactions should be at least
twice the horizontal extent over which cortical interactions are predominantly
excitatory in the developing animal (the size will be larger than this if surrounding
inhibitory interactions are relatively weak). The biological size of dorsal patches
is likely to be consistent with this. In contrast, a scale of less than 50-100
microns, attributed by the model to the groups by identification of that scale with
the biological scale of topographic disorder, seems likely not to be. Measurements
of the intracortical interactions in the developing animal can provide an important
independent check to the arguments made here.
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The model is valuable in showing how the types of organization
expected from a Hebbian mechanism can develop with a rather
complex and detailed implementation of the Hebbian rule, and in
applying these results to the somatosensory cortex. However,
parameters that force groups to form may be precisely the wrong
parameters, biologically. Rather, it seems likely that the cortical
organization resulting from Hebbian interactions should develop in a
way that allows smooth, continuous topographic variation of receptive
fields across cortex.

More generally, we have shown that by simplifying a model, so
that it incorporates only the simplest and best-established features of a
system, and so that the essential factors responsible for its behavior
can be understood, biological understanding may be deepened. While
it is important to grapple with the realities of biological and
biophysical complexity, a more complex model is not necessarily a
more realistic one.

Conclusion

Ocular dominance segregation has provided perhaps the simplest and
best characterized model of activity-dependent competition in neural
development. We have shown that a minimal model of this process,
incorporating only a competitive rule, correlations among inputs
serving each eye, interactions across cortex, and limits to
geniculocortical connectivity, is sufficient to account in surprising
detail for much of the experimentally observed phenomena, as well as
to predict the results of experiments yet undone. In particular, such a
simple model is sufficient to predict the width of ocular dominance
stripes to be expected from measurable biological parameters.

More detailed models will no doubt arise in the future that
address the many features omitted from the current model. One would
like to understand and incorporate more biophysical and temporal
detail in modeling plasticity rules and geniculate and cortical
activations. There are many classes of geniculate afferents, and the
correlation between the activities of two afferents depends on the class
to which each belongs (Mastronarde, 1989). Similarly, there are many
classes of visual cortical cells (Lund, 1988; Martin, 1988). Initial
geniculocortical and corticocortical connectivities are both more
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specific and more stochastic than the simple distance-dependent rules
we have used here (Lund, 1988; Martin, 1988). Cortex has three
dimensions, not two. The retinotopic mapping to cortex is not linear,
and the grid of retinal inputs is more nearly hexagonal than square,
each of which could have important impacts on receptive field
structure (Mallot, 1985; Soodak, 1987). The development of ocular
dominance must be understood in the presence of orientation
selectivity and other cortical properties. Sprouting and retraction of
synapses may play a fundamental role, rather than a secondary role
following physiological changes as assumed here. Better
understandings of limitations on individual and total synaptic weights
may be achieved in the future. Thus, the present model is only a
beginning.

We believe nonetheless that this model can provide a framework
for future endeavors. As one or another complexity is studied, one
must ask whether it fundamentally alters or adds to the simple
dynamics presented here, and if so how and why? The fact that so
much of visual cortical development appears implicit in the simplest
competitive dynamics makes plausible the idea that such simple
dynamics may underlie the segregation that occurs amidst the
complexity of the visual cortex.

Appendix

Derivation of the Model Equations From Nonlinear Rules

Consider a nonlinear version of the Hebb rule,

dst(x,a, bt

n =AA(x —a)f,[e(x, DIf, [a(a, )] (A1)

(and similarly for S®), with a nonlinear activation rule,

c(x,0=g[8:(0+ 3, B(x.y)c(y, ] (A2)
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where f,,f.and g are nonlinear functions and
9x(t)=ZB[SL(X.B.I)3L(BJ)+SR(x.B,t)aR(t},t)]. ¢(x,1) is a function of all

of the input strengths 8,(t), although this is not indicated explicitly.
We will see that the linearization of these equations can be taken to be
of the form of eq. 5 for SP.

The Hebb rule for the difference, SP(x,a,t)= S*(x,a,t) — SR (x,a, ) is now

D
9.5_((1"_{‘1_»‘)_ =AAG-0)F, [e(x,DID (1) (A3)

where 2(a, )=f, [a"(a, )] - f,[a® (@, D). Let
SS(x,0,t) =St (x, 0, ) + SR (x,0,1),
aS(x, o, t) =ab(x,a,t) +aR(x,a, 1),
P (x,a,t) =ak(x,a,t)— at(x,a,1),
0} ="4%, S x.B.02°B.D,

8P = %ZBSD(X,B,t)aD(B.t).
Then 6, (t)=65(t) +62(t). Equation A3 will be expanded about 62(1)=0,
to first order in 62(t).

Let c5(x,t) be the solution of

S, =gl (V) + YBx,y) S (y,0)]. (A4)
y

Then
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D
dSP(x,a,1) - (AS)
dt
ac(x,t
AAG- (@, L0+ LS GIE S| 8P(0r+0[0P)2]
y U e

Here f', is the derivative of the function f..

The partial derivative can be evaluated; letting
g’f(t)sg'[ef(t)+EyB(x,y) cS(y,1)], where ’ again indicates derivative, it
is

ac(x,t)

—o'S 0 R2 4 ...
20, (1) =g i [M+B+B) + -1y (A6)

where 1 is the identity matrix, B is the matrix with elements
B,, =B(x,y)g’5(1), and [..],, means the xy element of the matrix in
brackets. Let I(x,y,)=[1+B+(B)*+ -+ ], Clat,B,0)="Af7(c,0a"(B,1),
D(x, )=, [cS(x,0]g’S(1). Then eq. A5 becomes, to first order in 6,

D
m;_{.w = MK - Wf, [ x, DI (et 1) + A7)

AA X —)D(X, D YIX,y,HC(a, B,HSP(y,B.0).
y.B

After averaging, by equality of the two eyes the first term must be
zero. The lowest order term resulting from averaging of the second
term is

AA(x— @) F(DC, DI, y,HC(a, BOYSP (y, B, D).
y.B

Suppose  that (DIx.y)C(a.p) can  be approximated by
{(DEOI(x,Y)}C(a,B). This will be true if the sum of the two eyes’ inputs
is statistically independent of the difference between the two eyes’
inputs. By the assumption of homogeneity of cortex, (D()I(x,y)) can
only depend on x-y, while (C(c.p)) can only depend on a—f. With
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these assumptions, then, the linearized version of this nonlinear model
is given by eq. 5 in the text for SP.
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