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Palmer SE, Miller KD. Effects of inhibitory gain and conductance
fluctuations in a simple model for contrast-invariant orientation tuning
in cat V1. J Neurophysiol 98: 63–78, 2007. First published May 16,
2007; doi:10.1152/jn.00152.2007. The origin of orientation selectivity
in primary visual cortex (V1) is a model problem for understanding
cerebral cortical circuitry. A key constraint is that orientation tuning
width is invariant under changes in stimulus contrast. We have
previously shown that this can arise from the combination of feed-
forward lateral geniculate nucleus (LGN) input and an orientation-
untuned component of feedforward inhibition that dominates excita-
tion. However, these models did not include the large background
voltage noise observed in vivo. Here, we include this noise and
examine a simple model of cat V1 response. Constraining our simu-
lations to fit physiological data, our single model parameter is the
strength of feedforward inhibition relative to LGN excitation. With
physiological noise, the contrast invariance of orientation tuning
depends little on inhibition level, although very weak or very strong
inhibition leads to weak broadening or sharpening, respectively, of
tuning with contrast. For any inhibition level, an alternative measure
of orientation tuning—the circular variance—decreases with contrast
as observed experimentally. These results arise primarily because the
voltage noise causes large inputs to be much more strongly amplified
than small ones in evoking spiking responses, relatively suppressing
responses to nonpreferred stimuli. However, inhibition comparable to
or stronger than excitation appears necessary to suppress spiking
responses to nonpreferred orientations to the extent seen in vivo and
to allow the emergence of a tuned mean voltage response. These two
response properties provide the strongest constraints on model details.
Antiphase inhibition from inhibitory simple cells, and not just untuned
inhibition from inhibitory complex cells, appears necessary to fully
explain these aspects of cortical orientation tuning.

I N T R O D U C T I O N

The origin of orientation tuning in cat primary visual cortex
(V1) has long served as a model problem for understanding
how cerebral cortex transforms its inputs (e.g., Ferster and
Miller 2000). In cats, orientation tuning is synthesized in layer
4, the input-recipient layer, which is dominated by simple cells,
cells preferring light stimuli or dark stimuli in alternating,
oriented bands of visual space (Martinez et al. 2005).

Simple cell responses to oriented stimuli are tuned for
orientation and their tuning widths are invariant to changes in
stimulus contrast (Alitto and Usrey 2004; Anderson et al.
2000a; Sclar and Freeman 1982; Skottun et al. 1987). The latter

property provides an important constraint on mechanistic mod-
els of orientation tuning. Modeling shows that the summed
feedforward input to a simple cell from the lateral geniculate
nucleus (LGN) can be broken into two components: an orien-
tation-tuned linear component that has contrast-invariant ori-
entation tuning and a nonlinear component that is untuned—
equal for all stimulus orientations—and grows with contrast
(Troyer et al. 1998, 2002). In response to a drifting sinusoidal
grating, the linear component is the first harmonic (F1) of the
input, i.e., the size of its temporal modulation over a cycle,
whereas the nonlinear component is dominated by the mean or
DC of the input, i.e., the average input over a cycle (Fig. 1A).
If the untuned DC of the LGN input were unopposed, it would
cause an “iceberg” effect: a widening of orientation tuning with
increasing stimulus contrast (Fig. 1Ba, left). We have argued
that the DC LGN input can be suppressed and contrast-
invariant tuning achieved by adding a component of feedfor-
ward inhibition (inhibition that is driven by LGN input, by
cortical interneurons) that is untuned for orientation and grows
with contrast (Lauritzen and Miller 2003; Troyer et al. 1998,
2002). Others have come to similar conclusions (McLaughlin
et al. 2000; Wielaard et al. 2001). Some experimental support
for such untuned inhibition now exists (Hirsch et al. 2003).

In our previous modeling work, significant voltage noise
was not considered, except post hoc to smooth the input–
output function in Troyer et al. (2002). Recent intracellular
studies have found that, in response to a repeated stimulus, cat
V1 layer 4 simple cells in vivo show large trial-to-trial voltage
fluctuations, comparable in size to stimulus-locked voltage
modulations (Anderson et al. 2000a). The trial-averaged volt-
age response largely remains subthreshold, so that spiking
primarily occurs as the result of fluctuations from this average
response (Anderson et al. 2000a).

Herein we address the effects of this voltage noise in a
model of simple-cell orientation tuning. In the absence of
noise, we had shown that, to achieve contrast-invariant tuning,
feedforward inhibition must be stronger than feedforward LGN
excitation (as in Fig. 1Bc, left; stronger as measured by the
mean current when the cell is clamped at voltage threshold).
This made the total untuned DC feedforward input negative,
with size increasing with contrast. This compensated for
growth of the input F1 with contrast that, if unopposed (as in
Fig. 1Bb, left), would have provided suprathreshold input for
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more and more orientations as contrast increased. These op-
posing effects resulted in contrast-invariant tuning of the su-
prathreshold input (Troyer et al. 1998).

How does voltage noise alter this conclusion? The noise
“smooths away” threshold, eliminating the sharp distinction
between subthreshold and suprathreshold input, so that the
relationship between trial-averaged voltage and spiking re-
sponses becomes a power-law function (Anderson et al. 2000a;
Hansel and van Vreeswijk 2002; Miller and Troyer 2002) (Fig.
1B, right column). As a result, the theoretical requirement for
contrast-invariant spiking responses is simply that the averaged
voltage responses show contrast-invariant tuning (Hansel and
van Vreeswijk 2002; Miller and Troyer 2002), as observed
experimentally (Anderson et al. 2000a). What are the require-
ments on inhibition for this to occur? Must inhibition and
excitation be precisely balanced to cancel the untuned input
DC, leaving only the input F1, which has contrast-invariant
tuning (as in Fig. 1Bb, right)? Would stronger or weaker
inhibition disrupt the contrast invariance of tuning? Other
questions also arise. How strong must inhibition be to account
for the observed degree of suppression of voltage and spiking
responses at nonpreferred orientations (Alitto and Usrey 2004;
Anderson et al. 2000a)? What is required to account for the
observed orientation-tuned, contrast-invariant DC voltage re-
sponse to a drifting grating (Anderson et al. 2000a)? The DC
component of the feedforward input is untuned, so a tuned DC
component must be created in cortex from the cortical response
to the tuned F1 input component, e.g., by recurrent excitation
amplifying a tuned spiking response and/or by reversal poten-
tial effects that limit negative voltage excursions.

To address these questions, we study a minimal model: a
pair of mutually excitatory simple cells, receiving both feed-
forward excitation from the LGN and untuned feedforward
inhibition driven by LGN, in the presence of voltage fluctua-
tions matched to those observed physiologically (Anderson et
al. 2000a). We consider two models of inhibition, correspond-
ing to two kinds of inhibitory cells observed in vivo in cat V1
layer 4 (Hirsch et al. 2003): 1) inhibitory simple cells with an
orientation-untuned component to their response and providing
antiphase inhibition (as in Troyer et al. 1998) and 2) inhibitory
complex cells that are untuned for orientation (as in Lauritzen
and Miller 2003). We explore this model parametrically and
determine the strength of inhibition required to yield the
response properties described earlier. Although the model is
simplified, our study of it reveals key issues and trade-offs
required to account, more generally, for these response prop-
erties.

M E T H O D S

Analysis of experimental data

We analyzed raw voltage traces graciously provided to us by J.
Anderson and D. Ferster from their intracellular in vivo recordings in
cat V1 reported in Anderson et al. (2000a). These data are for five
simple cells and were collected at three contrasts and several orien-
tations for drifting grating stimuli with a 2-Hz temporal frequency.

For these cells, we averaged quantities such as firing rate and mean
voltage across trials at each orientation and contrast. In all analyses of
voltage, spikes were first detected by high-pass filtering and then
replaced by their threshold voltage. We analyzed the mean and
modulation of the voltage by examining the components of the
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FIG. 1. Contrast invariance: an illustration of the problem. A: voltage
induced by the lateral geniculate nucleus (LGN) input to a simple cell in
primary visual cortex in response to a drifting sinusoidal luminance grating,
without inhibition. This response can be broken into 2 components: the mean
or average over a stimulus cycle, the direct current (DC); and the temporal
modulation [or first harmonic (F1)]. F1 is tuned for orientation (largest at the
preferred orientation and going to zero for nonpreferred orientations), whereas
the DC is untuned, i.e., it is the same for all orientations. B, middle column:
peak (F1 � DC) feedforward input to a simple cell as a function of stimulus
orientation, for 3 stimulus contrasts (4, 16, and 64%) and 3 levels of inhibition
(a: no inhibition, i.e., LGN input alone; b: inhibition that balances LGN
excitation; c: strong inhibition that dominates LGN excitation). Left and right
columns: effect of passing these inputs through a hard threshold or soft,
power-law threshold (as induced by voltage noise), respectively. Note that with
the hard threshold (left column), contrast-invariant orientation tuning [as
measured by half-width at half-maximum (HWHM) response amplitude] arises
only with dominant inhibition, whereas with a soft threshold, it appears to arise
more flexibly. This paper explores this phenomenon. Center column: shading
is meant to indicate the lift-off from zero of the power law. Dashed line
indicates location of hard threshold for the left column. Curves in center
column indicate peak input, i.e., F1 � DC. These can be decomposed as
follows: the untuned DC is the “plateau” level on which a given curve sits, i.e.,
the value farthest from the preferred orientation, whereas the portion of the
curve rising above this represents the tuned F1. In this figure, antiphase
inhibition is assumed that subtracts from the LGN DC but adds to the LGN F1;
other forms of inhibition that subtract from the DC without adding to the F1 are
considered in the RESULTS.
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Fourier transform at zero frequency (the mean or DC component) and
at the frequency of the grating stimuli, 2 Hz (the first harmonic or F1
component). Details of the voltage fluctuations were analyzed by
subtracting the mean voltage from each trial and binning the remain-
ing voltage fluctuations. Two-time correlation functions in the back-
ground voltage fluctuations were obtained by removing spikes and
subtracting the mean from each trial, putting all trials together in one
voltage trace, and computing the autocorrelation.

Rate and voltage orientation tuning curves were obtained by fitting
the data y(�) to a Gaussian curve plus a baseline A exp[�(���0)2/
2�2] � B, where the goodness of fit of the full function versus the
mean B alone was assessed using an F-test. If the P-value from this
test was �0.05, we fit the data to B alone and assign the width a value
of 90°, which we classify as flat. We measure the widths of these
tuning curves using a variety of measures. One measure is the � from
the Gaussian fit. Another is the half-width-at-half-maximum
(HWHM) of the tuning curve, measured relative to the background
firing rate or the resting membrane potential. We also calculated the
circular variance for each tuning curve.

We use the slope of these width quantities, as a function of
log10 (contrast), to assess contrast invariance. In the Anderson–Fer-
ster data, three nonzero contrasts were tested: 8 or 12, 20, and 64%.
The slope is calculated over these three contrasts. To obtain an
estimate of the variance of these derived quantities, we perform a
bootstrap resampling of the data.

Model overview

We simulate the responses of simple cells in layer 4 of cat V1 to
drifting grating stimuli. We simulate two simple cells with identical
receptive fields that excite one another (recurrent excitation). The
simple cells receive feedforward input from the lateral geniculate
nucleus (LGN), feedforward inhibition from cortical inhibitory cells
driven by LGN input, and noise input that simulates voltage fluctua-
tions observed in vivo in such cells.

We model responses to drifting grating stimuli characterized by an
orientation �; a spatial frequency fstim, which we take to be constant
and equal to the frequency fRF of the Gabor function describing the
simple cell receptive fields (subsequently described); fstim � fRF � 0.8
cycles/deg; a temporal frequency � � 2 Hz; and a contrast C.

LGN input

We model the LGN component of the feedforward input to the
simple cells as in Troyer et al. (2002). Each simple cell has a receptive
field defined by a Gabor function, G(x), of even phase, where the
vector x defines the coordinates in the two-dimensional (2-D) plane.
The preferred spatial frequency of the Gabor, fRF � 0.8 cycles/deg, is
a typical value for about 5° eccentricity in the cat (Movshon et al.
1978). The parameters of the Gabor are the same as the “broadly
tuned” parameters of Troyer et al. (1998).

We define the positive and negative parts of the Gabor as G� and
G�, respectively: G�(x) � max {G(x), 0} and G�(x) � max {�G(x),
0}. Then, assuming that positive (negative) parts of the Gabor receive
ON-center (OFF-center) LGN input, assuming a linear model of the
LGN input, and ignoring the discrete nature of the grid of LGN cells,
the total LGN input to the simple cell may be written as

ILGN�t� �� dxG�(x)LON�x, t� � G��x�LOFF�x, t� (1)

where LON(x, t), LOFF(x, t) describe the response of an LGN ON- or
OFF-center cell, respectively, centered at spatial position x to a time-
varying sinusoidal grating stimulus.

We assume that the LGN inputs respond almost linearly to a
sinusoidal grating, in that they show a sinusoidal modulation of firing
rate in response to the sinusoidal stimulus. However, there are two

nonlinear aspects of response. First, the firing-rate modulation is
rectified, meaning that rates cannot drop below zero. Second, the
amplitude of the modulation is a nonlinear function of contrast, of the
form RmaxC

n/(C50
n � Cn). We define the 2-D vector fstim that describes

both the orientation and spatial frequency of the grating stimulus
� fstim � � fstim, and the angle of fstim is orthogonal to �. Thus the L(x,
t) values in response to the grating stimulus are given by

LJ�x, t� � �R max
J CnJ

C50
nJ

� CnJ cos �2� fstim � x � 2��t � �J � � R bkgnd
J ��

where [x]� � x; x 	 0 and [x]� � 0; x � 0. Here, J takes the values
ON or OFF. The phases are given by �ON � 0, �OFF � �; that is, we
assume that the OFF cell at a given spatial position responds with the
opposite temporal phase (a shift of 180°) as the ON cell at the same
spatial position. Following Troyer et al. (1998) and Cheng et al.
(1995), the other parameters are given by: Rmax

ON � 53 Hz, nON � 1.20,
C50

ON � 13.3%, Rbkgnd
ON � 10 Hz, Rmax

OFF � 48.6 Hz, C50
OFF � 7.18%, and

Rbkgnd
OFF � 15 Hz.
Define the function � G � as the absolute value of the Gabor:

� G �(x) � � G(x) �. If we note that G(x) � G�(x) � G�(x), whereas
� G �(x) � G�(x) � G�(x), and we define Lavg � (LON � LOFF)/2 and
Ldiff � (LON � LOFF)/2, we can rewrite Eq. 1 for ILGN(t) as

ILGN�t� �� dxG�x�Ldiff�x, t� � �G��x�Lavg�x, t�

Troyer et al. (2002) showed that the spatial Fourier transform of this
input was dominated by two components: a DC or time-independent
component that depends only on stimulus contrast and an F1 compo-
nent (time-varying sinusoidally, with the frequency of the stimulus)
that depends on both stimulus contrast C and stimulus orientation �.
In particular, the total LGN input can be written

ILGN�t� � DC�C� � F1�C, �� cos �2��t� (2)

where

DC�C� � ���0aavg
0 �C�/��1�0�adiff

1 �100%�	

F1�C, �� � �1���adiff
1 �C�/��1�0�adiff

1 �100%�	

The aavg and adiff terms represent a spatial Fourier transform of the
average Lavg(x) and difference Ldiff (x), respectively, of the responses
of LGN ON-center and OFF-center cells. The superscript reflects the
harmonic of the spatial frequency fstim of the grating at which these
amplitudes are measured. The variable � represents the orientation of
the stimulus and thus the orientation at which the spatial 2-D Fourier
transform is measured, where � � 0 is the preferred orientation of the
cell. The � and � � � terms are the Fourier transform of the Gabor
receptive field and the Fourier transform of the absolute value of the
Gabor, respectively, and are also taken at multiples of fstim because
these components dominate the expansion. The resulting DC and F1
terms contain a contrast dependency inherited from the LGN cells
[aavg(C), adiff (C)] and an orientation dependency from the Gabor
[�(�)]. They are normalized so that the response to the optimal
stimulus at maximal contrast gives an F1 amplitude of 1. The DC
amplitude at maximal contrast is then 0.87.

We take the total LGN input to a simple cell to be given by Eq. 2
but with negative values set to zero

ILGN�t� � �DC�C� � F1�C, �� cos �2��t�	� (3)

We use a conductance-based integrate-and-fire model to simulate our
cortical simple cells. We take the excitatory conductance opened by
the LGN input to be proportional to ILGN(t) as given by Eq. 3. For the
case of simple-cell inhibition, we assume that feedforward inhibition
comes from simple cells receiving identical LGN input except with
opposite temporal phase. The inhibitory input to the excitatory cell is
assumed to be linear in this LGN input, but scaled by an overall
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inhibitory gain factor w, which gives the relative strength of the
inhibitory versus excitatory input. Thus the total feedforward (FF)
input to the simple cell becomes

IFF � gLGN
E �VE � V� � gFF

I �VI � V� (4)

where

gLGN
E � gstim�DC�C� � F1�C, �� cos �2��t�	�

and

gFF
I � wgstim�DC�C� � F1�C, �� cos �2��t�	�

The excitatory conductance has a reversal potential VE � 0 mV and
inhibition VI � �70 mV. We also consider inhibition from a com-
plex-cell–like source, in which case gFF,complex

I � wgstimDC(C).
The stimulus amplitude gstim is adjusted so that the cells have a

range of modulations of the voltage responses to drifting gratings that
approximately matches the range observed in vivo, which effectively
sets our contrast scale. In the full model, which includes recurrent
excitation (subsequently described), setting gstim � 2.0 nS gives a 3.0-
to 4.4-mV range of voltage modulation and a 0.4- to 1.3-mV range of
voltage mean at the preferred orientation of the cell in a contrast range
of 8 to 64% for w � 2.5. In the model with complex-cell inhibition,
the inhibition does not add to the F1, so we adjust gstim to compensate.
By setting gstim � 4.0 nS (other parameters set as subsequently
described), we obtain an F1 range of 3.6 to 4.8 mV and a DC range
of 0.3 to 1.4 mV over the same contrasts and at w � 2.5.

Noise

Noise in the model is generated by an Ornstein–Uhlenbeck process
as in Destexhe et al. (2001), with parameters set to match the voltage
fluctuations observed in these cells. There are several independent
noise processes that contribute to the conductances, as subsequently
described. Calling any one such process 
(t), it is determined by the
equation

d
�t� � � �
�t�dt � �DdW �t�

which is the Ornstein–Uhlenbeck process. The term ��
(t) represents
drift back to zero with characteristic timescale 1/�. The other term is
the Weiner process: D is the diffusion constant and dW(t) denotes a
Gaussian white noise process. It has been shown previously (Destexhe
et al. 2001; Gillespie 1996) that this process has an exact update rule
that allows a simple approach to integrating the differential equations
for the conductances. The update rule is


�t � 
t� � e��
t
�t� � �D

2�
�1 � e�2�
t� N �0, 1� (5)

where N(0, 1) is a random number drawn from a Gaussian distribution
with mean zero and unit SD.

We inject independent conductance fluctuations in the excitatory
and in each of two inhibitory channels. The noise in each conductance
is characterized by a constant mean level gbkgnd and the time-varying
noise 
(t). Because the noise cannot inject a negative conductance, the
sum of these two terms is rectified at zero. Thus the expressions for
the excitatory and inhibitory conductances can be written as

gnoise
X � �gbkgnd

X � 
X �t�	� (6)

where X � E, Ia, or Ib. We have introduced two inhibitory noise
processes, Ia and Ib, with reversal potentials of �70 and �90 mV,
respectively. We think of these roughly as corresponding to �-ami-
nobutyric acid types A and B (GABAA and GABAB, respectively)
conductances, respectively. More generally, we expect that real cells
would have fluctuating input from many types of channels with
different reversal potentials. The preceding choice gives one noise

process per reversal potential we use in the model because we have a
0-mV excitatory channel, a �70-mV inhibitory channel from the
LGN input, and a �90-mV channel from the adaptation current (see
following text). Furthermore, the �90-mV noise processes appeared
needed to match the data. Using only a single inhibitory noise process
with reversal potential �70 mV, it was difficult to get the width of the
distribution of voltage fluctuation amplitudes to be as wide as ob-
served experimentally without driving the background firing rate up
(i.e., without having too many fluctuations toward suprathreshold
voltages). Adding a second process with reversal potential �90 mV
allowed the distribution to widen away from threshold, so that we
could obtain both realistic distribution widths and realistic back-
ground firing rates.

The parameters of the noise processes were set as follows: All were
constrained to have the same time constant 1/�. Its value was deter-
mined by a fit to the autocorrelation in voltage fluctuations as
observed intracellularly by Anderson and Ferster in cat V1 simple
cells. Here we assume that the correlation time in the voltage fluctu-
ations corresponds to the sum of the characteristic time in the
conductance fluctuations and the membrane time constant. The two-
time correlation function for an Ornstein–Uhlenbeck process may be
written as (Gillespie 1996)

�
�t1�
�t2�� �
D

2�
e���t1�t2�

We fit this autocorrelation to a single exponential. As shown in Fig. 2,
this gives a correlation time of approximately 29 ms at background
(stimulus contrast of 0%). Given a cell time constant of 15 ms at rest,
we use 1/� � 29 � 15 � 14 ms in all of our noise processes. This
yields a good match between correlation times in model and experi-
mental voltage fluctuations (Fig. 2).

We set the mean amplitudes of the two inhibitory noises equal
because we have no reason to think one or the other dominates. To
mimic the width of the voltage fluctuations about rest seen in vivo of
3.47  0.42 mV (SD given across the five cells we chose for our
analysis) and to maintain a background firing rate that is nonzero but
not 1 Hz, we set gbkgnd

E � 6.5 nS, gbkgnd
Ia � gbkgnd

Ib � 9.0 nS, DE �
0.67 nS2/ms, and DIa � DIb � 1.29 nS2/ms. With these parameters we
are able to obtain SD � 3.50 mV in our voltage fluctuations in the
model.

Recurrent excitation

We seek to mimic excitation from similarly tuned cells in the
network (recurrent excitation), yet keep the model as simple as
possible. As a first and minimal pass at reproducing recurrent excita-
tion, we add a single additional simple cell with the same receptive
field as the first cell and connect the two with reciprocal excitatory
synapses. The two cells receive identical stimulus-dependent excita-
tion and inhibition from the LGN and receive noise that is statistically
identical (governed by the same parameters) but independent. The
recurrent synapse is assumed to be a mixture of N-methyl-D-aspartate
(NMDA) and �-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid–receptor-mediated currents and is defined as

grecurrent�t� � grec_amp �
i

0.8�A NMDA
fast exp[�(t � t̃i �/� NMDA

fast,fall]

� ANMDA
slow exp��(t � t̃i�/� NMDA

slow,fall] � exp[�(t � t̃i)/�NMDA
rise ]}

� 0.2�exp[�(t � t̃i�/� AMPA
fall ] � exp[�(t � t̃i)/� AMPA

rise ]} (7)

where ANMDA
fast � 0.88, ANMDA

slow � 0.12, �NMDA
fast,fall � 63.0 ms, �NMDA

slow,fall �
200.0 ms, �NMDA

rise � 5.5 ms, �AMPA
fall � 4.0 ms, and �AMPA

rise � 0.2 ms, as
in Krukowski and Miller (2001) but with an altered �AMPA

fall chosen to
agree more closely with in vitro data from rat cortex (Hausser and
Roth 1997; Hestrin 1993; Hestrin et al. 1990; Stern et al. 1992). The
sum is over all previous spike times �ti�, where t̃i � ti � td imposes a
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synaptic delay, td � 1.5 ms, between spiking in one cell and the arrival
of that impulse at the other. For simplicity, and because this conduc-
tance is activated only when the voltage is near spike threshold, the
voltage dependency of the NMDA conductance is ignored. To obtain
firing rates at � � 0 and 100% contrast between 5 and 15 Hz for the
w values chosen here, we set grec amp � 4.5 nS. At 6 nS, the rate
enters a nonphysiologic positive feedback regime, whereas at �1 nS,
we do not see much effect of the recurrence.

Spiking

We set the threshold voltage about 10 mV above rest, to mimic
approximately the relationship between rest and threshold seen in real
V1 simple cells. When the cell’s voltage reaches spike threshold,
Vthresh � �50 mV, a spike occurs, and after an absolute refractory
period of 1.5 ms the cell’s voltage is reset to Vreset � �56 mV. The
reset voltage is set so that the slope of the firing rate versus the size
of a constant injected input current ( f–I) curve matches that seen in
slice experiments, as in Troyer and Miller (1997). For this analysis,

we set the noise, recurrent, LGN, and feedforward connection
strengths to zero. With a Vreset � Vthresh � 6 mV � �56 mV, we
obtain a slope of 235.9 Hz/nA, which agrees well with the average
slope measured in slice by McCormick and colleagues, 241 Hz/nA.
After each spike, we open a spike rate adaptation conductance that
takes the form

gadpt�t� � gadpt_amp �
i

exp��t � ti�/�rise	 � exp��t � ti�/�fall 	 (8)

with gadpt amp � 3.0 nS, �rise � 1.0 ms, and �fall � 83.3 ms, as in
Troyer et al. (1998). The sum is over all previous spike times �ti�. The
reversal potential of this conductance is �90 mV.

dV/dt for a simple cell in our model

By combining these conductances and one more to be subsequently
described, we obtain the main equation we use in simulating responses
of our model neurons to input stimuli
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FIG. 2. Comparison of voltage fluctua-
tions in our model data to in vivo intracel-
lular data. A: example traces of single-trial
responses to drifting grating stimuli at the
preferred orientation of the cell at 0% con-
trast (background), marked with gray lines,
and 64% contrast, black lines. Intracellular
data are shown on the left and model data are
shown on the right. B: autocorrelation in the
background fluctuations of the voltage in the
in vivo data, shown in black, is fit to a single
exponential, which was used to define the
time constant of the model noise processes.
Fit is shown in gray; the resulting autocor-
relation in the model data voltage fluctua-
tions is shown with a dashed line. C: input–
output curve for the model cell. Average
voltage was calculated over 20-ms incre-
ments and binned in 0.1-mV increments for
each value of the inhibitory gain w. Firing
rate was calculated within the same time bin
and the background rate was subtracted.
Data here are plotted for w � 2.5. Error bars
show SDs of the rate in each voltage bin.
Inset: same data on a log–log plot along with
a fit to the function rate � cV�, which gives
� � 2.36. D: histograms showing probabil-
ity density distributions for voltage fluctua-
tions around the trial-averaged mean re-
sponse. On the right, for the model data, the
mean distributions are shown as well as the
SD in each voltage bin. Black bars represent
64% contrast and gray bars represent back-
ground fluctuations.
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CdV�t�/dt � �gLGN
E � grecurrent � gnoise

E ��VE � V�t�	 � �gFF
I � gbkgnd,offset

Ia

� gnoise
Ia ��VIa � V�t�	 � �gnoise

Ib � gadpt��VIb � V�t�	 (9)

where C � �cell/Rinput. At rest, the input resistance of our cell is 31.75
M� and �cell � 15 ms. This gives a capacitance C � 0.472 nF. At the
maximally driving stimulus, the input resistance drops to 15.36 M�,
leading to a conductance ratio between maximal stimulus and back-
ground of about 2, which agrees with experiment (e.g., Anderson et al.
2000b; Monier et al. 2003).

LGN cells have nonzero background firing rates, so that gFF
I �

0.5wgstim at 0% contrast. As w increases, this contribution to the
inhibitory conductance also increases. To maintain a constant back-
ground conductance state for each value of w, we need to balance the
background input from the feedforward responses by offsetting the
inhibitory DC term. We do this by starting from a large w state, wl �
6.0, and adding to the background whatever DC inhibition is needed
to keep background inhibition constant as w changes

gbkgnd,offset
Ia � �w1 � w��0.5gstim�

Integration algorithm

We implement this scheme for modeling the membrane potential of
the cell using a time step of 0.25 ms in the model and updating
according to

V�t � 
t� � V�t�e�
t/RCcell � VSS�1 � e�
t/RCcell �

where R � ¥n gn is the instantaneous resistance of the cell at time t
and Ccell is the capacitance of the cell. The term VSS is the steady-state
voltage, given by

VSS � R �
n

gnVn

where the sum over n runs over all our conductances and their
corresponding reversal potentials. For our model, we have found that
this integrator behaves as well as one using a fourth-order Runge–
Kutta algorithm, differing from the latter only by 0.001 mV root
mean square (RMS). All simulations of a given stimulus are run for
3 s. We presented stimuli at 10 contrasts (0, 0.5, 1, 2, 4, 8, 16, 32, 64,
and 100%) and 11 orientations (0, 5, 10, 15, 20, 25, 30, 40, 50, 70, and
90°). We have no direction dependency in the model, so without loss
of generality we can consider only positive orientations. Tuning
curves are plotted symmetrically for visualization purposes. We per-
form 1,000 trials of each stimulus and group these trials into 50
“experiments” of 20 trials each.

Tuning fits and measures

We use the same tuning fits and width measures for our model data
as we described in characterizing the experimental data from Ander-
son and Ferster. The �, HWHM, and circular variance were calculated
for each w and contrast. The slopes of these fits were calculated over
all contrasts and also only at contrasts where reliable tuning was
measured at every value of w (	4%, for example). Because we have
access to a large number of trials, we calculate variance in derived
quantities directly by using several sets of independent “experiments.”
Specifically, we have 50 “experiments” each consisting of data from
20 trials taken at each orientation, contrast, and w. The 50 “experi-
ments” allow us to obtain error bars on tuning widths and quantities
we derive using these widths, such as the slope of the widths over
contrast. We also performed the same analyses using 10, 50, and 100
trials per stimulus. We found that the 20-trial averaged data were the
best compromise between finding fits that matched our best estimate
of the actual mean tuning in the model, which we approximate by
examining the 1,000-trial averaged tuning, and comparing our model
data to the number of trials realistically achievable in an in vivo
experiment.

Other parameter sets

We also tested a model with complex-cell–like feedforward inhi-
bition, in which gFF

I � gFF,complex
I � wgstimDC(C). Because the F1 of

the LGN input is not amplified by the inhibitory gain, we raise the
stimulus conductance and adjust the total background inhibitory
conductances accordingly to maintain the same range of modulations
in the membrane potential with the stimulus frequency. For these
simulations, we set gstim � 4.0 nS, gbkgnd

Ia � 5.0 nS, gbkgnd
Ib � 9.0 nS,

DIa � 0.40 nS2/ms, and DIb � 1.29 nS2/ms. We lowered the Ia

background conductance to offset the introduction of a higher feed-
forward background inhibition resulting from the increase in gstim. We
increased the Ib conductance slightly to keep firing at rest �1 Hz. All
other parameters remained the same and the cell’s input resistance at
rest is 29.00 M�. The SD of the voltage noise is about the same, here
being 3.14 mV. With this parameter set, as stated earlier, the F1 varies
over 3.5 to 4.9 mV and the DC over �0.2 to 3.4 mV between 8 and
64% contrast and over the full w-range.

Unless otherwise noted, error bars in plots of model data show the
SE across the 50 “experiments” we performed with 20 trials each.

R E S U L T S

Basic model

Our model addresses the effects of noise on the amount of
inhibitory gain required to obtain contrast-invariant orientation
tuning in V1 simple cells. By constraining all but one param-
eter—the strength of inhibition—we are able to discuss cleanly
the effects of noise and assess how inhibition affects the width
of orientation tuning. We use a conductance-based single-
compartment integrate-and-fire cell model. To qualitatively
include the effects of recurrent intracortical excitation while
keeping the model as simple as possible, we include two
simple cells that mutually excite one another.

We study responses to drifting grating stimuli filtered
through a simple model of the lateral geniculate nucleus
(LGN). As was shown previously (Troyer et al. 2002), the total
input to a simple cell from the LGN in response to such a
periodic stimulus can be written as a constant (DC) term, plus
a term that temporally modulates with the temporal frequency
of the grating (F1) (Fig. 1A). Both terms inherit their contrast
response properties from the ON and OFF cells in the LGN. For
a given stimulus contrast C, the size of the F1, but not of the
DC, depends on the orientation of the drifting grating �. The
excitatory conductance from the LGN can thus be written as

gLGN � gstim�DC�C� � F1�C, �� cos �2��t�	�

where gstim determines the overall amplitude of this conduc-
tance and [x]� � max {x, 0}. The F1 and DC terms are
normalized such that at the preferred orientation of the cell and
maximal contrast, F1 � 1. We take this as the excitatory input
to our simple cells.

With only this form of stimulus-induced input, orientation
tuning width would grow with increasing contrast (Fig. 1Ba).
To kill this so-called iceberg effect, something must suppress
the untuned DC response. A relative suppression is achieved
by the power-law input–output relationship that is induced by
the voltage noise, discussed in the following text, because this
amplifies larger inputs much more than smaller ones (Fig. 1Bb,
right column). However, additional suppression may be re-
quired, as we explore here. We consider two possible sources
for such suppression: antiphase inhibition from similarly tuned
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simple cells (see Eq. 4) and complex-cell–like inhibition. We
present detailed results for simple cell inhibition and then
summarize results for complex-cell inhibition.

Our main results involve the examination of contrast invari-
ance of various measures of orientation tuning, of both the
spiking and the voltage responses, as a function of the weight
of the inhibition, which is governed in our model by the
parameter w. Because of the difference in reversal potentials of
excitatory and inhibitory stimulus-driven conductances (0 and
�70 mV, respectively), stimulus-induced excitatory and inhib-
itory currents are balanced at threshold voltage (�50 mV)
when w � 2.5. We will refer to w � 2.5 as “balanced
inhibition” and to significantly larger values of w as “strong
inhibition” and significantly smaller values as “weak inhibi-
tion.”

Voltage fluctuations

Our model is constrained to reproduce the sorts of back-
ground voltage fluctuations observed in vivo. The cells are
each given three independent background noise conductance
inputs, one representing an excitatory conductance with rever-
sal potential 0 mV and one each representing inhibitory con-
ductance with reversal potentials of �70 and �90 mV, respec-
tively. Noise processes between the two cells are not corre-
lated. We assume that each noise conductance can be modeled
as a random walk with a drift back to a mean value as described
by Eq. 5. The parameters describing the noise are fit so that the
background firing rate of the cells is �1 Hz, and the resulting
voltage noise fluctuations match those seen in experimental
data from cat V1 cells (provided by Anderson and Ferster).

The resulting voltage traces at rest and in response to a
grating at the preferred orientation and 64% contrast show
similar voltage fluctuations in a model cell with w � 2.5 as in
a simple cell in cat V1 recorded in vivo (Fig. 2, A and B). This
can be examined more precisely by plotting a histogram of the
fluctuations about the mean background potential (Fig. 2D),
from which it can be seen that the distribution of voltage
fluctuations in the model reasonably matches that observed in
vivo. There are also some small differences: the particular cell
illustrated in Fig. 2D shows a slightly non-Gaussian behavior,
having what may be a second peak at a slightly negative
potential relative to rest. Other cells did not show this behavior,
so we did not attempt to reproduce this possible two-state
switching. Across the five cat V1 cells we analyzed, the width
of the background voltage fluctuations was 3.47  0.42 mV.
The width of the model voltage noise distribution at rest was
3.5 mV and was constant over all values of w tested.

As a result of the voltage noise, the relationship between the
trial-averaged rate r and the trial-averaged voltage V is well
described by a power law r � V�, where the membrane
potential is measured relative to the mean resting membrane
potential (and excursions below rest are set to zero) and rate is
measured with mean background firing subtracted (see Fig. 2C,
for the case w � 2.5) (Hansel and van Vreeswijk 2002; Miller
and Troyer 2002). We fit this curve to the function R � cV�

with a least-squares procedure over a voltage range from 0.01
mV to the maximum voltage observed for that particular w. We
find that the power � falls in the range 2.16 � � � 3.19 over
the set of w values we tested, and roughly increases with w.
These values are comparable to, although a bit less than, those

observed in vivo, where the most common values are in the
range 2.75–3.5 (Priebe et al. 2004).

Rate and voltage tuning curves

In response to a drifting grating stimulus, the orientation-
tuning curves for the firing rate show an untuned component
that grows with contrast for very weak inhibition, but that is
largely or entirely eliminated by balanced or strong inhibition
(Fig. 3). Contrast invariance can be assessed by eye in these
plots by examining the overlap of the rescaled curves plotted to
the right of each set of raw data. Only moderate inhibition
(inhibition greater than w � 0.5 but less than the balanced
level, w � 2.5) is needed to bring the major parts of the scaled
curves, excluding the tails, into alignment. Increasing inhibi-
tion brings the tails of the scaled rate curves into alignment and
then leads to suppression of the tails of the scaled high-contrast
curves relative to those of the low-contrast curves. The tuning
curves for peak voltage behave similarly but seem to require
somewhat more inhibition for a given behavior than the rate
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Rate is shown at 3 contrasts (4, 16, and 100%) and is plotted for each of 3
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curves (data not shown). This difference coupled with the fact
that the peak voltage curves are more broadly tuned than the
rate curves are expected, given the power-law relation between
voltage and rate, which amplifies large voltage responses much
more than small ones.

The basis for this tuning can be better understood by sepa-
rately examining the F1 and DC of the voltage response (Fig.
4). The voltage F1 shows contrast-invariant tuning at all
inhibition levels (Fig. 4B), as expected, because the F1 of the
LGN input shows contrast-invariant tuning. The problem in
creating contrast-invariant spiking orientation tuning is pre-
sented by the voltage DC, which is constant across orientations
for the LGN input. This untuned DC input component must be
sufficiently suppressed so that, even at high contrast, it does not
by itself drive significant spiking, as assessed by the spiking
response at orientations far from the preferred. In our model,
this requires moderate inhibition (Fig. 4A; compare with Fig.
3A). Furthermore, to match experiments, the voltage DC itself
should show contrast-invariant orientation tuning. This re-
quires that a tuned voltage DC component be created. In our
model, this is created by recurrent excitation, which increases
net depolarization to stimuli that induce spiking. This also
requires that the untuned DC component be sufficiently sup-
pressed that the tuned DC component dominates it, which
requires strong inhibition in our model (Fig. 4A).

Contrast invariance of tuning

As can be seen in Figs. 3 and 4, the degree to which tuning
curves are judged to be contrast invariant depends on which
aspects of the curves are examined. We consider several
measures that are commonly used in the literature and that
assess different aspects of tuning. First, we consider the SD, or
�, of the Gaussian when the curves are fit by the sum of a
Gaussian and a flat background term. This measure is insensi-
tive to an untuned component of response or to the level of

response to nonpreferred orientations because this is captured
by the background term. Thus it captures only the width of the
tuned part of the curve. Second, we consider the half-width at
half-maximum (HWHM) of the tuning curve, where the size of
the maximum response is measured relative to background
firing rate or resting membrane potential (not relative to the
response to nonpreferred orientations). This measure is sensi-
tive to responses that are half the maximum response or larger
and so becomes sensitive to an untuned component of response
when such a component has a size comparable to the half-
maximum. Finally, we consider the circular variance of the
tuning curve, a measure that is strongly affected by the size of
the response to nonpreferred orientations relative to the pre-
ferred. In experimental studies, HWHM and � show contrast
invariance (Alitto and Usrey 2004; Anderson et al. 2000a;
Sclar and Freeman 1982; Skottun et al. 1987), whereas circular
variance does not (Alitto and Usrey 2004), so we will begin by
examining the first two measures and then consider the third.

For weak or balanced inhibition, the � of the firing-rate
tuning curves show no systematic variation with stimulus
contrast for contrasts 4%, whereas for strong inhibition, �
develops a small, but significant narrowing with increasing
contrast (Fig. 5A, left). The HWHM data show a marked
iceberg effect for weak w; contrast invariance is seen for
balanced inhibition and strong inhibition yields, again, a small
but significant negative trend with increasing contrast. Results
for lower contrasts become extremely noisy, particularly with
weak inhibition, making width difficult to measure and result-
ing in tuning that appears flat by our assay (� or HWHM of
90°). Experimental data show at least approximate contrast
invariance down to contrasts as low as 2% (Skottun et al.
1987); possible reasons for this discrepancy are addressed in
the DISCUSSION.

To quantitatively assess the degree of contrast invariance,
we assess the slope of the curve of width versus log contrast.
The slope detects any trend in the data, such as an overall
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FIG. 4. Separate voltage tuning curves
for the DC and F1 of the membrane poten-
tial. Data are plotted with the same format as
in Fig. 3. DC voltage is measured relative to
the resting membrane potential. A: mean, or
DC, voltage tuning curves as a function of
orientation at 3 contrasts (4, 16, and 100%)
plotted for each of 3 values of w. From top to
bottom: w increases from 0.5 to 6.0 as la-
beled. On the right, curves are normalized so
that peaks coincide at 1 and 0 marks the
resting membrane potential. B: same format
as in A, but for the modulation, or F1, of the
voltage. In the rescaled plots, 1 is where all
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broadening of width with contrast. We measure the slope of
tuning curves over contrasts of 	4% because 4% is the lowest
contrast at which we can reliably measure tuning for all values
of w. In the firing rate data from the model, the slope of either
� or HWHM is not significantly different from zero for w in the
range 1 to 3 and, in some cases, for smaller w [i.e., for weak to
balanced inhibition (Fig. 5, right)]. For weaker inhibition,
tuning broadens with increasing contrast (an iceberg effect),
whereas for stronger inhibition, there is a small but significant
trend for tuning to sharpen with increasing contrast. Data from
a few cells (n � 5) measured intracellularly in cat V1 show
variability in these measures greater than that seen in the model
(slope in Fig. 5), but a larger sample of extracellularly recorded
cells in ferret visual cortex (n � 47) shows a mean � slope
fairly tightly bounded at zero (star in Fig. 5A, right).

The DC voltage acquires a tuned component that evolves
with increasing w as is shown in Fig. 6, A and B. Slopes of the
DC voltage tuning are taken for contrast of 	8% because this
is the lowest contrast at which nonflat tuning is observed for
most values of w. This tuning arises at lower contrasts for
increasing w. The slope of the � of the tuning is quite variable
below about w � 2.0, where the tuning is noisy. Above w �
2.0 the slope is not significantly different from zero (Fig. 6A).

For all w, the slope of the � part of the DC tuning falls within
the broad range of values observed experimentally in the five
cells recorded by Anderson and Ferster. The HWHM of the DC
grows with contrast at low w (Fig. 6B) as the result of a rising
untuned component of the mean voltage. Above w � 3.0, this
is sufficiently suppressed and the slope of the HWHM falls
within the range of smaller slopes observed in three of the five
intracellularly recorded cells.

Examining the tuning of F1 of the voltage (Fig. 6C) reveals
some broadening. For all w, the F1 has a positive, though
small, slope. This slope is, in part, attributed to the flattening of
the peak in F1 tuning that results from the fixed spike threshold
and reset in our model. If spiking is eliminated, which might
better model the real data in which spike threshold is highly
variable and there is little reset, the � part of the fit to the
voltage F1 becomes quite contrast invariant over all w (data not
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contrast change from 10 to 100%. Shading of the points represents how
significantly the measured mean deviates from zero as measured by a t-test.
White circles indicate a value of P 	 0.05; gray indicates 0.05 � P 	 0.01;
black indicates a value of P � 0.01. Error bars on model data denote SE.
Results from some experimental data are shown at the right of these model
data. Black ✕ symbols denote data from 5 cells from cat primary visual cortex
(V1) measured intracellularly by J. Anderson and D. Ferster. Gray error bars
here indicate SD. (Off-axis experimental data point is �6.573  4.428,
mean  SD.) Star indicates the mean slope for data of Alitto and Usrey (2004)
from V1 in ferrets with error bars indicating SE. B: HWHM is plotted vs.
log10 (contrast). Same symbols are used as in A. HWHM is measured relative
to the background firing rate. (Off-axis experimental data point in the right
panel is �7.574  5.006.) We label tuning as flat when less than one third of
the 50 experiments revealed measurable tuning.
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shown). Experimentally observed slopes in this quantity vary
widely and our model slopes fall within this range.

Suppression of the null

We have discussed the suppression of the untuned mean
input in the rate and voltage responses and have attributed this
suppression to inhibition. To make these statements more
quantitative, we examine the variation of the rate and voltage
responses at the null, defined as the orientation perpendicular
to the preferred. The null rate increases with contrast at low w,
has zero slope versus contrast for 3.0 � w � 3.75, and
decreases with contrast for higher w (Fig. 7A). Apart from one
cell with a large positive slope, the in vivo intracellular data
show a zero or slightly negative slope in the null rate (Fig. 7A).
In extracellular recordings in ferret there was no significant
change on average between null responses at low contrast and
at high contrast (Alitto and Usrey 2004), although there was a
statistically insignificant change in the mean null response
corresponding to a slope of about �0.2 in Fig. 7A.

The inhibitory strength that achieves zero slope in the null
rate depends on several factors. It is not necessary that the
inhibition be strong enough to prevent depolarization by a null
stimulus. On the contrary, a null stimulus induces a net depo-
larization that grows with contrast for all but the strongest

inhibition (Fig. 7B). This is expected, given that our definition
of “balanced” inhibition means that the inhibitory and excita-
tory currents balance at threshold voltage and so are depolar-
izing at rest voltage. Rather, to achieve a zero slope in the null
rate, inhibition must be strong enough to keep the growing
depolarization small enough that its effect on firing rate is
negligible. This probably occurs through a combination of two
effects. First, the power law function determining the firing rate
as a function of voltage remains effectively zero for small
enough depolarizations. Second, the increase in depolarization
with contrast is accompanied by an increase in conductance
that, assuming inhibition is stronger than balanced, has a
subthreshold net reversal potential. This suppresses the prob-
ability of suprathreshold voltage fluctuations, offsetting the
increasing depolarization. As an example, in our data for w �
4.0, the peak (F1 � DC) trial-averaged voltage at the null
varies from 0.3 mV at 4% contrast to 1 mV at 100% contrast,
whereas the RMS of voltage fluctuations shrinks from 3.5 mV
at 4% contrast to 3.25 mV at 100% contrast. Thus the distance
from peak trial-averaged voltage to threshold remains a con-
stant number of SDs of the voltage noise across contrasts
[(9.7/3.5) � 2.77 SDs at low contrast, (9/3.25) � 2.77 SDs at
high contrast], suggesting a zero slope for firing rate. The slope
is actually slightly negative for w � 4.0, suggesting some
additional slight suppression of the high end of the voltage
noise distribution with contrast, and indeed we also find that
the kurtosis of the w � 4.0 voltage distribution decreases with
contrast.

Another indication of the presence of inhibition in physio-
logical data is that the firing rate to a null stimulus at all
measured contrasts tends to be lower than the background
firing rate, both in the extracellular data of Alitto and Usrey
(2004) and in the intracellular data from Anderson and Ferster.
In the latter data, three of five cells showed suppression of the
null firing at all contrasts, relative to the blank stimulus. In one
remaining cell, null firing was suppressed at two of three
contrasts tested, and in the other, null firing was higher at all
contrasts than background. In the model, the null firing is
suppressed relative to background for all contrasts that elicit a
response when inhibition is strong enough to yield a negative
slope in Fig. 7A (i.e., for w 	 3.5).

Null/preferred ratio and circular variance are not
contrast invariant

The extracellular studies of Alitto and Usrey (2004) also
reported that the ratio of null to preferred orientation firing
rates decreases with increasing contrast, with a slope of about
�0.1 (a decrease of ratio from 0.14 to 0.08 over about 0.6 log10
units). Similar slopes in the range 0 to �0.1 are seen in four of
the five cells measured intracellularly in vivo (Fig. 8A). A
roughly similar decrease is seen in the model for all w,
although strong inhibition is needed to make the slope as small
as �0.1 (Fig. 8A). However, this slope depends on the starting
point (i.e., the choice of low contrast), which was rather high
in the extracellular recordings (average 21% contrast); using
such a high starting point would give appropriately low slopes
in the model for almost any w (e.g., when we measure the slope
from 21 to 100%, the slope varies from �0.15 to �0.05 as w
varies from 0.5 to 6.5). A negative slope is expected for many
reasons: the power-law input–output relation between the
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FIG. 7. Enhancement or suppression of the null rate and DC voltage as a
function of contrast and w. A: average rate in response to a stimulus oriented
at 90° relative to the preferred (the null) is plotted vs. log10 (contrast) for 3
values of the inhibitory gain w. Note that the null rate grows with increasing
contrast for low w and passes monotonically, with increasing w, into a regime
in which it is suppressed with increasing contrast. Slope of the rate for contrast
	8% is shown in the right panel. Slope is measured in units of Hertz per
decade log10 (contrast). Experimental data from Anderson and Ferster are
shown for comparison. (Off-axis experimental data point is 2.106  0.547.)
One cell (the second one plotted from the left) had no null firing, whereas
another (the leftmost) had a very low null firing rate. B: DC part of the voltage
response to a null stimulus rises with contrast for all but the largest w. Curves
are plotted as in A. Colors indicate significance of the slope as in previous plots
and error bars indicate SE. Slopes are measured in units of millivolts per
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voltage and rate ensures that the null/preferred response ratio
decreases with increasing contrast, and this is reinforced by the
amplification of preferred but not null responses by recurrence
and by the suppression of null but not preferred responses by
inhibition (although complex-cell inhibition can also suppress
preferred responses).

Another measure of width used by experimenters is the
circular variance (Alitto and Usrey 2004; Ringach et al. 2002).
This measure is sensitive to either a broader peak or a higher
baseline in the orientation tuning curve—either increases the
circular variance. In particular, for tuning curves that are well
described as a Gaussian plus a baseline and for which the
Gaussian tuning is invariant with stimulus contrast, both of
which apply well to V1 cells, the circular variance increases
monotonically with the ratio of the null to preferred response
(see APPENDIX). This behavior is quite different from measures
like �, which are explicitly invariant with respect to changes in
this ratio. Corresponding to the decrease of the null/preferred
response ratio with contrast for all w (Fig. 8A), the circular
variance of the firing rate response decreases with contrast over
the entire range of w studied (Fig. 8B). Such a decrease was
observed in extracellular recording by Alitto and Usrey (2004).
The mean slope of this decrease was less in the extracellular
recording (star in Fig. 8B, right) than that in the model, but
again, slopes in the extracellular recording were measured
starting from a low contrast that averaged 21%, whereas model
slopes were calculated starting from 4% contrast. As can be
roughly seen in Fig. 8B, left, model slopes would range from

�0.08 to �0.13 as w varies from 0.5 to 6.5 if the larger values
were used for the starting contrast. The in vivo intracellular
data generally show negative slopes, but smaller than the mean
of the extracellular recordings.

Complex-cell inhibition

We also tested the model with inhibition arising solely from
complex inhibitory cells like those observed in Hirsch et al.
(2003) and modeled in Lauritzen and Miller (2001). Those
cells had overlapping light and dark responses throughout their
receptive fields and were essentially untuned for orientation.
We model input from these cells in response to gratings of any
orientation as temporally unmodulated and growing with con-
trast: gFF,complex

I � wgstimDC(C). This inhibition suppresses the
untuned DC excitation without affecting the F1. Thus an
increase in w now suppresses firing to all stimulus orientations,
whereas with simple-cell–like inhibition, the inhibition in-
duced an increase in input F1 that compensated for the de-
crease in input DC at preferred orientations. To adjust for this
difference, we increased the stimulus amplitude and modified
the background conductances to maintain a nonzero back-
ground firing rate �1 Hz. Parameters were set as detailed in
METHODS.

With complex-cell inhibition, contrast invariance of the rate
can be achieved for low w (Fig. 9, A and B). With weak
inhibition, both the � and the HWHM of the rate are approx-
imately contrast invariant. With balanced or strong inhibition,
the tuning narrows with increasing contrast, as is particularly
evident in the HWHM. Thus for weak inhibition, we can
achieve contrast invariance of the firing rate in our model cell
with complex-cell–like inhibition.

We cannot, however, realistically suppress the null response
(Fig. 9C) with such weak inhibition. In response to a null-
oriented stimulus, the rate response (Fig. 9C) and the voltage
response (Fig. 9F) behave very much as in the case of simple-
cell inhibition (Fig. 7, A and B), except that the absolute values
of slopes are now larger because the model LGN input is
stronger. This is as expected because, in response to a null
stimulus, the simple-cell inhibition provides only a DC and
thus is identical to the complex-cell inhibition. In particular,
inhibition must be slightly stronger than excitation to prevent
null firing from increasing with contrast.

We cannot achieve a tuned DC potential (Fig. 9, D and E)
for any level of inhibition. For low levels of inhibition, the �
part of the voltage DC shows roughly contrast-invariant tuning
for contrasts of 	16% (at lower contrasts, we do not pull out
any peaks from the noise), but by the HWHM measure, the
voltage DC is never tuned for orientation. For weak inhibition,
the untuned DC dominates the tuned DC just as for simple-cell
inhibition. Stronger inhibition suppresses the growth of the
untuned DC (and thus suppresses the growth of null re-
sponses), but the strong complex-cell inhibition also suffi-
ciently suppresses the rate in response to preferred orientations
such that the recurrent connections no longer induce an appre-
ciable mean depolarization at those orientations. Thus little or
no tuned DC is created, so that the tuned component of the DC
remains smaller than the untuned DC component for all inhi-
bition levels.
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model data. Usrey data (star) shows the slope from 21 to 100% contrast; model
slopes are �4 to 100% contrast, but would be smaller if plotted over the
21–100% range; see RESULTS.
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D I S C U S S I O N

We have found that, given realistic voltage noise, both the
contrast invariance of orientation tuning (Alitto and Usrey
2004; Anderson et al. 2000a; Sclar and Freeman 1982; Skottun
et al. 1987) and the decrease with contrast of circular variance
(Alitto and Usrey 2004) of spiking responses are easily at-
tained, by levels of feedforward inhibition ranging from weak
to strong. The reasons are much as illustrated in the right
column of Fig. 1B: the power-law input–output relation in-
duced by the voltage noise strongly amplifies larger inputs
relative to smaller inputs. This ensures that the main tuning
peak is largely determined by the F1 of the input, which is
contrast invariant, almost irrespective of inhibition levels.
However, proper suppression of the input DC is also required:
if inhibition, and thus DC suppression, is very weak, a weak
broadening of tuning with contrast occurs, whereas if inhibi-
tion is too strong, a weak narrowing occurs (Fig. 5). The power
law also ensures that the ratio of null-orientation to preferred-
orientation spiking responses decreases with increasing con-
trast, which is reinforced by the amplification of preferred but
not null responses by recurrence and the inhibition of null but
not preferred responses by antiphase inhibition. This in turn
ensures (see APPENDIX) that the circular variance decreases with
contrast (Fig. 8).

Although the contrast invariance of spike-rate tuning does
not place significant constraints on the strength of inhibition,
stronger constraints arise from two observations. First, the
voltage DC shows contrast-invariant orientation tuning. This
requires inhibition to be stronger than excitation (Fig. 6B), so
that the untuned voltage DC induced by the LGN input is
sufficiently suppressed relative to the tuned voltage DC in-
duced by recurrent excitation. However, the constraints from
experimental data on the contrast invariance of the voltage DC
are not strong (Fig. 6B). Furthermore, to the extent that LGN
input is weaker and recurrent excitation is stronger than those
in our model (as discussed in the following text), the ratio of
tuned to untuned DC component will increase and so the
requirement for inhibition may correspondingly decrease. The
observation of a tuned, contrast-invariant voltage DC also
seems to require antiphase inhibition, which allows suppres-
sion of null voltage responses without corresponding suppres-
sion of preferred responses, and does not appear to be achiev-
able with phase-nonspecific complex cell inhibition alone.

A second constraint on inhibition arises from the spiking
response to a null-oriented stimulus, which on average does not
grow with contrast and is smaller than background firing
(Alitto and Usrey 2004 and intracellular data from Anderson
and Ferster); however, it will be important to measure this in
cells known to receive strong LGN input). In our model, this
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again requires inhibition to be slightly stronger than excitation
(Figs. 7A and 9C). Two effects are involved. The null stimulus
evokes an average depolarization that grows with contrast
(unless inhibition is extremely strong), and evokes a conduc-
tance increase that grows with contrast that depresses the
probability of large voltage fluctuations. The stronger the
inhibition, the smaller the depolarization and the larger the
conductance change. To match the data, inhibition must be
strong enough that there is no net increase with contrast in the
probability of a suprathreshold voltage fluctuation. In general,
this seems to require inhibition that is stronger than excitation.
However, the further the distance from rest to threshold or the
weaker the overall LGN input, the wider the range of inhibitory
strengths that will produce slopes of null firing versus contrast
indistinguishable from zero. This constraint also provides an
argument that antiphase inhibition must supplement phase-
nonspecific complex-cell inhibition: we have found that, if
inhibition comes only from complex cells, then inhibition that
is strong enough to suppresses spiking to a null stimulus
despite voltage fluctuations also causes narrowing of orienta-
tion tuning with contrast.

An additional argument that inhibition is needed to suppress
spiking to a null stimulus is that the peak LGN input is higher
to a high-contrast null stimulus than to a low-contrast preferred
stimulus (see Troyer et al. 1998). For the latter and not the
former to induce spiking, either the null input must be reduced
by inhibition, and/or the size of fluctuations that might carry
the null input over threshold must be relatively reduced, which
in our model occurs primarily as a result of the conductance
added by inhibition.

Critique of our model

Our model has certain limitations. The recurrent excitation is
necessarily weak because of our simplified model of recur-
rence: only a single cell gives recurrent input. This leads to
instability at lower values of the overall amplification than can
be achieved in more realistic models in which recurrence is
distributed over hundreds or thousands of inputs. In our model,
the voltage F1 is amplified about 1.5-fold relative to that
induced by the LGN alone, for simple-cell inhibition with w �
2.5. About 85% of this model amplification arises from the
antiphase inhibition rather than recurrent excitation, so the
amplification is correspondingly reduced for smaller w and
increased for larger w. This amplification is weaker than the
rough experimental estimate that the voltage F1 is typically
amplified two- to threefold (Ferster et al. 1996), although work
published after ours was completed documents that simple
cells show great variety in their relative strength of LGN versus
intracortical input (Finn et al. 2007).

Another possible limitation concerns the voltage distance
from rest to threshold. We assumed a distance of 10 mV, which
roughly described the five sample cells we studied from Ander-
son and Ferster (mean 13 mV, range 8–20 mV). However, a
more recent study with far more cells found an average
distance from rest to threshold of 19.8 mV for simple cells
(Priebe et al. 2004). An increased distance from rest to thresh-
old would increase the range of depolarizations that yield
effectively zero increase in firing rate for a given voltage noise
level (i.e., the range over which the resulting increase in
average firing rate is smaller than experiment can resolve),

whereas a weaker ratio of LGN input to intracortical input
would help keep depolarizations in response to a null stimulus
within this range. Thus either change might increase the range
of w that effectively give zero slopes in the tuning width and
the null firing rate as functions of contrast.

We have estimated the DC/F1 ratio of the LGN input
assuming a Gabor function receptive field. The actual ar-
rangement of LGN input is likely to be a quite noisy version
of the Gabor function (Alonso et al. 2001), and this noise
would significantly increase the DC relative to the F1. Thus
we have probably underestimated the relative size of the
input DC.

All of these factors may contribute to another limitation: that
the model DC/F1 ratio for voltage response to preferred ori-
entation stimuli is smaller than that observed in intracellular
recordings. In our model the DC varies roughly from 15 to
30% of the F1 as contrast varies (see METHODS). In the five
experimental cells from Anderson and Ferster the ratio ranges
between 2 and 2.5. More recent data including many more cells
Priebe et al. (2004) show that, at high contrast, voltage DC/F1
ratios of �0.8 (and ranging to �0.4) are seen only among the
cells with the highest F1/DC ratio of spike rate responses
(which one might speculate are most likely to include simple
cells receiving strong LGN input, as modeled here). Thus the
degree of discrepancy is unclear, but there is a discrepancy.

To summarize, in our model as it stands, we observe that
stronger than balanced feedforward inhibition is needed to
suppress firing responses to a null stimulus and to achieve
proper tuning of the voltage DC. Weaker inhibition might be
able to satisfy these constraints, however, if some combination
of weaker LGN input and/or a larger distance from rest to
threshold were instantiated in the model. These remain open
issues for future study. In addition, antiphase inhibition is
needed to satisfy these constraints. These results differ from
those of our previous work, which did not incorporate voltage
noise: in those studies, stronger than balanced inhibition was
required to attain contrast invariance of spike-rate tuning
(Troyer et al. 1998) and complex-cell inhibition was sufficient
by itself to achieve this (Lauritzen and Miller 2003). Thus the
key issues to be addressed to determine the size and structure
of feedforward inhibition are substantially changed by the
effects of voltage noise.

Since this work was completed, we became aware of results
showing that a decrease in noise level with contrast makes an
important contribution to contrast-invariant orientation selec-
tivity, allowing larger depolarizations to high-contrast null
stimuli without increases in null spiking (Finn et al. 2007).
Although such effects occurred in our simulations and contrib-
uted to our results, we assumed from the contrary results of
Anderson et al. (2000a), who saw little dependency of noise
level on orientation or contrast, that these effects played a
relatively minor role, and we chose our parameter regimes
accordingly. Further work will be needed to determine how
these results—and also the results in the same paper on the
variation across simple cells of the percentage of input received
from LGN and the covariation of this with response properties
such as the tuning of the voltage DC—influence the conclu-
sions as to the strength of inhibition required to explain spiking
and voltage tuning.
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Comparison to other models

In the model we study here, spiking response properties
emerge from the combination of feedforward input, both ex-
citatory and inhibitory, and the nonlinearity of spike threshold,
which along with voltage noise creates a power-law input–
output function. Recurrent intracortical excitation amplifies but
does not create spiking response properties; however, it is
important for explaining voltage response properties, such as
the tuned voltage DC. Previous models (Ben-Yishai et al.
1995; Somers et al. 1995) explained the contrast invariance of
spiking orientation tuning as a result of intracortical connec-
tions that cause any stimulus to yield a “bump” of cortical
activity of a fixed width. As we have discussed previously
(Troyer et al. 1998), this is inconsistent with the fact that
orientation tuning width does depend on stimulus attributes,
such as length of a bar or spatial frequency of a grating, even
though it does not depend on the stimulus attribute of contrast.
It also seems incompatible with experiments showing similar
voltage orientation tuning with or without cortical connections
(Chung and Ferster 1998; Ferster et al. 1996). Another model
(McLaughlin et al. 2000; Wielaard et al. 2001) is similar to that
of Troyer et al. (1998) in that spiking response properties are
explained by strong untuned inhibition that eliminates the
untuned, nonlinear component of the LGN excitatory input.
However, this model uses only phase-nonspecific intracortical
connections. In such a model, cortical connections do not
amplify the voltage F1, unlike in experiments (Ferster et al.
1996), and the inhibitory conductance has no F1 at all, which
again differs from experiment (Anderson et al. 2000b; Priebe
and Ferster 2006). It would also be difficult or impossible to
construct simple cells that receive a significant percentage of
their excitation from cortex, as observed recently (Finn et al.
2007), without phase-specific excitation, or to build simple
cells in which the orientation tuning of the inhibitory conductance
is strongly peaked at the cell’s preferred orientation, as typically
observed for simple cells (Anderson et al. 2000b; Ferster 1986;
Martinez et al. 2002), without antiphase inhibition.

Experimental implications

Direct measurements of inhibitory and excitatory conduc-
tance to a null stimulus in cells receiving strong LGN input
could most cleanly determine the strength of inhibition. Exist-
ing measurements for seven simple cells suggest that most
have stimulus-induced inhibitory conductance at the null com-
parable in size to stimulus-induced excitatory conductance
(Anderson et al. 2000b), which represents weak (w � 1.0)
rather than balanced (w � 2.5) inhibition. However, LGN input
to these cells was not assessed.

Experimental data are highly variable. One source of this
variation might be variability in the strength of inhibition
received by cells relative to excitation. If so, measures of
tuning widths and null suppression of spiking and voltage
responses should show covariation, on average, as they do if w
is varied in the model. For example, cells that show a negative
slope in the rate tuning width as a function of contrast should
also tend to show a negative slope in the null firing. This
provides one interesting set of experimental tests of the present
results.

We observed contrast-invariant rate tuning down to about
4% contrast. Experimentally, this is seen to about 2% contrast,

at least in some cells (Skottun et al. 1987). Possible explana-
tions are that our model of LGN contrast response may be
inaccurate at very low contrasts [it was derived from data of
Cheng et al. (1995), who did not examine such low contrasts],
or that cells that respond to such low contrasts may receive
stronger LGN synapses than do model cells. An alternative
explanation begins by noting that, in model data, the voltage
responses for balanced or dominant inhibition are contrast
invariant down to 1 or 2% contrast (data not shown). Thus the
problem may be a failure to create spike responses from these
small but tuned voltage responses. A larger tuned DC voltage
response might help to cure this.

To account for the observed orientation tuning of the voltage
DC, the tuned component of the voltage DC must be large
relative to the untuned component. The LGN input has only an
untuned DC, so the tuned component is created in cortex.
There are two obvious mechanisms to create this component:
recurrent excitation, which creates a component with tuning
that should roughly follow spiking tuning; and reversal poten-
tial effects allowing voltage modulations from rest to go up
more strongly than they can go down, which should create
tuning that roughly follows voltage F1 tuning. Comparing the
tuning width of the voltage DC to that of spiking and the
voltage F1 may be one way to assess how much each effect
contributes.

We have considered two components of feedforward inhi-
bition: an F1 component that is opposite in phase to feedfor-
ward excitation and a DC component. We have equated the
combination of an F1 and a DC with antiphase inhibition from
inhibitory simple cells that have both an orientation-tuned and
an untuned component to their spiking response, as in Troyer
et al. (1998, 2002). Hirsch et al. (2003) found a minority of
inhibitory simple cells in layer 4 of cat V1 with such an
untuned component, but the majority showed only a tuned
component. We have equated inhibition consisting only of a
DC component with inhibition from complex inhibitory cells,
which show both light and dark responses throughout their
receptive field and show little or no orientation tuning (Hirsch
et al. 2003).

In reality, the inhibition received by simple cells probably
includes both simple- and complex-cell inhibition. Simple cells
without an untuned response component would provide a tuned
F1 and, if their mean firing rate increased in response to a
stimulus, a tuned DC. Simple cells with an untuned component
would provide a tuned F1, an untuned DC, and perhaps a tuned
DC component (if their mean firing rate did not increase
equally at all orientations). The complex cells would provide
an untuned DC. The net result would be much as in our
simple-cell model, but with two possible changes: 1) changes
in the relative strength of the inhibitory F1 and inhibitory
untuned DC and 2) the possible addition of a tuned inhibitory
DC. Neither of these seems likely to seriously change our
analysis, so that we believe our “simple-inhibitory-cell” case
can really be understood as a mixture of simple and complex
inhibitory cells.

The fluctuation-driven regime and functional specificity

The present model accounts for responses in a regime in
which the trial-averaged or mean voltage response is sub-
threshold and spiking is driven by voltage fluctuations (Ander-
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son et al. 2000a). Our previous models had little voltage noise,
so that spiking was driven primarily by the mean voltage
response. Orientation tuning is created differently in these two
regimes (Fig. 1B). When firing on the fluctuations, the mean
voltage response is put through a power law to create the
spiking response, narrowing the tuning without a hard thresh-
old. The spiking tuning then is contrast invariant if the voltage
tuning is. When firing on the mean, the tuning is determined by
the range of orientations that drive a suprathreshold voltage
response. Contrast-invariant spiking tuning then requires inhi-
bition that is stronger than excitation.

These two regimes require very different settings of the
distance from rest to threshold relative to the size of the mean
voltage responses. Fortunately, in both regimes the settings
seem to arise naturally. A key constraint is that the spontaneous
activity of the simple cells should be small (�1 Hz) but not
zero. In the noise-driven regime, this ensures that rest is far
enough from threshold, relative to noise fluctuations, that the
trial-averaged stimulus-driven voltage responses are likely to
stay subthreshold (although other constraints on stimulus-
driven responses also contribute). In the mean-response–
driven regime, this similarly ensures that rest is close enough to
threshold that stimulus-driven responses are likely to be su-
prathreshold.

One could imagine exploring intermediate levels of noise.
So long as responses stayed clearly in one regime or the other,
we expect little change in the analysis. However, if the two
regimes were straddled, low-contrast responses would fire on
fluctuations whereas high-contrast responses would fire on the
mean. This would likely lead to different tuning widths in the
two regimes absent careful parameter adjustment.

Large voltage noise is seen in many (e.g., Destexhe et al.
2003), although perhaps not all (e.g., Deweese and Zador
2004), cortical systems. The results presented here, by identi-
fying specific ways in which voltage noise and feedforward
inhibition can interact to create stimulus specificity in the
context of cat V1, may provide a first step toward understand-
ing such cortical processing more generally.

A P P E N D I X

The circular variance is given by 1 � � ¥i y(�i)e
i2�i/¥i y(�i) �, where

we multiply the angle � by a factor of 2 because orientation has �
periodicity. For Gaussian tuning curves described by y(�) �
A exp[�(���0)2/2�2] �B, the circular variance has the form

Circular variance

�

A �
i

exp� � �2�i�
2/�2�2��2�	�1 � cos �2�i�	 � B�

i
�1 � cos �2�i�	

A �
i

exp� � �2�i�
2/�2�2��2�	 � N� B

where the i runs over all N� orientations and we have multiplied � and
� by a factor of 2 once again to account for the � periodicity of
orientation. Here, we have exploited the fact that the tuning is
symmetric, which allows us to ignore the complex part of the circular
variance. The responses at the null and preferred orientations can be
related to the tuning parameters by pref � A � B and null �
A exp[��2/(2(2�)2)] � B or, equivalently, A � (null � pref )/
(exp[��2/(2(2�)2)] � 1) and B � pref � A. Substituting these
expressions into our equation for the circular variance and rearranging
terms, and letting G� � exp[��2/(2(2�)2)], Gi � exp[�(2�i)

2/
(2(2�)2)], and cosi � cos (2�i), we obtain

Circular variance �

a1 � a2

null

pref

a3 � a4

null

pref

(A1)

where

a1 � N�G� � �
i

Gi�1 � cosi�

a2 � �
i

Gi�1 � cosi� � N�

a3 � N� G� � �
i

Gi

and

a4 � �
i

Gi � N�

The extent to which any one set of a values can be used to fit the
circular variance at all contrasts reveals how contrast invariant � is.
Alitto and Usrey (2004) found, for their data in the ferret visual
cortex, that the circular variance varies as the square root of the null
to preferred ratio. Given the form of the circular variance, it can
masquerade as many different powers of the ratio of the null to
preferred response, but we find that our data collapse to a line most
precisely using the above function as a fit.

For tuning curves that are well described by a Gaussian plus a
baseline, and for which the Gaussian tuning is invariant with stimulus
contrast, the change in circular variance with a change in contrast can
be determined as follows: Because the Gaussian tuning is contrast
invariant, the parameters a1, a2, a3, and a4 do not vary with contrast.
Thus by letting x � null/pref, we have

d�circvar�

d�contrast�
�

d�circvar�

dx

dx

d�contrast�

and

d�circvar�

dx
�

a2a3 � a1a4

�a3 � a4x�2

Thus the sign of d{circvar}/dx is equal to the sign of dx/d{contrast}
times the sign of (a2a3 � a1a4). The latter term is given by

a2a3 � a1a4 � N��1 � G�� �
i

Gi cosi

This is always positive and becomes small relative to its peak value
only for unrealistically large � (empirically, � � 90°), which makes
both (1 � G�) and ¥i Gi cosi small, or unrealistically small �
(empirically, � � 4°), which makes ¥i Gi cosi small. Thus the change
in circular variance with contrast has the same sign as the change in
null/pref with contrast: if the latter decreases with contrast, so will the
circular variance.
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